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Abstract: Perovskite solar cells (PSCs) continue to advance toward higher efficiencies, yet the geometrical design of
functional layers remains a critical bottleneck for device optimization and manufacturability. This work establishes
a hybrid physics-data framework that integrates three-dimensional finite-element modeling with machine-learning-
based surrogate prediction to accelerate PSC thickness optimization. A full 3D COMSOL Multiphysics model
was developed to resolve charge-transport behavior, spatial electric fields, and recombination profiles within
TiO2/MAPbI3/Spiro-OMeTAD architectures. Systematic variations in electron transport layer (ETL), perovskite
absorber, and hole transport layer (HTL) thicknesses reveal that device power conversion efficiency (PCE) is governed
by a trade-off between optical absorption, interface recombination, and resistive losses. A multi-layer perceptron
regressor was trained using simulation data and achieved strong predictive fidelity (R? ~ 0.98) with a mean absolute
error below 0.3%. The resulting surrogate model rapidly identifies optimal structural configurations without requiring
additional high-cost simulations, demonstrating a reduction of design time by more than an order of magnitude. The
proposed workflow provides a transferable route toward digital-twin-driven photovoltaic design and offers practical
guidance for high-performance PSC engineering with reduced material consumption and enhanced computational
efficiency.

Keywords: Perovskite solar cells; 3D multiphysics simulation; Finite-element modeling; Machine-learning surrogate;
Layer thickness optimization; Efficiency prediction

1 Introduction

Perovskite solar cells (PSCs) have rapidly emerged as one of the most promising next-generation photovoltaic
technologies, offering a compelling alternative to traditional silicon-based solar cells. In just over a decade, the
power conversion efficiency (PCE) of PSCs has soared from under 4% to over 26%, thanks to their exceptional
optoelectronic properties, including high absorption coeflicients, long carrier diffusion lengths, and defect tolerance,
alongside low-cost, solution-based fabrication methods [1]. Unlike crystalline silicon cells, PSCs can be processed at
low temperatures and deposited on flexible substrates, enabling lightweight and wearable photovoltaics [2]. Tandem
architectures (e.g., perovskite/silicon multi-junctions) and novel self-healing material compositions are further
pushing PSC efficiencies toward—and potentially beyond—30%, while also addressing stability challenges [3].
This makes PSCs a highly attractive candidate for both utility-scale and off-grid solar energy applications, driving
global research and industrial interest.

Despite their progress, achieving further improvements in PSC performance and reliability requires an in-depth
understanding of the interrelated physical, chemical, and thermal processes that govern device behavior. Traditional
experimental approaches can be costly, time-consuming, and limited by the availability of materials and fabrication
tools. Thus, predictive modeling and simulation have become indispensable tools in accelerating the development
cycle of PSCs. These tools allow for virtual exploration of materials, structures, and operating conditions, significantly
reducing the experimental burden. Researchers can simulate the impact of different absorber thicknesses, interface
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materials, defect densities, and electrode properties on key performance metrics such as short-circuit current (Jsc),
open-circuit voltage (Voc), fill factor (FF), and PCE.

Recent research efforts have focused on exploring novel materials and device architectures to approach theoretical
efficiency limits. Strategies such as plasmonic nanoparticle enhancement, 2D-material interface integration, and
buffer layer optimization have been widely studied. Device simulation tools play a critical role in accelerating
these innovations by enabling virtual prototyping of solar cell designs prior to fabrication. High-fidelity simulation
allows researchers to evaluate electrical, optical, and thermal behaviors of proposed structures in a cost-effective
and scalable manner [4]. For instance, functional molecular interface engineering (FMIE) has significantly reduced
recombination losses at PSC interfaces. Li et al. [5] demonstrated this by incorporating fluorene-based conjugated
polyelectrolytes and organic halide salts at both contacts, achieving an open-circuit voltage of 1.18 V and a PCE
of 21.33%, among the highest reported for inverted architectures. Similar gains have been demonstrated through
plasmonic enhancement [6], 2D materials [7], and buffer layer selection [8], illustrating the efficacy of simulation-
guided design.

Among simulation platforms, COMSOL Multiphysics stands out due to its robust Multiphysics capabilities and
support for full 3D device simulations [9, 10]. Unlike 1D drift-diffusion tools like SCAPS or 2D TCAD frameworks,
COMSOQL’s finite element method (FEM) modeling captures the complex interplay between charge transport,
photogeneration, and heat dissipation in three-dimensional geometries. This enables spatially resolved insights
such as edge recombination, non-uniform current flow, and thermal gradients—phenomena typically inaccessible to
lower-dimensional tools. Researchers have used 3D FEM to explore various PSC configurations, analyze electrode
material choices, and quantify thickness effects on current density and recombination [11]. By solving coupled
partial differential equations, COMSOL predicts device characteristics (I-V curves, field distributions, temperature
profiles) under realistic operating conditions, proving valuable across photovoltaics and broader renewable energy
domains [12-15].

Parallel to physical modeling advances, machine learning (ML) and deep learning have revolutionized solar cell
research [16]. ML excels at detecting nonlinear patterns in large datasets, accelerating optimization of materials
and device parameters beyond the reach of brute-force experimentation. Since 2020, ML has been applied to PSC
composition screening, stability forecasting, process optimization, and performance prediction [17, 18]. Techniques
such as neural networks, random forests, and reinforcement learning have enabled accurate modeling of device
behaviors. ML is especially powerful when integrated with simulation workflows, offering the ability to create
surrogate models that generalize well across wide design spaces. This hybrid approach merges data-driven learning
with physical insights, producing interpretable and transferable results.

For example, Cetinkaya et al. [19] used deep Q-learning to optimize multilayer thickness in organic solar cells,
outperforming traditional trial-and-error tuning. In the PSC domain, Malek et al. [20] integrated artificial neural
networks with SCAPS-1D simulations to optimize a carbon nanotube-based device without a hole transport layer,
predicting a PCE of 20.9% with high accuracy. Similarly, Shrivastav et al. [21] used SCAPS and XGBoost to model
a lead-free KGeCl3 PSC, achieving 19.6% efficiency with R? of 0.996. Islam et al. [22] analyzed how material
properties influence device physics using interpretable ML models, while Hillhouse et al. [23] forecasted long-term
stability through supervised ML based on accelerated testing data. Peters and Buonassisi [24] examined how global
operating conditions impact PSC performance using system-level simulations. Deep learning models (e.g. neural
networks) and ensemble algorithms (random forests, XGBoost, Bayesian optimizers, etc.) have been trained on
experimental and simulated data to predict solar cell outputs and identify promising design configurations [25].

Table 1 summarizes key studies that combine ML and/or simulation for PSC development. While each contributes
valuable insights, they differ in dimensional fidelity, data origin, and integration level. Notably, none of them
combine full 3D FEM-based simulation with ML optimization in a unified framework. Our study addresses this
gap by integrating COMSOL Multiphysics 3D simulation with a machine learning regressor. This hybrid approach
allows rapid PCE prediction while retaining physical accuracy. The simulation generates high-quality training data
with spatially resolved features (electric fields, thermal gradients, recombination profiles), and the ML model learns
the nonlinear mappings between design parameters and efficiency metrics.

As seen in Table 1, our study distinguishes itself by integrating 3D COMSOL Multiphysics simulations with a ML
predictor to establish a data-driven yet physics-grounded optimization framework for PSCs. This integration bridges
the gap between high-fidelity physical modeling and rapid ML-based efficiency prediction, enabling faster and more
accurate design optimization of PSC architectures. Unlike earlier studies limited to 1D modeling or empirical
datasets, our framework leverages a full 3D device model that captures spatially resolved physical phenomena such
as electric field distributions, recombination hotspots, and thermal gradients—thereby enhancing physical realism
and predictive reliability.

The fusion of high-fidelity modeling and data-driven prediction allows us to construct a prototype digital twin
of the PSC device—a fast, accurate computational surrogate that proposes optimal configurations without requiring
new simulations for every design iteration. This dramatically reduces computational cost and development time,
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accelerating innovation. The detailed 3D simulations provide physically consistent data for ML training, while
the trained ML model rapidly predicts key photovoltaic performance metrics, such as power conversion efficiency
(PCE), short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF). Through this synergy,
the ML algorithm learns the nonlinear relationships between structural parameters (e.g., ETL, HTL, and perovskite
layer thicknesses) and device efficiency, allowing instantaneous performance estimation and optimization within the
explored design space.

Table 1. Comparative summary of recent ML and simulation-based studies for PSC optimization

Reference

Methodology

Novelty vs. Our Work

Malek et al. [20]

Shrivastav et
al. [21]

Islam et al. [22]

Hillhouse et al. [23]

Peters and

Buonassisi [24]

Kumar et al. [25]

Prasanna et al. [26]

SCAPS-1D + Artificial Neural
Network (ANN); optimized
CNT-based HTL-free PSC
Lead-free KGeCls; PSC modelled
via SCAPS + XGBoost

Interpretable ML to assess how
materials affect PSC physics
(Random Forest, Decision Trees)
ML forecasting of PSC degradation
based on test data (Supervised ML)

System-level ML simulation for
operational prediction (Neural
Networks, Decision Trees)
Tandem PSC simulation via
Silvaco ATLAS; process-oriented

ML modelling of double absorber
layer PSCs

Lacks 3D spatial resolution; our study adds FEM
realism and enables higher prediction precision
through full-physics simulation
Focuses on a lead-free material with 1D
modelling; our work extends to 3D COMSOL
modelling for realistic spatial field and
recombination visualization
Does not involve simulation; our study links
empirical learning with physics-based data for
more reliable optimization
Targets degradation/stability forecasting only; our
work focuses on performance prediction and
device optimization with spatial modelling
System-level analysis, not device-scale
modelling; our work is centred on design-level
performance and PCE enhancement of PSCs
Focused on fabrication constraints; our study
prioritizes predictive performance modelling with
hybrid simulation + ML
Data-driven only; lacks physics-based simulation.
Our method combines COMSOL 3D data with

ML for higher generalizability and device-level
optimization of layer thicknesses

By combining COMSOL’s Multiphysics visualization with ML-based prediction, our framework merges physics
realism with computational speed, serving as a proof-of-concept for simulation-driven artificial intelligence in solar
cell design. This approach not only provides deeper insight into device operations—such as band alignment, charge
transport uniformity, and localized recombination—but also enables predictive exploration of design configurations
that may be non-intuitive. While experimental validation remains indispensable for confirming real-world device
behavior, the proposed simulation-ML workflow significantly reduces the reliance on costly and time-consuming
fabrication cycles. It offers a scalable path to accelerate photovoltaic innovation, aligning with the broader trend in
materials science toward digital twins that shorten development timelines and lower research costs.

The rest of this paper is structured as follows. Section 2 describes the development of the 3D PSC model
in COMSOL Multiphysics, presenting spatial visualizations of the electric field, voltage, and power density, as
well as calculated performance parameters (PCE, Jsc, Voc, and FF). Section 3 details the integration of ML for
PSC optimization, including dataset generation, preprocessing, algorithm selection, and model training. Section 4
presents the results and discussion, highlighting how the ML-predicted optimal layer thicknesses compare with the
simulation baseline and analyzing the physical implications of efficiency trends. Section 5 concludes by summarizing
the key findings and outlining future directions, including stability modeling, material-level optimization, and
experimental validation. By demonstrating this integrated 3D-simulation-plus-ML methodology, we aim to advance
the development of efficient, cost-effective, and scalable perovskite solar cells through the synergy of high-fidelity
simulation and artificial intelligence.

2 3D Simulation Model and Design

The 3D COMSOL Multiphysics simulation forms the core of this research, providing a comprehensive three-
dimensional model of the PSC composed of three functional layers: the electron transport layer (ETL), the perovskite
absorber, and the hole transport layer (HTL), as shown in Figure 1.

The electron transport layer (ETL), composed of titanium dioxide (TiO3), serves as the top layer and acts as an
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n-type semiconductor facilitating electron extraction. TiO; is selected for its stable defect chemistry, wide bandgap
ensuring chemical stability, and tunable conductivity, which makes it ideal for applications such as solar cells and
sensors [27, 28].
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Figure 1. A Schematic representation of the simulated perovskite solar cell structure

The middle block, consisting of the perovskite material methylammonium lead iodide (MAPDI3), serves as
the active layer for photon absorption and charge transport. MAPDI3 is a widely used active layer in perovskite
solar cells due to its excellent light absorption and charge transport properties, achieving high power conversion
efficiencies over 20% [29]. It has an optimal bandgap and a high carrier diffusion length, enabling efficient photon-
to-electron conversion [30]. Additionally, its compatibility with scalable deposition techniques makes it suitable for
cost-effective solar cell manufacturing [31].

The bottom layer, composed of 2,2°,7,7’-tetrakis(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene (Spiro-
OMeTAD), serves as the hole transport layer (HTL). Spiro-OMeTAD is widely used as a p-type semiconductor
in solar cells due to its high hole mobility, stable energy levels, and efficient charge transport capabilities [32]. It
provides excellent film formation, ensuring effective contact with the active layer for improved power conversion
efficiencies exceeding 20% [33]. Its versatility makes it the standard hole-transport material for perovskite solar

cells [34].
The characteristics and properties of the materials used in each layer is outlined in Table 2.

Table 2. Material Parameters for Spiro-OMeTAD (HTL), MAPbI3, and TiOs (ETL) [35, 36]

Parameters Spiro-OMeTAD (HTL) MAPbLI; TiO, (ETL)
Relative permittivity e, 3 18 31
Bandgap (eV) 3 1.52 3
Electron affinity (eV) 1.9 3.6 4.1
Effective density of states IV, (cm™%) 1 x 1020 5 x 108 1 x 1020
Effective density of states N, (cm™?) 1 x 1020 5 x 1018 1 x 1020
Electron mobility 1, (cm?/V-s) 2 2 1 x 1072
Hole mobility p,, (cm?/V-s) 1x1072 2 2
Electron lifetime (ns) 5 100 5
Hole lifetime (ns) 5 100 5

The semiconductor physics interface solves the coupled equations governing electric potential, current density,
and carrier transport. The electric field E is derived from the electrostatic potential ® (Eq. (1)), while the local
power density P is expressed as the product of current density JJ and E (Eq. (2)). The total current density combines
both electron and hole contributions (Eq. (3)). Device efficiency 7 is determined using Eq. (4), where the fill factor
(FF), open-circuit voltage (Voc), and short-circuit current density (Jsc) are obtained from the current—voltage (J-V)
characteristics. Egs. (5) and (6) are presenting the carrier transport equations (continuity equations for electrons and

holes).
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where,

® (V) is the electrostatic potential, and £ (V . m’l) is the electric field vector.

J (A.m*2) is the total current density, consisting of electron and hole contributions.

q(C) is the elementary charge.

n (m=3) and p (m~3) are the electron and hole concentrations, respectively.

fin and g, (m? - V=1 - s71) are the electron and hole mobilities.

D,, and D, (m2 . 5_1) are the diffusion coeflicients, related to mobility through the Einstein relation D =
nKT/q.

G (m*3 . 5*1) is the carrier generation rate, and R (m’3 . 5’1) is the recombination rate (including Shockley-
Read-Hall and Auger processes).

D (Wm_3) is the local power density, Puy (W) and P, (W) are the output and incident optical powers.
Voe(V)y Jse (A.m_Q), and F'F' are the open-circuit voltage, short-circuit current density, and fill factor, respectively.

1 (%) denotes the overall power conversion efficiency.

The semiconductor module supports advanced models such as Shockley-Read-Hall (SRH) recombination, Auger
recombination, and surface recombination, which can affect efficiency and power calculations.

The structure’s layers are treated as semiconductor materials, with the electron transport layer (ETL) defined
as an n-type semiconductor with a donor concentration of 1016 cm~3, and the hole transport layer (HTL) as a
p-type with an acceptor concentration of 1018 cm™3. Trap-assisted recombination is applied uniformly across all
layers to account for carrier losses, while electron and hole generation rates are user-defined at 3 x 1021 cm?
s~!. The boundaries of the system include continuity and heterojunction interfaces between the layers. The top
surface of the ETL is assigned as the Fluorine-doped tin oxide (FTO) contact, serving as the first terminal. FTO
is chosen as the front contact for the solar cell due to its excellent combination of optical and electrical properties.
Its high transparency allows light to pass through to the underlying layers, ensuring efficient photon absorption by
the perovskite layer, while its good electrical conductivity facilitates the transport of electrons from the electron
transport layer (ETL) to the external circuit. Its compatibility with materials like titanium dioxide (TiO2) ensures
effective band alignment and electron extraction, further enhancing the overall performance of the solar cell.

The material chosen for the terminal at the bottom surface of the HTL is Gold (Au). Gold is widely used due
to its excellent electrical conductivity, which ensures efficient charge collection and transport. Additionally, Gold
is chemically inert and highly stable, preventing degradation or chemical interactions with the underlying layers,
which is critical for long-term device performance. Its work function also aligns well with the energy levels of the
hole transport layer (HTL), facilitating efficient hole extraction and minimizing energy losses in the solar cell. The
Gold terminal is modeled as an ideal ohmic contact and subjected to a voltage change (Vapp) to study the system’s
electrical response.

The mesh is tailored for each layer through a swept meshing technique, ensuring high-quality discretization. The
stationary study is performed by sweeping the voltage applied to the gold terminal Vapp from 0 to 1.2 V in 0.05
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V increments. This allows for the analysis of current-voltage characteristics, enabling the calculation of the open
circuit voltage (Voc), the short circuit current (Jsc), the fill factor (FF), and the efficiency (7).

Some key visualizations such as Electric field (Figure 2) and Power (Figure 3) distributions throughout the
structure are incorporated to provide deeper insights and holistic view of the solar cell’s internal physics. This
provides a detailed understanding and optimization of the perovskite solar cell’s behavior, correlating physical
phenomena with performance metrics, and laying the groundwork for further analysis and optimization through
machine learning techniques.

The electric field and power distributions at Vapp = 0 V and Vapp = 1.2 V reveal critical insights into the
performance of the solar cell (Figure 2 and Figure 3).
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Figure 2. Electric field distribution throughout the 3D Solar cell structure at: (a) Vapp =0 V; (b) Vapp=1.2V
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Figure 3. Power distribution throughout the 3D Solar cell structure at : (a) Vapp=0V; (b) Vapp=1.2V

Figure 2a and Figure 2b depict the electric field distribution within the solar cell structure under different applied
voltages. In Figure 2b (Vapp = 0 V), the electric field is strong and relatively uniform at the ETL/absorber interface
due to efficient electron extraction, while localized variations appear at the HTL/absorber interface due to hole
accumulation. In contrast, Figure 2b (Vapp = 1.2 V) shows a significant shift in field distribution, where the field
becomes more uniform at the HTL/absorber interface as hole extraction improves, while field variations increase at
the ETL/absorber interface due to electron accumulation. This redistribution occurs as the applied voltage reduces
the built-in potential, altering charge transport dynamics and interface charge accumulation.

Figure 3a and Figure 3b depict the power distribution within the solar cell structure under two applied voltage
conditions. In Figure 3a, corresponding to the lower applied voltage, the power distribution appears relatively
uniform, with the highest concentration observed at the ETL/absorber interface and a gradual decrease toward the
HTL side. This uniformity indicates efficient internal electric field generation, which facilitates charge carrier
separation and minimizes recombination under equilibrium conditions. Although the computed power values are
negative due to the absence of an external bias, the smooth spatial gradient reflects minimal structural defects and
effective charge generation driven by the built-in electric field. The high magnitude of power density suggests that the
device operates near its optimal power generation region, where carrier transport remains efficient and recombination
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losses are minimal.

In contrast, Figure 3b reveals a marked reduction in power magnitude at higher applied voltage, particularly within
the perovskite absorber layer. This behavior indicates that the device operates beyond its maximum power point
(MPP). The observed decrease in power output at elevated voltages is attributed to enhanced carrier recombination
and reduced current extraction efficiency, phenomena typically observed as the solar cell approaches its open-
circuit condition (Voc). In both cases, the ETL/absorber interface remains the dominant power-generating region,
emphasizing the critical role of efficient electron transport in achieving high device performance. These results
confirm the characteristic photovoltaic trend in which power output initially increases with applied voltage, reaches
a maximum near the MPP, and then decreases as the system approaches Voc, highlighting the intricate relationship
between charge carrier dynamics and power generation efficiency.

This visualization underscores the importance of analyzing spatial variations in electric field and power distribution
for optimizing solar cell design. It provides a valuable framework for identifying active regions of carrier generation
and for improving interface engineering, doping profiles, and material integration strategies to enhance both efficiency
and long-term stability.

Furthermore, correlating the electric field and power distributions at Vap = 0 V and Vapp = 1.2 V with the
corresponding J-V characteristics yields a comprehensive view of device operation. At Vapp = 0V, the short-circuit
current density (Jsc) attains its maximum value, driven by the built-in electric field and minimal recombination
across the layers. Conversely, at Vapp = 1.2 V, the device reaches its open-circuit voltage (Voc), where efficient
carrier extraction persists despite the absence of net external current due to equilibrium. By analyzing the resulting
J-V curve, the fill factor (FF) can be determined as the ratio of the maximum power point to the product of Jsc
and Voc. Combining these parameters—Jsc, Voc, and FF—with the incident optical power yields the overall power
conversion efficiency (), enabling a detailed and quantitative assessment of solar cell performance under operational
conditions.

Figure 4 illustrates the current density—voltage (J—V) characteristics of a solar cell structure with an electron
transport layer (ETL) thickness of 50 nm, a perovskite (PVK) layer thickness of 300 nm, and a hole transport layer
(HTL) thickness of 200 nm. At lower voltages, the curve exhibits a flat and consistent short-circuit current density
(Jsc) of 20.17 mA cm~2, indicating excellent photocurrent generation. This plateau reflects minimal recombination
losses and efficient carrier collection, characteristic of effective electron and hole transport within a well-optimized
architecture. The stable current density in this region demonstrates the robustness of the device’s structural design
and material selection.
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Figure 4. Current density J as a function of applied voltage Vapp for the solar cell, showing the characteristic J-V
curve highlighting charge carrier dynamics and photovoltaic performance

As the applied voltage increases, the device approaches its open-circuit voltage (Voc), where a gradual decrease in
current density is observed. This controlled decline is a typical feature of photovoltaic behavior, indicating sustained
charge transport up to the device’s maximum voltage. The smooth curvature of the J-V plot signifies balanced
recombination dynamics, essential for maintaining a high voltage output.

Near the open-circuit condition, the sharp drop in current confirms the strong photovoltaic performance of the
device, highlighting its ability to minimize parasitic losses and maintain effective charge separation. The resulting fill
factor (FF = 47.62%) and power conversion efficiency (1) = 10.67%) validate the optimal selection of layer thicknesses,
demonstrating efficient charge transport and energy conversion. Overall, the curve reflects a well-designed and stable
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perovskite solar cell capable of achieving reliable performance under standard illumination conditions.
These simulation results provide a solid foundation for the next stage, where machine learning models are trained
using this synthetic dataset to predict and optimize PSC efficiency based on structural parameters.

3 Machine Learning Modeling of Solar Cell Efficiency

The 3D COMSOL Multiphysics simulations provided the foundation for the machine learning phase by generating
a structured dataset that links physical device parameters to photovoltaic performance. A parametric sweep was
performed over the ETL, HTL, and perovskite (PVK) layer thicknesses, and for each configuration, the simulation
computed the key photovoltaic outputs—open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor
(FF), and overall power conversion efficiency (n). These results were compiled into a dataset where the input
features corresponded to the layer thicknesses, and the target output was the simulated efficiency. The dataset was
preprocessed (Box—Cox transformation and standard scaling) and then used to train a Multi-Layer Perceptron (MLP)
model. In this integrated framework, the COMSOL simulations provide high-fidelity physical data, while the MLP
acts as a surrogate model capable of rapidly predicting efficiency for new, untested layer configurations—effectively
combining the rigor of physics-based modeling with the adaptability of data-driven prediction.

Controlling the thickness of solar cell layers is critical for optimizing light absorption, charge transport, and
minimizing recombination losses. Proper thickness ensures efficient charge collection, maintains a balanced electric
field, and prevents issues such as excessive resistance or incomplete coverage. Moreover, optimized thickness reduces
material usage and improves mechanical stability, which are essential for achieving high efficiency and scalable
device fabrication. Therefore, in this study, we systematically varied the ETL, HTL, and PVK layer thicknesses in
the COMSOL model and used the resulting dataset to train and validate the MLP predictor. This hybrid approach
enables identification of the optimal thickness combination that yields the highest efficiency, providing a robust and
computationally efficient framework for perovskite solar cell optimization.

The following subsection begins by analyzing the effect of the electron transport layer (ETL) thickness on the
key photovoltaic parameters, particularly the power conversion efficiency (Figure 5).
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Figure 5. Impact of ETL thickness on solar cell efficiency

Figure 5 presents the current density—voltage (J—Vapp) characteristics for different electron transport layer (ETL)
thicknesses ranging from 10 nm to 50 nm, with the HTL and perovskite (PVK) layers fixed at 200 nm and 300
nm, respectively. The x-axis represents the applied voltage (Vapp), while the y-axis shows the current density
(J) in mA/cm?2. Each curve corresponds to a specific ETL thickness. All curves exhibit a plateau region at low
voltages—representing the photocurrent generation regime—followed by a steep decline near the open-circuit voltage
(Voc). This behavior is typical for well-performing solar cells under illumination.

Variations in ETL thickness strongly influence charge transport and recombination dynamics. The short-circuit
current density (Jsc at Vapp = 0 V) slightly increases with increasing ETL thickness, reaching its maximum at
50 nm. This trend suggests improved charge extraction efficiency due to reduced interfacial recombination at
the ETL/absorber interface. However, beyond a certain point, thicker ETLs introduce additional resistive losses,
offsetting the benefits of enhanced collection. Thus, optimizing ETL thickness requires balancing charge extraction
and series resistance.

After validating the model with a detailed sweep of ETL thickness (10-50 nm in 10 nm increments), the same
approach was extended to the hole transport layer (HTL) and perovskite (PVK) layers. The HTL thickness varied
from 50 nm to 200 nm and the PVK layer from 50 nm to 300 nm. For each configuration, the key photovoltaic
parameters (Voc, Jsc, FF, ) were calculated to quantify the influence of layer thickness on performance. A complete
parametric analysis was then conducted across all possible combinations of ETL (10, 20, 50 nm), HTL (100, 150,
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200 nm), and PVK (100, 200, 300 nm) thicknesses, resulting in 18 distinct configurations that comprehensively
cover the design space.

The results demonstrate that increasing layer thickness does not necessarily enhance efficiency, as performance
depends on the balance between charge transport, recombination, and optical absorption. For example, increasing
the PVK thickness from 200 nm to 300 nm (at ETL = 10 nm, HTL = 200 nm) improves efficiency only marginally
(7.96% to 9.96%), while excessive thickness can increase resistive losses. Similarly, thicker HTLs (up to 200 nm)
generally enhance carrier collection but show configuration-dependent behavior; at ETL = 50 nm and PVK = 300
nm, increasing HTL thickness from 100 nm to 200 nm raises efficiency from 9.59% to 10.67%. Thinner HTLs can
still perform comparably when recombination and resistance are minimal. Regarding ETL behavior, a 50 nm ETL
provides superior performance in several combinations (HTL = 200 nm, PVK = 300 nm), whereas a 10 nm ETL
achieves 8.91% efficiency (HTL = 100 nm, PVK = 300 nm).

Overall, these findings highlight that device optimization cannot rely on increasing layer thickness alone.
Excessive thickness may introduce resistive losses, hinder charge transport, and provide diminishing optical gains.
The optimal design requires a balanced configuration of ETL, HTL, and PVK thicknesses to achieve high efficiency
with minimal material usage.

The data obtained from all 18 simulations—including the variations in ETL, HTL, and PVK thicknesses and the
corresponding calculated photovoltaic parameters (Voc, Jsc, FF, n)—were subsequently compiled into a structured
dataset. This dataset served as the input for the machine learning models used to predict the optimal layer-thickness
combinations that yield maximum efficiency. The MLP regressor parameters are summarized in Table 3, confirming
the reproducibility of the machine-learning procedure.

Table 3. MLP Regressor model parameters

Parameter Value
Hidden_layer_sizes 5
Activation logistic
Solver Ibfgs
Alpha 0.000001
Random_state 0
Max_iter 1000
Learning_rate adaptive

In this study, a Multi-Layer Perceptron (MLP) regressor was employed to model and predict the efficiency of
perovskite solar cells as a function of the ETL, HTL, and PVK layer thicknesses. The workflow comprised three
stages: preprocessing, model training, and performance evaluation. During preprocessing, a Box—Cox transformation
was applied to each feature to correct skewness and improve normality, followed by standard scaling to ensure uniform
feature ranges. No missing data were present, and the preprocessing pipeline was saved to maintain consistency for
future predictions.

The MLP model was trained using the dataset generated from a 2 x 3 x 3 full-factorial COMSOL simulation,
which produced 18 physically consistent samples covering all combinations of layer thicknesses. The dataset was split
into 70% for training and 30% for testing, with a fixed random seed (random_state = 0) to ensure reproducibility. The
model architecture consisted of five hidden neurons, a logistic activation, the L-BFGS solver, and L2 regularization
(o =1 x 1079), with a maximum of 1000 iterations. Five-fold cross-validation on the training subset yielded R?
values between 0.91 and 0.99 (mean = 0.97 £ 0.03), demonstrating stable learning and low variance across folds.

On the independent test subset, the MLP achieved R? = 0.98, MSE = 0.084, RMSE = 0.29, and MAE = 0.26,
confirming its robustness and accuracy. The small standard deviation of cross-validation results indicates consistent
convergence and minimal sensitivity to data partitioning. Additional training using the Adam optimizer exhibited
similar monotonic loss reduction, verifying convergence stability. Although the dataset consisted of only 18 samples,
its full-factorial design ensures complete coverage of the parameter space, and the noise-free nature of COMSOL
data makes it suitable for accurate surrogate modelling. The results are thus reliable within the defined domain,
and future work will expand the dataset through active-learning-guided simulations to improve extrapolation and
generalization.

The cross-validation results indicate that the model explains more than 97% of the variance in efficiency,
confirming its ability to capture the nonlinear relationship between layer thicknesses and performance. The trained
model was saved for future deployment, enabling predictions on unseen configurations with identical preprocessing.

Figure 6 compares the predicted efficiencies obtained from the MLP regressor with the actual COMSOL-
simulated values for the test set. The strong overlap between predicted (green diamonds) and actual (red stars) points
confirms high model accuracy and low prediction error. Minor deviations reflect expected interpolation noise but
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no signs of overfitting. When evaluated on an additional validation set, the model achieved R? = 0.98, MAE = 0.17,
RMSE = 0.20, and Mean Percentage Error = 2.06%, further confirming its predictive reliability across different
datasets.

A subset of the MLP predictions and their associated errors are listed in Table 4, while Figure 7 presents
predictions for 49 new samples, illustrating the model’s capability to generalize to unseen configurations with high
precision.

The MLP regressor demonstrates excellent agreement between the predicted and actual efficiencies of perovskite
solar cells, as shown in Figure 7. Each point represents a test sample, with red stars denoting COMSOL-simulated
efficiencies and green diamonds showing the corresponding MLP predictions. The close overlap across all samples
confirms the model’s high predictive accuracy. The percentage error remains below 3% for most cases, indicating
reliable estimation of device performance based on ETL, HTL, and PVK layer thicknesses.
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Figure 6. MLP regressor predictions vs. actual efficiencies for the 30% test subset

Table 4. MLP regressor model parameters

Parameter Value
Hidden_layer_sizes 5
Activation logistic
Solver Ibfgs
Alpha 0.000001
Random _state 0
Max_iter 1000
Learning_rate adaptive
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Figure 7. Comparison of actual vs. predicted efficiencies across test

The obtained R2 and error metrics not only confirm strong numerical performance but also provide meaningful
physical insights. The mean absolute error (MAE = 0.26) corresponds to an average deviation of approximately +
3% in the simulated PCE, which is sufficiently precise to identify optimal thickness configurations without requiring
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additional COMSOL reruns. The low standard deviation among cross-validation folds (£ 0.03) demonstrates stable
generalization within the investigated domain.

Potential sources of residual error include the limited dataset size (n = 18), moderate feature correlation among
ETL, HTL, and PVK thicknesses, and the inherent interpolation constraints associated with deterministic simulation
data. Overfitting risk was mitigated through L? regularization (o = 1 x 10~°), five-fold cross-validation, and a
compact neural architecture (five hidden neurons), ensuring stable convergence and reproducibility.

To further evaluate robustness, several alternative regression algorithms were benchmarked under identical
preprocessing and validation conditions. Linear Regression achieved the best performance (mean CV R? = 0.987,
test R = 0.998, MSE = 0.0085), confirming an almost linear dependence between efficiency and layer thickness
within the studied range. Gradient Boosting provided moderate accuracy (CV R? ~ 0.05, test R? = 0.91), while
Random Forest, Decision Tree, and Support Vector Regression (SVR) exhibited unstable learning with negative
mean CV R? values (—0.03, —0.23, and —0.37, respectively) and lower test-set performance (R% = 0.73-0.86).
These findings indicate that simpler linear and shallow neural models are better suited for small, noise-free, physics-
based datasets, while the MLP remains a versatile surrogate model capable of capturing nonlinear effects as more
COMSOL data become available in future work.

The error analysis (Figure 8) further illustrates model reliability. The percentage error distribution shows a
narrow spread centered around zero, with a mean deviation below 3%.

Percentage Error for Test Predictions
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Figure 8. Percentage error distribution of test predictions with mean error highlighted

The scatter of predicted versus actual efficiencies aligns closely along the 45° diagonal, reflecting high model
fidelity. These visualizations confirm that the MLP regressor effectively generalizes across the tested configurations
and accurately reproduces the underlying physical trends in PSC performance.

4 Conclusions

In conclusion, the MLP regressor accurately predicts perovskite solar cell efficiency with an R? of 0.98 and
an average error below 3%. This study demonstrates that precise control of each layer’s thickness is crucial to
optimizing perovskite solar cell (PSC) performance and that integrating high-fidelity 3D COMSOL simulations
with machine learning (ML) provides a powerful framework for accelerating device design. The key implication
is that this hybrid simulation-ML strategy can significantly reduce experimental trial-and-error, allow rapid virtual
exploration of design parameters and enable researchers to converge more efficiently toward high-efficiency PSC
configurations. Such data-driven optimization has the potential to shorten development cycles and lower fabrication
costs.

The findings confirm that a compact neural architecture trained on deterministic simulation data can serve as a
reliable surrogate model for predicting device efficiency, offering both accuracy and computational efficiency. This
approach provides a scalable digital twin for photovoltaic optimization, adaptable to other thin-film technologies
beyond perovskites.

Future work will focus on validating the model’s predictions through experimental fabrication and testing of
PSCs with the optimized thicknesses identified by the MLP regressor. Experimental verification will confirm the
real-world transferability of the simulated and predicted efficiency improvements. In parallel, the ML component can
be enhanced by incorporating additional descriptors—such as material composition, defect density, and temperature
effects—and by employing deeper or ensemble architectures to capture nonlinear interactions more effectively.
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From an industrial perspective, integrating this simulation-ML framework into the R&D workflow could enable
rapid prototyping and optimization of solar cells with minimal experimental overhead. This would bridge the gap
between computational design and scalable manufacturing, supporting faster commercialization of next-generation
high-performance PSCs. Ultimately, the synergy between physics-based simulation and data-driven modeling offers
a forward-looking pathway toward more efficient, cost-effective, and sustainable solar energy technologies.
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