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ABSTRACT 
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Dry forests are ecosystems of great importance worldwide, but in recent decades they have Revised: 15 September 2024 

been affected by climate change and changes in land use. In this study, we evaluated land Accepted: 22 September 2024 

use and land cover changes (LULC) in dry forests in Peru between 2017 and 2021 using Available online: 30 September 2024

Sentinel-2 images, and cloud processing with Machine Learning (ML) models. The results reported a mapping with accuracies above 85% with an increase in bare soil, urban areas 

  

  

and  open  dry  forest,  and  reduction  in  the  area  of  crops  and  dense  dry  forest.  Protected 

 Keywords: 

natural  areas  lost  2.47%  of  their  conserved  surface  area  and  the  areas  with  the  greatest Remote  Sensing  (RS),  biodiversity,  Random degree of land use impact are located in the center and north of the study area. The study Forest (RF), forest monitoring, Google Earth provides information that can help in the management of dry forests in northern Peru. 

 Engine (GEE) 



 

1. INTRODUCTION 

water pollution and droughts are related to forest degradation 



[16]. Therefore, the analysis of forest loss should focus on its Dry forests cover 20% of the Earth’s surface, which in turn socioeconomic uses and landscape dynamics [17, 18]. 

account  for  30%  of  global  productivity  [1,  2]  They  are Analysis of LULC changes has been used as an important responsible  for  capturing  atmospheric  carbon  (CO2)  from tool  in  the  multitemporal  analysis  of  ecosystems,  the biomass and soil, in addition to harboring biodiversity [3, 4], implementation  of  policies  and  strategies  for  sustainable as well as helping to maintain the hydrological cycle and soil development  [19,  20].  RS  allows  detecting  and  spatially conservation  [5-7].  They  enable  climate  regulation, analyzing  the  Spatio-temporal  dynamics  of  LULC  using conservation  of  flora  and  fauna  species,  and  provide  raw different  sensors  and  techniques  [21-24].  Time  series  of materials for construction, food and medicines [8, 9]. However, Landsat and Sentinel-2 (S2) images have been used to identify in  recent  years,  forest  ecosystems  are  being  impacted  by LULC  types  [24-27].  Similarly,  ML  models  and  cloud increasing  or  decreasing  temperature  and  precipitation, computing have been applied to analyze LULC changes and changes  in  land  use  and  forest  degradation  [10].  These map forests accurately and in near real-time [25]. Other studies disturbances are often induced by the population settled in this applied  supervised  classification  by  applying  RF  due  to  its ecosystem,  which  makes  it  vulnerable  to  droughts  and  fires robustness and overcoming data noise overfitting [28], and it with a severe biomass reduction process [11]. 

has been widely used in GEE [29-31]. RF has been applied in In the last 60 years (1960-2019), 32% of vegetation cover processing  large  volumes  of  data,  outperforming  other has  been  lost  due  to  LULC  changes  [12],  modifying  the methods  in  accuracy,  such  as  single-layer  neural  networks, structure,  functionality  of  forests  and  loss  of  biodiversity decision trees and maximum likelihood [29, 32]. 

habitats [9]. It also increases greenhouse gas (GHG) emissions In Peru, we  find the  dry forest ecosystem with biological 

[13].  LULC  changes  are  the  main  cause  of  forest and cultural richness, scenic beauty and high endemic value fragmentation for the installation of crop plots, pastures and 

[33].  In  recent  decades,  it  has  experienced  biodiversity  loss urban growth [14]. It also affects freshwater availability and processes due to anthropogenic activities (extractive forestry conservation  of  natural  resources  [15].  Loss  of  soil  fertility, activities,  agriculture  and  urban  expansion)  and  climatic 505
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conditions  such  as  high  temperatures,  extreme  dryness, allows the vegetative growth of shrubs and trees [39]. Among irregular occurrence of heavy rainfall and the presence of the the  species that  inhabit this ecosystem, it is possible  to find El  Niño-Southern  Oscillation  (ENSO)  [33,  34].  Although carob   Neltuma  pallida,  Neltuma  limensis,  Vachellia previous  works  mapped  the  current  use  in  the  dry  forest, macracantha,  Vachellia  aroma,  Colicodendron  scabridum, however, the availability of methodologies and cartography is Anonna spp. and Inga spp [40]. In addition, the dry forest of limited for this study area, which could hinder the  temporal Peru also harbors animal species such as  Lycalopex sechurae, analysis  of  this  ecosystem  [35,  36].  Likewise,  there  is  no Furnarius  cinnamomeus,  Mazama  americana,  Iguana information available related to the impacts of LULC changes delicatissima,  Tremarctos  ornatus  and  Penelope  albipennis in natural protected areas. Therefore, in this study we analyze 

[38].  In  the  study  area,  land  use  is  conditioned  by the  dynamics  of  LULC  using  S2  data  and  cloud  processing anthropogenic  activities  (agriculture,  livestock  and  urban throughout  the  Peruvian  dry  forest  ecosystem.  This  will growth) [24]. While vegetation depends on rainfall during the provide baseline information on areas with higher dynamics or year [41]. 

forest loss that will be potential areas for the development of Dry  forests  are  of  great  economic  importance  as  they ecological recovery and restoration projects. 

provide  ecosystem  services  such  as  fruits,  firewood  and fertilizers  to  the  communities  settled  within  the  ecosystem. 



Dry  forests  are  also  used  for  subsistence  agriculture  and 2. METHODS 

livestock  raising,  contributing  to  the  food  security  of  these 

 

communities.  These  ecosystems  also  host  important 2.1 Study area 

archeological and cultural sites for tourism that help diversify local sources of income and promote the conservation of these The  dry  forests  of  Peru  [37],  extend  along  the  northern natural and cultural environments. 

coastal zone, through the departments of La Libertad, Ancash, Figure 2 shows process to evaluate the LULC change and Lambayeque,  Piura,  Tumbes  and  Cajamarca,  covering  a its impact on the dry forest of Peru. The construction of time coastal strip of between 100 to 150 km, with an altitude of up series  of  S2  images  was  carried  out,  then  the  extraction  of to  1000  m  a.s.l.  [35].  This  forest  covers  3.6  Mha,  which clouds and cloud shadows was applied. We then compute the represents  4.7%  of  the  total  forest  in  Peru  [38].  It  is spectral  indices  and  perform  the  RF  classification  using characterized by an annual rainfall of 30 to 300 mm between training  data.  Finally,  the  precision  of  the  generated December and March and a mean annual temperature of 23 °C 

cartography was calculated. 

(Figure 1). 







 

Figure 2.  Evaluating LULC changes 



 



Figure 1.  Forest distribution in northern Peru 2.2 Data collection 





The  vegetation  cover  is  characterized  by  being During the second and third week of June 2022, field trips heterogeneous, with trees, shrubs and grasslands that are part were conducted to collect data (training and validation) in the of the dry forest [35]. This ecosystem harbors a diversity of dry forest. A GPS navigator (Garmin GPSMAP 64s) and the forest species with canopy heights of up to 12 meters, which FocusMap  application  (https://www.locusmap.app/)  were used  to  georeferenced  the  LULC  classes  and  generate 506
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photographic  records  [42].  The  LULC  classes,  were we  calculated  (i)  the  overall  accuracy  (OA),  (ii)  the  user’s represented by a) Open dry forest (ODF), b) Dense dry forest accuracy (UA), (iii) the producer’s accuracy (PA) and (iv) the (DDF), c) Bare land (BL), d) Agricultural land (AL), e) Urban Kappa  index  was  used  [42,  51,  52].  Additionally,  for  each area  (UA)  and  f)  Water  body  (WB)  (Figure  3).  Twenty class  and  year 2017  and 2021,  the  intensity  of  changes  was thousand pixels were extracted from the field-collected data, determined [18]. The loss or gain of each class was determined representing the six randomly grouped LULC classes [24]. 

using cross-tabulation matrices [42, 53]. The annual exchange rate for FAO was calculated using Eq. (1) [54]. 
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2.5 Land use degree index 



This  index  quantitatively  assesses  the  impact  of  human actions based on the degree of land use [55]. It is calculated according to the change in LULC compared to the natural state (Eq. (2)) [56]. The higher the degree of land use, the greater the anthropogenic transformation without taking into account the ecological environment [56]. 



𝑛

𝑙𝑎 = 100 × ∑ 𝐴𝑖  ×  𝐶𝑖 

(2) 

𝑖=1



where, 𝑙𝑎 is land use degree index; 𝐴𝑖  is the rating index of the degree of land use; and 𝐶𝑖  is the percentage of the qualified area of the 𝑖-th land use grade type.  In accordance with key studies [56], LULC classes are classified according to Table 1. 



Table 1.  Graduated value of land use classes Bare  Forest, Grassland  Agriculture  Urban LULC Class 



Land  and Body of Water 

Land 

Area 



Classification 

1 

2 

3 

4 

Figure 3.  LULC classes in dry forests Index 





2.3 Image processing 





3. RESULTS 

S2 L1C (COPERNICUS/S2) images were used due to their spatial (10 meters) and temporal (6 days) resolution. Images 3.1 Land use and land cover in dry forest of  a  year  considered  <30%  cloud  and  no  cloud  shadow  for 2017 and 2021 [43] were selected by using the quality band The LULC of the dry forest for 2017 and 2021 is shown in (QA60).  Soil-adjusted  Vegetation  Index  (SAVI),  Enhanced Figures  4  and  5.  The  DDF  and  ODF  covers  are  the  main Vegetation  Index  (EVI),  Normalized  difference  Vegetation classes of LULC and representing 39% and 41% of DDF and Index  (NDVI),  and  Normalized  Difference  Water  Index 22% in ODF in 2017 and 2021, respectively and is distributed (NDWI) were included to increase the predictor variables for mainly in the higher altitude areas. The land area of BL has LULC classification. Image  processing was performed from increased from 29% in 2017 to 31% in 2021 and is distributed the GEE platform [44]. 

in  the  desert  areas  of  Sechura,  Piura  and  Talara.  The The  RF  model  was  used  due  to  its  high  performance  to proportion of area of the AL class reports a reduction of area calculate a set of time series to analyses the time series [28, from 9% to 6% from 2017 to 2021. The AU class shows an 45]. The RF has been applied in several studies [28, 46] and increase,  varying  from  0.05  to  0.09%  in  2017  and  2021, has proven to be an excellent classifier in coastal areas [47]. 

respectively.  In  turn,  the  general  change  of  the  WB  was For  this  purpose,  we  created  multiband  image  mosaics  that relatively  small  and  is  mainly  represented  by  the  surface  of included  the  spectral  bands  and  indices  for  classification  in rivers located in the study area. 

GEE  [48].  The  classification  results  were  exported  and Overall, ODF and BL classes increased significantly, on the visually  analyzed  with  high-resolution  images  in  order  to other  hand,  the  cultivation  area  decreased,  while  the  other improve the classified maps of 2017 and 2021. 

LULC  classes  remained  unchanged,  such  as  DDF,  UA  and WB between 2017 and 2021. 

2.4 Validation 





3.2 Intensity of changes 

The precision was determined based on the confusion (error) matrix  technique  [49]  and  456  validation  points  that  were The quantitative and spatial changes of the LULC classes obtained  through  the  formula  established  by  Cochran  [50]. 

were  calculated  in  cross-tabulation  matrices,  which  allowed These RS techniques have been widely used [51]. Similarly, showing  the  transformation  between  the  different  LULC 
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classes in the dry forest for 2017 and 2021 (Table A1). From a LULC class change intensity perspective, the AU showed an increase in construction area by 2021, which came primarily from BL and ODF land. The BL acreage for 2021 changed to the establishment of new agricultural parcels and new areas of open  forest  cover.  In  turn,  forest  cover  (DDF  and  ODF) showed changes due to the establishment of new agricultural plots, urban areas and soils with little vegetation. In addition, the  interaction between both classes DDF and ODF. On the contrary, the area of AL showed a downward trend. Cultivated land  changed  to  BL,  ODF  and  DDF.  At  a  general  level between  2017  and  2021,  the  study  area  showed  changing dynamics. Forest cover, BL and AU gradually increased and AL and WB classes decreased. 

The  loss  of  coverage  in  the  dry  forest  in  the  evaluation period is mainly concentrated in areas close to urban areas and bodies of water. Between 2017 and 2021, 852.89 km2 (2.34%) of forest cover were lost, which changed to crops, urban areas and  soils  with  or  without  vegetation.  Regeneration  of forest cover  was  also  reported  in  approximately  2,273.74  km2 

(a) 2017 

(6.24%) (Figure 6a and Table A2). At the level of protected areas (PA), 4,494.81 km2  have  been conserved so far in the entire dry forest for the regions of Cajamarca, Lambayeque, Tumbes, La Libertad and Piura. However, 110.83 km2 (2.47%) lost forest cover (Figure 6b and Table 2). 







(b) 2021 



 



Figure 5.  LULC in dry forests (a) Estimated areas 









(b) Estimated proportion of each class Figure 4.  LULC area for 2017 and 2021 in the dry forest (a) LULC class transfer map in the study area 508
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(a) 2017 





(b) LULC class transfer map in protected natural areas Figure 6.  Maps of change and persistence of LULC in the (b) 2021 

dry forest 





Figure 7.  Degree of land use for in the dry forest Table 2.  Area (km2) of change and permanence of LULC 





The effect of human activities on the soil is reflected in the Protected Areas 

levels of use [57]. The different LULC classes identified in this Dry Forest 

Change and permanence of 

(PA) 

analysis allowed the calculation of the comprehensive index the LULC 

Area 

Area 

% 

% 

of the degree of land use for 2017 and 2021. The range in the (km2) 

(km2) 

area  varies  from  100  to  200  in  a  similar  way  in  both  years, 2,273.7

Change to natural cover 

6.24 

135.69 

3.02 

indicating  that  the  areas  with  the  highest  land  use  are 4 

concentrated in the north of the study region, with agricultural Forest loss 

852.89  2.34 

110.83 

2.47 

areas predominating (Figure 7). 
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4. DISCUSSION 
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In this study, we analyze LULC changes in 2017 and 2021 
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48 

00 

0 

using  cloud  computing  and  RF  algorithm.  The  information generated contributes greatly to generate LULC maps for an 3.3 Change of degree of land use important  ecosystem  in  Peru,  obtaining  OA  and  Kappa accuracies greater than 89 and 85%,  respectively (Table  A3 

and  S3),  indicating  reasonable  and  reliable  classification results [58]. The dynamics of LULC in the period of analysis reported an increase in the areas of bare land and the dynamics of open and dense dry forest, which could be conditioned by temperature and precipitation [35]. 

Assessing  LULC  changes  in  forest  ecosystems  is  an important  tool  that  helps  to  multitemporal  changes  and manage  forests  with high  biodiversity  [59].  In  the  period of analysis, an increase in urban areas was reported, which could be related to urbanization and population growth that demands more and more housing and crop planting [60, 61]. As well as the increase in bare land areas and El Niño phenomenon that impact terrestrial ecosystems and species habitat [62, 63]. This study  also  reports  the  reduction  of  agricultural  area,  which may be related to the occurrence of ENSO in 2017 that favored agriculture with abundant rainfall and reduced poverty in rural communities  by  5%  in  this  ecosystem  [64],  however,  this phenomenon occurs between 3 to 8 years, which conditions agriculture in these areas [39]. The dense dry forest decreased and  the  open  dry  forest  increased.  This  reduction  may  be 509

related to the establishment of new plots for agriculture, urban future, it is important to conduct research that integrates longer growth and selective logging [38]. 

time periods and their future prediction using SR techniques, The  creation  of  PA  is  considered  an  agent  to  mitigate as  well  as  social,  economic  and  environmental  aspects  to deforestation problems and prevent the loss of forest species improve the management and conservation of this important 

[65, 66]. At the PA level in the dry forest, it was reported that dry forest ecosystem. 

92.78% of the conserved area remained unaltered with respect to its natural cover. However, 2.45% of its area lost its forest cover. It is evident that PAs experience a deforestation process ACKNOWLEDGMENT 

both  inside  and  outside  their  buffer  zones  [67,  68],  with logging being one of the causes of forest loss [69]. Likewise, We  would  like  to  thank  the  Dirección  de  Desarrollo it has been shown that PA peripheral areas and intangible areas Tecnológico Agropecuario – DDTA of the Instituto Nacional are  exposed  to  deforestation  problems  [70]  due  to de Innovación Agraria – INIA. This research was conducted anthropogenic activities and cattle ranching [67, 71]. 
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Table A1.  Matrix of cross-tabulation, rate of change and indices of change for LULC in the dry forest Peru (area in km2 and %) 513

Exchange Rate 

Total 

Net 

2021 

Total 2017 

Loss 

Exchange 

2017 

(s) 

Change 

Change 

(km2) 

UA 

AL 

LW 

WB  DDF 

ODF 

Percentage (%) 

UA 

11.85  0.62 

4.40 

0.00  0.04 

0.92 

17.83 

17.75 

33.56 

159.38 

92.26 

67.12 

AL 

4.18  1,104.23  824.81  2.19  254.17  1,191.46 

3,381.04 

-10.20

67.34 

99.71 

34.97 

64.74 

LW 

15.56  242.47  9,012.91  4.72  16.24  1,198.58 

10,490.49 

1.56 

14.08 

34.56 

6.39 

28.17 

WB 

0.04 

1.06 

6.44 

6.61  1.95 

1.35 

17.44 

-3.33

62.09 

111.53 

12.65 

98.88 

DDF 

0.22  224.86 

68.77  0.34 6,598.46  1267.87 

8,160.51 

-0.16

19.14 

37.64 

0.65 

36.99 

ODF 

2.45  625.37  1,243.34  1.37 1,236.80 11,272.84 

14,382.16 

0.94 

21.62 

47.07 

3.83 

43.24 

Total 2021 

34.29 2,198.60 11,160.67 15.23 8,107.66 14,933.03 

36,449.48 

(km2) 

Gain (%) 

125.82  32.37 

20.47  49.44  18.49 

25.45 

Table A2.  Statistical validation of LULC in 2017 

Reference 

User’s 

Classification 

Total 

Commission Error (%) 

UA 

AL 

LW 

WB 

DDF 

ODF 

Accuracy (%) 

UA 

22 

0 

3 

0 

0 

0 

25 

0.88 

0.12 

AL 

1 

31 

6 

1 

3 

8 

50 

0.62 

0.38 

LW 

0 

1 

114 

0 

0 

5 

120 

0.95 

0.05 

WB 

0 

0 

4 

14 

3 

0 

21 

0.67 

0.33 

DDF 

0 

0 

3 

0 

95 

2 

100 

0.95 

0.05 

ODF 

0 

0 

12 

0 

0 

128 

140 

0.91 

0.09 

Total 

23 

32 

142 

15 

101 

143 

456 

Producer’s Accuracy (%) 

0.96 

0.97 

0.80 

0.93 

0.94 

0.90 

Omission Error (%) 

0.04 

0.03 

0.20 

0.07 

0.06 

0.10 

Table A3.  Statistical validation of LULC in 2021 

Reference 

User’s 

Classification 

Total 

Commission Error (%) 

UA 

AL 

LW 

WB 

DDF 

ODF 

Accuracy (%) 

UA 

21 

1 

0 

0 

0 

3 

25 

0.84 

0.16 

AL 

0 

40 

2 

0 

2 

6 

50 

0.80 

0.20 

LW 

0 

1 

118 

0 

0 

1 

120 

0.98 

0.02 

WB 

0 

0 

3 

18 

0 

0 

21 
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Sentinel-2 images, and cloud processing with Machine Learning (ML) models. The results
reported a mapping with accuracies above 85% with an increase in bare soil, urban areas
and open dry forest, and reduction in the area of crops and dense dry forest. Protected
natural arcas lost 2.47% of their conserved surface area and the arcas with the greatest
degree of land use impact are located in the center and north of the study arca. The study
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Keywords:
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Forest (RF), forest monitoring, Google Earth provides information that can help in the management of dry forests in northern Peru.
Engine (GEE)
1. INTRODUCTION water pollution and droughts are related to forest degradation
[16]. Therefore, the analysis of forest loss should focus on its
Dry forests cover 20% of the Earth’s surface, which in turn socioeconomic uses and landscape dynamics [17, 18].

account for 30% of global productivity [1, 2] They are Analysis of LULC changes has been used as an important
responsible for capturing atmospheric carbon (CO2) from tool in the multitemporal analysis of ecosystems, the
biomass and soil, in addition to harboring biodiversity [3, 4], implementation of policies and strategies for sustainable
as well as helping to maintain the hydrological cycle and soil development [19, 20]. RS allows detecting and spatially
conservation [5-7]. They enable climate regulation, analyzing the Spatio-temporal dynamics of LULC using
conservation of flora and fauna species, and provide raw different sensors and techniques [21-24]. Time series of
materials for construction, food and medicines [8, 9]. However, Landsat and Sentinel-2 (S2) images have been used to identify
in recent years, forest ccosystems are being impacted by LULC types [24-27]. Similarly, ML models and cloud
increasing or decreasing temperature and precipitation, computing have been applied to analyze LULC changes and
changes in land use and forest degradation [10]. These map forests accurately and in near real-time [25]. Other studies
disturbances are often induced by the population settled in this applied supervised classification by applying RF due to its
ecosystem, which makes it vulnerable to droughts and fires robustness and overcoming data noise overfitting [28], and it
with a severe biomass reduction process [11]. has been widely used in GEE [29-31]. RF has been applied in
In the last 60 years (1960-2019), 32% of vegetation cover processing large volumes of data, outperforming other
has been lost due to LULC changes [12], modifying the methods in accuracy, such as single-layer neural networks,

structure, functionality of forests and loss of biodiversity decision trees and maximum likelihood [29, 32].
habitats [9]. It also increases greenhouse gas (GHG) emissions In Peru, we find the dry forest ecosystem with biological
[13]. LULC changes are the main cause of forest and cultural richness, scenic beauty and high endemic value
fragmentation for the installation of crop plots, pastures and [33]. In recent decades, it has experienced biodiversity loss
urban growth [14]. It also affects freshwater availability and processes due to anthropogenic activities (extractive forestry
conservation of natural resources [15]. Loss of soil fertility, activities, agriculture and urban expansion) and climatic
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