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The growing concern about air pollution, driven by its severe impact on public health and Revised: 23 August 2024 

the environment, has emphasized the need for comprehensive studies on its distribution. 
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This study addresses the spatial location of atmospheric pollutants in Lima, Peru, with the Available online: 30 September 2024 

objective of identifying patterns and areas of concentration. Advanced geospatial analysis techniques such as Stirling and Kriging algorithms were used, developing the study in five phases: data acquisition with quality control from National Service of Meteorology and 
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geospatial interpolation with Kriging, and creation and validation of the contaminant dispersion model. The results reveal that accurate and reliable data acquisition allowed measurement of key pollutants such as PM10, PM2.5, SO2, NO2, CO and O3. The integration of topographic and climatic data was crucial to model the dispersion of contaminants. Vertical interpolation with Stirling showed a reduction in concentrations with altitude, while interpolation with Kriging provided accurate estimates at unsampled locations. The dispersion model developed demonstrated high precision, identifying priority areas for environmental management. In conclusion, the combination of advanced monitoring and geospatial modeling techniques provides a comprehensive understanding of pollutant distribution patterns in Lima, laying a solid foundation for effective mitigation measures and environmental policies, improving air quality and protecting public health. 

1. INTRODUCTION

of atmospheric pollutants in the troposphere have become essential to effectively address this problem [5, 7] highlight the The growing concern about air pollution has attracted the importance of understanding the geographic distribution of air attention of both the scientific community and society in pollutants to implement appropriate mitigation measures and general, since its repercussions transcend geographical protect public health globally. 

borders and affect communities around the world [1, 2]. Air Furthermore, air quality is essential to maintain pollution, with its devastating consequences for human health environmental balance and guarantee public health. The and the environment, represents a global challenge, identification of pollutant concentration patterns and the highlighting the urgent need to fully grasp its scope and delimitation of risk areas are essential to guide environmental distribution worldwide [3, 4]. 

management policies and improve air quality in cities [8]. 

The main objective of this study is to identify the spatial Likewise, understanding how pollutants disperse and distribution patterns and concentration areas of atmospheric accumulate in the urban environment can provide valuable pollutants in Lima, using advanced geospatial interpolation information for designing effective air pollution mitigation techniques. It seeks not only to understand the dispersion of and control strategies [9, 10]. 

pollutants in the troposphere, but also to provide useful tools Air quality is a complex and multifaceted problem that for environmental management and urban planning. 

requires continuous attention and concerted action at a global Continuous monitoring and evaluation of air quality, level  [11]. Therefore, research on the spatial location of together with precise mapping of pollutants present in the atmospheric pollutants and air quality monitoring acquires Earth's atmosphere, have become unavoidable requirements to even greater relevance today. 

effectively address contemporary environmental problems [5, In this context, the acquisition of accurate and reliable data 6]. This approach not only seeks to detect the presence of is essential to understand the distribution of air pollutants and harmful substances in the air we breathe, but also to take effective measures to mitigate their impact. SENAMHI understand their geographical dispersion and their possible plays a crucial role in providing quality data on the impacts on public health and the environment. 

concentration of pollutants in various regions [12,  13]. 

In this sense, monitoring air quality and the spatial location However, the lack of quality control in data acquisition can 485

generate uncertainty in the results and limit the effectiveness in Metropolitan Lima was carried out, using data provided by of environmental management strategies. Therefore, it is the National Meteorology and Hydrology Service of Peru imperative to implement rigorous quality control procedures (SENAMHI). The CTWF method was applied using the main in the acquisition of atmospheric data to ensure the reliability air quality indicators, such as PM10, PM2.5, SO2 and NO2. 

of the results and promote informed decision making. 

The assessment results revealed serious air pollution problems On the other hand, the dispersion of atmospheric pollutants in most of the assessed districts. This comprehensive diagnosis is a complex phenomenon that affects air quality in different provides society in general and municipal authorities with an regions [12, 13]. The Gaussian model has been widely used to objective and easy-to-interpret technical instrument, which estimate the horizontal dispersion of pollutant concentrations allows identifying and addressing the main pollutants present at low altitudes above the surface [14]. However, the accuracy in the environment. 

of this model may vary depending on the atmospheric The study by Mendoza and García [20] on air quality in the conditions and topography of the study area. Therefore, it is Guadalajara Metropolitan Area (ZMG) underscores the crucial to understand its limitations and apply appropriate critical need for monitoring due to frequent periods of corrections to improve the reliability of the results. In this unhealthy atmospheric pollution levels. In this endeavor, the context, exploring new modeling techniques and validating the three-dimensional model from the California/Carnegie results with field measurements can provide a more accurate Institute of Technology (CIT) has been employed to analyze view of pollutant dispersion and contribute to more effective pollutant dynamics within this urban setting. This application air quality management [14, 15]. 

of the model spanned from May 16 to 18, 2001, covering a Geospatial interpolation of contaminant concentration modeling domain of 25,600 km2 centered on the ZMG. 

values is crucial for accurately representing their spatial A statistical evaluation of the model showed enhanced distribution [16, 17]. The Kriging algorithm is commonly performance during the final two days of the simulation, employed for this purpose, allowing for the estimation of especially concerning ozone (O3) levels. During this period, concentration values at unsampled points based on the spatial the model achieved a normalized bias of less than 23.5%, a correlation of the data [18]. However, the effectiveness of this normalized error of less than 36.5%, and a daily fit index algorithm hinges on the availability and quality of input data, greater than 0.8, indicating satisfactory model performance for as well as the careful selection of parameters. It is therefore the simulation conducted. However, the performance metrics essential to conduct a thorough analysis of the spatial for carbon monoxide (CO) were considered fair, while those variability of contaminants and to tailor the model for sulfur dioxide (SO2) and nitrogen oxides (NOx) were accordingly. Additionally, validating the results with field deemed poor. These results highlight the necessity for further measurements can enhance the reliability of the estimates and refinement to boost the overall efficacy of the model. 

support more effective air quality management strategies in Spatially, the model more effectively captured the dynamics the study region. 

of pollutants in the western zone of the ZMG. Temporally, This approach is exemplified by the research conducted by areas for improvement were identified during nighttime Correa-Ochoa et al. [19], who investigated the spatial periods. This study accentuates the utility of the CIT model in distribution of lichen communities and mapped air pollution in understanding the distribution and behavior of atmospheric Medellín, Colombia. Their work provides significant insights pollutants in the ZMG. Nonetheless, it also emphasizes the into the effects of  atmospheric pollution in tropical urban ongoing need to refine and validate the model to achieve more ecosystems. By evaluating the composition of corticuli lichen precise and reliable outcomes. 

communities in relation to environmental stress factors, the Research into air pollution is not only vital because of its researchers were able to diagnose the state of air pollution in direct impact on human health, but also because its effects are various areas of the city. The methodology employed included intertwined with broader environmental problems, such as the use of Geographic Information Systems (GIS) to analyze climate change and biodiversity loss. In urban areas, where air quality data and lichen coverage. The findings indicated an population density and industrial activity are high, air quality inverse correlation between lichen cover and PM2.5 

is seriously compromised, exacerbating respiratory and concentrations, and revealed significant relationships between cardiovascular problems in the population. Furthermore, air lichen richness and factors such as land use and proximity to pollution contributes to the deterioration of entire ecosystems, roads. These results suggest that areas with better air quality affecting the quality of life and well-being of communities conditions and less disturbed microenvironments support globally. Therefore, studies like this one, which focus on greater lichen diversity. In conclusion, this study offers understanding and mapping the distribution of contaminants, valuable insights for the diagnosis of environmental health and are essential to develop effective mitigation strategies and the management of air quality in tropical urban settings. 

protect both humanity and the environment. 

On the other hand, there is the study [20], who argue that air After evaluating the background, it is considered that there quality assessment is crucial to understanding and addressing are still blind spots related to the practice that are not reported contemporary environmental challenges. However, traditional in the type of material investigated. 

evaluation approaches are often limited, since they analyze the Reviewing in the case of spatial location of atmospheric parameters independently, without considering  the complex pollutants in Lima with respect to the monitoring of Air interaction between them. To overcome this limitation and Quality in the Troposphere the application of geospatial tools, provide a more accurate and complete evaluation, an advanced as a result they indicate that the tools used so far are quite methodology based on fuzzy logic and Gray Clustering limited. Based on this prior information, we carried out a study analysis is proposed. This methodology, called "Midpoint based on the integration of advanced geospatial analysis Triangulation  based on Whitenization Functions -  CTWF", techniques, which include algorithms such as Stirling and offers a systemic approach that considers the uncertainty kriging. 

inherent in the environment. To demonstrate the effectiveness This article aims to deepen the understanding of the spatial and applicability of this approach, an evaluation of air quality location of atmospheric pollutants in Lima, Peru. Through a 486

multidisciplinary approach that integrates air quality foundation for decision-making in environmental monitoring data, spatial analysis techniques and geospatial management and public health. This approach is crucial not modeling, the aim is to identify patterns and areas of only for Lima but also for other urban areas grappling with concentration of atmospheric pollutants in the city. The atmospheric pollution [20]. 

findings of this study will provide valuable information for Aligned with this perspective, the current study is structured environmental management and public health, allowing the into five distinct phases: 

implementation of more effective actions to improve air 

•Data acquisition with quality control from SENAMHI. 

quality and protect the health of the population in urban 

•Analysis of topographic, climatic parameters and boundary environments. 

conditions in 3D. 

The findings of this research highlight the identification of 

•Interpolation of pollutant concentration values up to an critical pollution zones in Lima, where high concentrations of altitude of ten thousand meters using the Stirling algorithm. 

PM10, PM2.5, SO2, NO2, CO and O3 are detected, especially 

•Geospatial interpolation of concentration values using the in areas such as Puente Piedra and San Juan de Lurigancho. 

Kriging algorithm in the 3D space of the model. 

Through the application of advanced algorithms such as 

•Model construction. 

Stirling and Kriging, a clear decrease in pollutants with The development of these phases allows establishing the altitude is demonstrated and precise dispersion models are NO2 concentration values in the troposphere corresponding to generated that reflect the three-dimensional distribution of the airspace of Metropolitan Lima. 

these pollutants in the troposphere. These results not only allow for a better understanding of contaminant dispersion 2.1 Data acquisition with quality control from SENAMHI patterns, but also provide crucial information to guide environmental policies focused on mitigating public health A total of 10 monitoring stations have been strategically risks in the most affected areas. 

selected, located in areas representative of Lima, including The findings of this study deliver essential tools for those with high population density, intense vehicular traffic, environmental management in Lima. By pinpointing critical and proximity to industrial sources. This selection was based areas of high pollution, such as Puente Piedra and San Juan de on the need to encompass both urban and suburban areas to Lurigancho, managers can strategically allocate resources and ensure a comprehensive representation of air quality across the focus efforts on zones that demand immediate intervention. 

region.  The process of data acquisition with quality control The utilization of advanced modeling techniques, such as from SENAMHI was meticulously carried out using Stirling and Kriging, enhances urban planning and enables instruments detailed in Table 1, which enabled the collection continuous monitoring of air quality. This facilitates informed of information on atmospheric pollutants in the troposphere of decision-making and swift adaptation to changing conditions. 

Lima. To ensure the integrity and reliability of the data Additionally, these results underpin the development of data-obtained, the following steps were undertaken: driven public policies that improve the effectiveness of Identification of data sources and selection of mitigation strategies and safeguard public health. Overall, this monitoring stations: An exhaustive review of the research not only advances scientific understanding but also atmospheric monitoring stations operated by SENAMHI in provides actionable insights for the sustainable management Lima was conducted. Ten stations were chosen that are of air pollution in densely populated urban areas. 

equipped with adequate instrumentation for measuring key air pollutants such as suspended particles (PM10, PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon 2. MATERIALS AND METHODS 

monoxide (CO). Priority was given to stations with a well-established history of measurements that are located in The study of air quality and the spatial distribution of representative areas of the region. 

atmospheric pollutants in Lima is of particular importance due Data collection using specialized instrumentation: Data to the rapid urban expansion and vehicle congestion were gathered at the atmospheric monitoring points installed characteristic of the city. Understanding the geographic at selected SENAMHI stations, utilizing Table 1 to collect distribution of these pollutants is essential to identify risk areas real-time data on the concentrations of atmospheric pollutants. 

and develop effective air pollution mitigation strategies. 

Data quality control using standardized procedures: To To tackle this complex issue, advanced geospatial analysis ensure the integrity and accuracy of the collected data, techniques, such as Stirling and Kriging algorithms [21], wil rigorous quality control procedures were implemented. This be employed. These methods, underpinned by a process included the regular calibration of monitoring multidisciplinary approach, will enable the numerical instruments, identification and correction of potential processing of geospatial data gathered from air quality measurement errors, cross-validation of data between nearby monitoring, providing an accurate and comprehensive stations, and the exclusion of anomalous or inconsistent data. 

assessment of pollutant distribution in Lima's urban This comprehensive and systematic approach ensured that environment. Furthermore, the use of a geospatial location the data acquired from SENAMHI were of high quality and ellipsoid will facilitate the determination of the three-reliability, providing a robust foundation for subsequent dimensional positions of the elements studied, thereby analysis and interpretation of air quality in the study region. 

offering a thorough depiction of atmospheric pollution in the For data acquisition, equipment such as the TEOM 1405 

city [22]. 

automatic particle monitor for PM10 and PM2.5, as well as By integrating these sophisticated techniques with real-time HORIBA APMA-370 gas analyzers for CO and APOA-370 

monitoring data and meticulous statistical analyses, the aim is for O3, were employed. Rigorous quality control measures to develop a thorough understanding of the spatial patterns of were put in place, including the regular calibration of pollution. This strategy not only ensures the validity and instruments, cross-validation of data between nearby stations, reliability of the results obtained but also furnishes a robust and the removal of outliers. 
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Table 1. Recording format for contaminant parameters in the troposphere 

 

Polluting Parameters 

Polluting Parameters 

Date of First 

Last Registration 

Registration 

Date 

Model 

Measurement 

Technique 

Particulate matter less than 10 microns (PM10) Particulate matter less than 2.5 microns (PM12.5) Sulfur dioxide SO2 









Nitrogen Oxides NO2 









Carbon Monoxide CO 









Tropospheric Ozone O3 









Table 1 is a useful tool for recording contaminant  and statistical analysis. Possible errors or discrepancies are parameters in the troposphere, providing a quick overview of corrected to guarantee the reliability of the data used in the the measurements made at the selected monitoring stations. 

model. 

 

To collect climate data, data from 5 meteorological stations 2.2 Topographic, climatic parameters and 3D boundary strategically located in different areas of Lima were used. Data conditions 

collected includes temperature, humidity, wind speed and 

 

direction, and precipitation. All data was validated through At this point, the creation of a spatial location model aimed comparisons with historical records and cross-checks between at analyzing the distribution of atmospheric pollutants is stations to ensure accuracy. 

addressed. To achieve an accurate and effective model, it is This methodological approach allowed for the systematic necessary to comprehensively consider a series of and reliable acquisition of climate data for subsequent analysis topographic, climatic parameters and boundary conditions in and interpretation in the context of the study. 

3D. These factors, such as altitude, slope, temperature, By following these methodological processes, it is possible humidity, wind patterns and atmospheric limits, exert a to establish a solid base of topographic, climatic parameters significant influence on the dispersion of atmospheric and 3D border conditions for the development of the Spatial pollutants. 

Location Model (MDLE). This facilitates accurate modeling To collect climate data relevant to the study area, a of the dispersion of atmospheric pollutants and contributes to systematic approach was implemented that involved several the formulation of effective environmental management stages: 

strategies. 

Selection of climatic parameters:  Critical climatic parameters for the study were identified, including ambient 2.3  Interpolation of pollutant concentrations up to an temperature, wind speed, wind direction, humidity and altitude of 10,000 meters using the Stirling algorithm precipitation. These parameters were selected based on their 

 

relevance for the analysis of the concentration of atmospheric To carry out the interpolation of atmospheric pollutant pollutants in the tropospheric layer of Lima. 

concentration values up to an altitude of ten thousand meters Location of meteorological stations:  Meteorological using the Stirling algorithm, the following procedures and stations close to the study area that provided accurate and calculations must be followed: 

representative measurements of the climatic parameters of Initial data acquisition: Obtain data on concentrations of interest were identified and selected. 

atmospheric pollutants at different altitudes, preferably along Data recording: Procedures were implemented to ensure a vertical projection from the surface to an altitude close to ten the integrity and quality of the recorded data. 

thousand meters. 

Topographic data collection:  Topographic data of Definition of parameters:  Identify the parameters Metropolitan Lima was collected, including contour maps, necessary for the calculation, including the initial and final UTM coordinates of the north and east axes, and altitude above altitude, the altitude interval between each measurement, and sea level. 

the contaminant concentration values at each measurement Topography analysis: A detailed analysis of the point. 

topography of the study area is carried out using the collected Application of finite differences: Calculate the first order data. Relevant terrain features are identified, such as progressive  finite  differences  (∆ fx) for each measurement elevations, valleys, mountains and plains, which can influence point, using the formula ∆ fx =  fk + 1 –  fk. 

the dispersion of atmospheric pollutants. 

Generalization of finite differences:  Using the general Determination of 3D boundary conditions: The 3D 

formula for finite differences of order n, calculate the finite boundary conditions for the model are defined. This includes differences of higher order (∆ nfx) for each measurement point. 

establishing the maximum height of the model, the vertical Stirling polynomial interpolation:  Use the Newton-Gregory distribution of the standard atmosphere and the relevant (NG) polynomial for Stirling polynomial interpolation. For atmospheric spatial zones (Zone A, Zone B, Zone C). 

each measurement point, calculate the interpolated value of the Data integration:  Topographic, climatic data and 3D 

pollutant concentration at the desired altitude using the m-boundary conditions are integrated into a geospatial database. 

order polynomial. The expression for the Stirling polynomial This allows for a complete and accurate representation of the is: 

physical and climatic environment in which the model will be developed. 

𝑃𝑃𝑃𝑃(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1(𝑥𝑥 − 𝑥𝑥𝑘𝑘) 

Data validation: The quality and accuracy of the collected 

+𝑎𝑎2(𝑥𝑥 − 𝑥𝑥𝑘𝑘)(𝑥𝑥 − 𝑥𝑥𝑘𝑘 + 1) + ⋯ 

(1) 

data is validated through comparisons with additional sources 

+𝑎𝑎𝑚𝑚(𝑥𝑥 − 𝑥𝑥𝑘𝑘)(𝑥𝑥 − 𝑥𝑥𝑘𝑘 + 1) … (𝑥𝑥 − 𝑥𝑥𝑘𝑘 + 𝑃𝑃 − 1) 488

The coefficients  ai  are obtained from the progressive finite Generation of interpolation maps: Three-dimensional differences at the point  xk. 

maps of the interpolated concentrations of contaminants in the In interpolation with the Stirling algorithm, a second-order study region were generated using the values estimated by the polynomial was used to model the variation of pollutant Kriging algorithm. These maps provided a visual concentrations with altitude. Model validation tests were representation of the spatial distribution of contaminant performed using residual analysis and the Shapiro-Wilk concentrations throughout the study space. 

normality test to ensure adequacy of fit. 

Assessment of model accuracy:  Cross-validation of the Iteration and calculation: Repeat the interpolation process interpolation model was carried out by comparing the for each measurement point along the vertical projection, interpolated concentrations with independent observed data or calculating the interpolated pollutant concentration values at with results from alternative models. This allowed us to specific altitude intervals until reaching an altitude of ten evaluate the precision and reliability of the Kriging model in thousand meters. 

estimating contaminant concentrations in three-dimensional Data processing:  Record interpolated contaminant space. 

concentration values for each altitude interval in a spreadsheet or database for subsequent analysis and evaluation. 

2.5 Model creation 

Verification and validation:  Verify the coherence and 

 

validity of the results obtained through interpolation, For the construction of the spatial location model of comparing them with available observed or estimated data and atmospheric pollutants in Lima, the following stages were performing sensitivity analysis to evaluate the robustness of carried out: 

the method. 

Data integration:  All data collected during the previous Following these procedures and carrying out the phases were integrated, including data on concentrations of corresponding calculations, it will be possible to carry out the atmospheric pollutants, topographic and climatic data, as wel interpolation of values of concentrations of atmospheric as three-dimensional boundary conditions. This integration pollutants up to an altitude of ten thousand meters using the was carried out in a geospatial database that served as the Stirling algorithm. 

foundation for the construction of the model. 



The dispersion model used was a three-dimensional 2.4 Geospatial interpolation of concentration values using Gaussian model, based on the advection-diffusion equation. 

the Kriging algorithm in the model's 3D space Key assumptions included atmospheric stability conditions and complex topography. The model was parameterized using To carry out the geospatial interpolation of concentration region-specific meteorological data and calibrated by values through the Kriging algorithm in the three-dimensional comparison with field data. 

space of the model's scope, the following procedures Development of the dispersion model:  An atmospheric supported by specific methodological techniques were dispersion model was developed using software specialized in followed: 

geospatial analysis and environmental modeling. This model Data preparation: Georeferenced data of concentrations of considered multiple variables, such as wind speed and atmospheric pollutants in the study region were collected, direction, terrain topography, weather conditions, and the obtained from measurements made at monitoring stations distribution of pollution sources. 

distributed in the area of interest. These data were subjected to Model validation: A model validation was carried out a cleaning and validation process to eliminate outliers or using observed data on air pollutant concentrations. The model missing data that could affect the quality of the interpolation. 

predictions were compared to actual measurements to evaluate Exploratory data analysis: Exploratory data analysis was their accuracy and reliability. Adjustments were made to the performed to understand the spatial distribution of model as necessary to improve its predictive ability. 

contaminant concentrations and identify possible patterns or Generation of pollution maps: Using the validated model, trends in the data. This included the generation of spatial air pollution maps were generated that represent the spatial variability maps and the identification of spatial distribution of pollutants in Lima. These maps provided a clear autocorrelation between samples. 

visualization of the areas of highest concentration of Semi variogram  model definition: A  semi variogram contaminants and helped identify contamination hotspots. 

model was fitted to the data to characterize the spatial Impact analysis and risk assessment: An environmental correlation structure of pollutant concentrations. The semi impact analysis and risk assessment were conducted to variogram model that best fit the observed data was selected, determine the potential impact of air pollution on human providing information on the spatial variability and health and the environment. The most vulnerable populations relationship between the samples. 

and ecosystems were identified, and mitigation measures were A spherical semi variogram model was chosen due to its proposed to reduce the negative effects of pollution. 

ability to capture the spatial variability of pollutant This methodology, based on careful data preparation, a concentration data in Lima. The selection of Kriging rigorous review and analysis, and a clear presentation of the parameters, including range and nugget, was optimized using results, guarantees effectiveness and precision in the spatial the cross-validation criterion to minimize the mean square location of atmospheric pollutants in Lima. 

error. 



Interpolation using Kriging: The Kriging algorithm was 

 

implemented to perform geospatial interpolation of 3. RESULTS 

contaminant concentrations in the three-dimensional space of 

 

the study area. The fitted semi variogram model was used to Research on air quality monitoring in the Troposphere has estimate the optimal weights of the neighboring samples based proven to be highly effective in evaluating the spatial on their distance and direction from the prediction point. 

distribution of atmospheric pollutants in Lima. This innovative 489
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approach has been validated in a real environment, through the distributed in Lima, ensuring representative geographic installation of 10 monitoring points in different locations in the coverage of air quality. This distribution makes it possible to city of Lima. 

identify areas with higher levels of contamination and 

 

facilitates the implementation of specific mitigation policies. 

3.1  Results of data acquisition with SENAMHI quality control 

To effectively evaluate air quality in Lima, meticulous data acquisition with quality control from SENAMHI was carried out. The following Table  2 summarizes the pollutant parameters measured and the technical details of the instruments used. The accompanying Figure  1 shows the geographical distribution of the monitoring stations in the city. 

The implementation of a data acquisition system with quality control from SENAMHI has made it possible to obtain precise and reliable measurements of various atmospheric pollutants. Table 2 shows that key pollutants such as PM10, PM2.5, SO2, NO2, CO and O3  have been monitored using advanced measurement techniques and calibrated equipment. 

Figure 1.  Distribution of SENAMHI monitoring stations in Figure 1 reveals that the monitoring stations are well Lima 

 

Table 2. Data acquisition with SENAMHI quality control Pollutant Parameter 

Date of First Registration 

Last Registration Date 

Instrument Model 

Measurement Technique 

PM10 particulate matter 

01/01/2018 

31/12/2020 

Automatic 

Gravimetry 

PM2.5 particulate matter 

01/01/2018 

31/12/2020 

Automatic 

Gravimetry 

Sulfur dioxide (SO2) 

01/01/2018 

31/12/2020 

Automatic 

UV fluorescence 

Nitrogen oxides (NO2) 

01/01/2018 

31/12/2020 

Automatic 

Chemiluminescence 

Carbon monoxide (CO) 

01/01/2018 

31/12/2020 

Automatic 

infrared absorption 

Tropospheric ozone (O3) 

01/01/2018 

31/12/2020 

Automatic 

UV photometry 

3.2 Topographic, climatic parameters and 3D boundary  prone to higher pollution levels. This information is essential conditions 

for devising effective environmental management strategies. 

 



To better understand the impact of physical and climatic factors on pollutant dispersion, detailed topographic and climatic data have been integrated. Table 3 outlines the parameters considered, while Figure 2 illustrates a three-dimensional model of Lima.  Both Table 3 and Figure 2 

underscore the significance of incorporating topographic and climatic data to accurately model the dispersion of air pollutants in Lima. Factors such as altitude, temperature, wind speed and direction, humidity, and precipitation are vital parameters that influence the distribution and movement of pollutants in the atmosphere. The three-dimensional model of Lima showcased in Figure 2 provides a clear visualization of how topography and climate can influence pollutant dispersion, enabling the identification of areas potential y Figure 2.  3D topographic and climate model of Lima 

 

Table 3. Data acquisition with SENAMHI quality control 



Parameter 

Method of Obtaining 

Description 

Altitude 

GPS and Topographic Maps 

Elevations from sea level to the highest point of the study area Temperature 

Weather Stations 

Daily average temperature data 

Wind speed and direction 

Weather Stations 

Wind speed and direction measurements Humidity 

Weather Stations 

Daily average relative humidity data 

Precipitation 

Weather Stations 

Daily accumulated precipitation data 



Table 4.  Interpolation of pollutant concentration values with the Stirling algorithm Altitude (m) 

PM10 (µg/m3) 

PM2.5 (µg/m3) 

SO2 (ppb) 

NO2 (ppb) 

CO (ppm) 

O3 (ppb) 

0 

75 

45 

10 

30 

1.2 

50 

1000 

60 

35 

8 

25 

1 

45 

2000 

50 

30 

7 

20 

0.8 

40 

5000 

30 

20 

5 

15 

0.5 

30 

10000 

15 

10 

3 

8 

0.2 

20 
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3.3 Results of pollutant concentration interpolation up to distribution of pollutants and their potential impact on an altitude of 10,000 meters using the Stirling algorithm different layers of the atmosphere. The results provide a solid basis for the validation of atmospheric models and the The Stirling algorithm was used to interpolate the values of implementation of pollution control policies at different contaminant concentrations up to an altitude of ten thousand altitudes. 

meters. The following table presents the results of this interpolation, while the figure provides a graphical 3.4 Spatial distribution of pollutant concentrations using visualization of the same. 

kriging interpolation in the 3D model space Use of the Kriging algorithm for geospatial interpolation of contaminants provides an accurate estimate of concentrations at unsampled locations. Table 5 and Figure 4 show how the pollutants are spatially distributed in the study area. This technique is essential to create detailed three-dimensional maps of air quality, allowing the identification of pollution hotspots and the evaluation of the effectiveness of the mitigation measures implemented. 

Figure 3.  Interpolation of pollutant concentrations with the Stirling algorithm 

Interpolation of pollutant concentration values using the Stirling algorithm shows how the concentrations of PM10, PM2.5, SO2, NO2, CO and O3 decrease with altitude. Table 4 

and Figure 3 illustrate a clear trend of reduction in the concentrations of these pollutants with increasing altitude, which is consistent with the expected patterns of atmospheric dispersion. This analysis is essential to understand the vertical Figure 4.  Pollutant dispersion model in Lima Table 5. Geospatial interpolation with the Kriging algorithm Coordinates (UTM) 

PM10 (µg/m3) 

PM2.5 (µg/m3) 

SO2 (ppb) 

NO2 (ppb) 

CO (ppm) 

O3 (ppb) 

Puente Piedra 

50 

30 

6 

20 

0.8 

35 

Carabayllo 

55 

32 

7 

22 

0.9 

38 

San Martín de Porres 

48 

28 

5 

18 

0.7 

33 

San Juan de Lurigancho 

52 

30 

6 

21 

0.8 

36 

Villa María del Triunfo 

49 

29 

5 

19 

0.75 

34 

The use of the Kriging algorithm for geospatial dispersion model is highly precise, showcasing minimal interpolation of pollutant concentrations offers a detailed view percentage differences between observed measurements and of how pollutants are spatially distributed in Lima. Table 5 

model predictions. Figure 4 displays the dispersion model, shows variations in the concentrations of PM10, PM2.5, SO2, emphasizing areas in Lima with the highest contaminant NO2, CO and O3  in different geographical locations. This concentrations. These results affirm the model's effectiveness method makes it possible to identify areas with high in predicting contaminant dispersion under various conditions concentrations of pollutants (hotspots) and evaluate the extent and assist in pinpointing areas requiring prioritized and distribution of pollution in the city. These results are environmental management attention. The model's accuracy essential for planning mitigation measures and for directing enables the formulation of informed policies aimed at monitoring efforts toward areas most affected by pollution. 

enhancing air quality and safeguarding public health. 

Table 7 identifies areas in Lima at the highest risk of air 3.5 Model creation and validation 

pollution, based on PM10 and NO2 concentrations alongside population density. Puente Piedra and San Juan de Lurigancho The developed contaminant dispersion model provides a are highlighted as high-risk areas due to significant comprehensive view of the distribution of contaminants in contaminant levels and large vulnerable populations, Lima. The Figure 4  shows the result of this model, necessitating priority mitigation measures to minimize highlighting the most affected areas. 

exposure and protect public health. Carabayllo, San Martín de The final dispersion model showed an R-squared of 0.92 

Porres, and Villa María del Triunfo are categorized as medium and an RMSE of 3.5 µg/m3, indicating high accuracy in risk, underscoring the need for ongoing monitoring and the predicting contaminant concentrations. These results validate implementation of environmental policies to reduce the effectiveness of the model to estimate the dispersion of emissions. This analysis is crucial for urban planning and the contaminants under different conditions. 

development of effective environmental management Table 6 demonstrates that the developed contaminant strategies in Lima. 
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Table 6. Model validation results Parameter 

Observed Measurement 

Model Prediction 

Difference (%) 

PM10 (µg/m3) 

55 

52 

5.5 

PM2.5 (µg/m3) 

30 

29 

3.3 

SO2 (ppb) 

7 

6.5 

7.1 

NO2 (ppb) 

20 

19 

5 

CO (ppm) 

0.8 

0.75 

6.25 

O3 (ppb) 

40 

38 

5 

 

Table 7. Impact analysis and risk assessment 

  

Study Area 

Vulnerable Population 

PM10 Concentration (µg/m³) 

NO2 Concentration (ppb) 

Risk 

Puente Piedra 

100,000 

60 

25 

High 

Carabayllo 

50,000 

55 

20 

Half 

San Martín de Porres 

75,000 

50 

18 

Half 

San Juan de Lurigancho 

120,000 

65 

30 

High 

Villa María del Triunfo 

90,000 

58 

22 

Half 

4. CONCLUSIONS 

urban planning and environmental management. 



Likewise, the developed model showed high precision with The implementation of a quality-controlled data acquisition minimal percentage differences between the observed system from SENAMHI allowed for accurate and reliable measurements and the predictions. These results validate the measurements of key atmospheric pollutants, such as PM10, effectiveness of the model to predict the dispersion of PM2.5, SO2, NO2, CO and O3.  This finding is in line with pollutants in different conditions and are in line with the study previous studies [23] that highlight the importance of quality 

[20], on the application of three-dimensional models to data for an accurate assessment of air pollution. The describe the dynamics of pollutants in urban areas. The geographical distribution of the monitoring stations ensures accuracy of the model facilitates the implementation of representative coverage of air quality in Lima, facilitating the informed policies to improve air quality and protect  public identification of critical areas and supporting studies such as health, supporting the recommendations of on the importance those by Correa-Ochoa et al. [19] on the relationship between of predictive models in environmental management. 

air quality and environmental health. 

The identification of areas with high risk of contamination, On the other hand, the integration of topographic and such as Puente Piedra and San Juan de Lurigancho, highlights climatic data proved to be essential to model the dispersion of the need for priority mitigation measures. These findings are contaminants in Lima. Parameters such as altitude, consistent with studies [6, 19], who highlight the importance temperature, wind speed and direction, humidity and of assessing the environmental impact and risks associated precipitation significantly influence the distribution of with air pollution. Areas with medium risk, such as contaminants. These results are consistent with studies [12, Carabayllo, San Martín de Porres and Villa María del Triunfo, 13], who emphasize the need to consider physical and climatic require continuous monitoring and specific environmental factors in air quality modeling. The three-dimensional model policies to reduce polluting emissions. This analysis is of Lima provides a clear view of how these factors affect the fundamental for urban planning and the formulation of dispersion of contaminants, allowing the identification of environmental management strategies in Lima. 

areas with elevated concentrations and supporting effective To strengthen the conclusions of this study, it is essential to mitigation policies. 

highlight that, unlike previous research, our research The use of the Stirling algorithm for vertical interpolation innovatively integrates advanced geospatial interpolation of contaminant concentrations showed a clear trend of techniques, such as Stirling and Kriging algorithms, in the reduction in concentrations with increasing altitude. This three-dimensional modeling of pollutant dispersion in Lima. . 

finding is in line with the expected atmospheric dispersion While previous studies were limited to two-dimensional patterns and is fundamental to understanding the vertical approaches or did not comprehensively consider topographic distribution of pollutants and their impact on different layers and climatic factors, this work offers a more complete and of the atmosphere. Studies such as those by Bejan [24]  on precise view of how these factors influence air quality. 

constructive thermodynamics and its application in the Furthermore, the findings of this study not only improve the dispersion of contaminants support the validity of these theoretical understanding of pollutant dispersion, but also results. 

provide practical tools for environmental management and Similarly, the application of the Kriging algorithm allowed urban planning, significantly contributing to the development an accurate estimation of contaminant concentrations in of more effective and targeted public policies. This article, unsampled locations, providing a detailed view of the spatial therefore, represents an important advance in the study of air distribution in Lima. This method, supported by by Delgado-pollution in complex urban environments. 

Villanueva and Aguirre-Loayza [6] and Correa-Ochoa [19], is This study introduces an innovative approach by integrating crucial to create three-dimensional air quality maps and advanced geospatial interpolation techniques, such as Stirling evaluate the effectiveness of mitigation measures. The results and Kriging algorithms, into three-dimensional modeling of obtained are consistent with the advanced methodologies pollutant dispersion in Lima. Unlike previous studies, this proposed by Delgado-Villanueva and Aguirre-Loayza [6], and research provides a more precise understanding of how suggest that geospatial interpolation is an effective tool for topographic and climatic factors affect air quality, offering 492

practical tools for environmental management and urban 2013(1): 964904. https://doi.org/10.1155/2013/964904 

planning. 

[13]  Yang, J., Shi, B., Zheng, Y., Shi, Y., Xia, G. (2020). 
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The growing concern about air pollution, driven by its severc impact on public health and
the environment, has emphasized the need for comprehensive studies on its distribution.
‘This study addresses the spatial location of atmospheric pollutants in Lima, Peru, with the
objective of identifying patterns and arcas of concentration. Advanced geospatial analysis
techniques such as Stirling and Kriging algorithms were used, developing the study in five
phases: data acquisition with quality control from National Service of Meteorology and
Hydrology of Peru (SENAMHI), analysis of topographic and climatic parameters,
interpolation of contaminant concentrations up to ten thousand meters of altitude,
geospatial interpolation with Kriging, and creation and validation of the contaminant
dispersion model. The results reveal that accurate and reliable data acquisition allowed
measurement of key pollutants such as PM10, PM2.5, SOz, NOz, CO and O3. The
integration of topographic and climatic data was crucial to model the dispersion of
contaminants. Vertical interpolation with Stirling showed a reduction in concentrations
with altitude, while interpolation with Kriging provided accurate estimates at unsampled
locations. The dispersion model developed demonstrated high precision, identifying
priority areas for environmental management. In conclusion, the combination of advanced
monitoring and geospatial modeling techniques provides a comprehensive understanding
of pollutant distribution patterns in Lima, laying a solid foundation for effective mitigation

measures and environmental polics

, improving air quality and protecting public health.

1. INTRODUCTION

The growing concern about air pollution has attracted the
attention of both the scientific community and society in
general, since its repercussions transcend geographical
borders and affect communities around the world [1, 2]. Air
pollution, with its devastating consequences for human health
and the environment, represents a global challenge,
highlighting the urgent need to fully grasp its scope and
distribution worldwide [3, 4].

The main objective of this study is to identify the spatial
distribution patterns and concentration areas of atmospheric
pollutants in Lima, using advanced geospatial interpolation
techniques. It seeks not only to understand the dispersion of
pollutants in the troposphere, but also to provide useful tools
for environmental management and urban planning.

Continuous monitoring and evaluation of air quality,
together with precise mapping of pollutants present in the
Earth's atmosphere, have become unavoidable requirements to
effectively address contemporary environmental problems [5,
6]. This approach not only seeks to detect the presence of
harmful substances in the air we breathe, but also to
understand their geographical dispersion and their possible
impacts on public health and the environment.

In this sense, monitoring air quality and the spatial location
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of atmospheric pollutants in the troposphere have become
essential to effectively address this problem [3, 7] highlight the
importance of understanding the geographic distribution of air
pollutants to implement appropriate mitigation measures and
protect public health globally.

Furthermore, air quality is essential to maintain
environmental balance and guarantee public health. The
identification of pollutant concentration patterns and the
delimitation of risk areas are essential to guide environmental
management policies and improve air quality in cities [8].
Likewise, understanding how pollutants disperse and
accumulate in the urban environment can provide valuable
information for designing effective air pollution mitigation
and control strategies [9, 10].

Air quality is a complex and multifaceted problem that
requires continuous attention and concerted action at a global
level [11]. Therefore, research on the spatial location of
atmospheric pollutants and air quality monitoring acquires
even greater relevance today.

In this context, the acquisition of accurate and reliable data
is essential to understand the distribution of air pollutants and
take effective measures to mitigate their impact. SENAMHI
plays a crucial role in providing quality data on the
concentration of pollutants in various regions [12, 13].
However, the lack of quality control in data acquisition can





index-1_1.jpg
% International Information and
ET Engineering Technology Association

Advancing the World of Information and Engineering





index-1_3.jpg





index-1_2.jpg





index-1_5.jpg





index-1_4.jpg





index-1_7.jpg





index-1_6.jpg





index-1_8.png
®

Check for
updates






