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Abstract: Unplanned urban expansion poses significant challenges to sustainable territorial development in
intermediate cities. This study analyzes the dynamics of urban expansion and land use change in the city of Cajamarca
(Peru) during the period 1986-2040, integrating Geographic Information Systems (GIS) techniques, Google Earth
Engine (GEE) and CA-Markov prediction models. Landsat satellite images from 1986, 2004 and 2022, classified
by Random Forest (RF), were used to generate thematic maps and evaluate their accuracy. Subsequently, a spatial
simulation model was implemented to project urban expansion to 2040. The results indicate an increase in the
urban area from 789.68 hectares to 5,768.19 hectares, while forests and crops also changed. The driving factors for
this expansion include rural-urban migration, the availability of services, and real estate development. Projections
highlight growth toward the east, southeast, and south of the city. This approach provides strategic inputs for
sustainable urban planning and effective land management in transforming Andean cities.
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1 Introduction

More than 50% of urban growth, or urban expansion, results from the interaction of global economic, social, and
environmental processes [1]. Urban growth depends on demographic changes such as immigration, migration from
rural areas to the city and population growth [2]. Soil, water, and the environment have been affected by unplanned
urban expansion [3, 4], impacting agricultural areas, forests, and sustainable urban development [5-8].

Therefore, the technical-scientific analysis of these areas is very important to better understand current and future
urban growth patterns and trends [2, 9, 10]. Accurate, consistent, and updated information on urbanization trends is
important for (i) the formulation of urban development plans and (ii) the definition of urban and rural area boundaries
in order to ensure sustainable land use [10]. For this purpose, land use and land cover change (LULC) maps are
used to help understand the dynamics and driving sources of future changes that cities must face [11]. These maps
are generated using tools such as Geographic Information Systems (GIS) and remote sensing. In addition, various
geospatial and statistical models for urban prediction [12].

Urban prediction models utilize machine learning (ML) algorithms, such as Cellular Automata (CA) [13], Markov
Chains (MC) [14], CA-MC [15] and CA-logistic regression (LR) [16]. These models incorporate thematic layers
such as LULC, elevation, shadow, slope, distance to roads, and rivers, among others [17]. Urban growth predictions
have been applied in various countries, including Nepal [10], Bangladesh [18], Germany, India [15] and Brazil [19].
Continents such as the Americas and Europe have experienced urban growth processes in recent years, driven
by population and economic development [20, 21]. Asia, in particular, is undergoing accelerated growth, with
China exhibiting the highest rate of urban expansion, which threatens environmental quality and socioeconomic
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sustainability [22]. Meanwhile, in South America, countries face challenges related to urban growth, which exerts
pressure on agriculture, water resources, fertilization, and labor [23, 24]. Peru has experienced urban growth in its
main cities such as Lima, Callao, Arequipa, Trujillo, Piura and Huancayo [25]. However, no studies have yet been
reported on the analysis of land-use expansion and dynamics in high Andean areas of northern Peru using tools such
as cloud computing and predictive models, which could help to better understand these changes.

The city of Cajamarca, located in the northern Peruvian Andes, is not only a contemporary urban center but also a
site of great historical significance. It played a pivotal role during the Inca period and within the broader context of
the Tahuantinsuyo empire. Over the past 30 years, Cajamarca has experienced significant urbanization, driven by the
expansion of built-up areas and mining activities [26].

Despite the extensive use of CA-Markov models globally, their application remains limited in intermediate
Andean cities of South America. This study represents one of the first attempts to integrate GIS, cloud-based remote
sensing, and CA-Markov modeling in Cajamarca. Our approach addresses this gap by offering a replicable method for
predicting urban expansion in similar Andean settings, which remain understudied. Therefore, evaluating the urban
growth dynamics of this city using GIS for the period 1986-2040 is essential to understanding how a city rooted in the
legacy of the Incas is transforming under modern development pressures.

2 Material and Methods
2.1 Study Area

The city of Cajamarca is located in the district and province of Cajamarca, in northern Peru, at an altitude of 2750
m asl in the Andes Mountain range (Figure 1). The city is considered a dynamic center with a high population density
of approximately 300,000 inhabitants [27]. It provides public services, including spaces for commercial, tourism, and
industrial activities [28].
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Figure 1. Geographic location of the city of Cajamarca and the defined study area

2.2 Methodological Design

The methodological flowchart for evaluating the urban expansion dynamics of Cajamarca through GIS for the
period 1986-2040 is depicted in Figure 2. It includes the selection of satellite image mosaics for 1986, 2004 and
2022, which were processed through supervised classification in a GIS environment and on the Google Earth Engine
(GEE) platform. Subsequently, the thematic accuracy of each generated map was assessed. Finally, the urban area
(UA) suitability was evaluated using CA-MC projections for 2040.

The acquisition of spatial information included the official national cartography (hydrography and elevation) and
the district road network. It also incorporated the use of a Digital Elevation Model (DEM) with a resolution of 30
meters [29], along with satellite imagery detailed in Table 1: Landsat 5 TM for 1985 and 2004, as well as Landsat 8
OLI for 2022. Only images with less than 30% cloud cover were selected, based on the average annual cloud coverage
in the study area.

The satellite images were classified in GEE and projected to 2040 using IDRISI Taiga software. All spatial layers
in vector format (points, lines and polygons) were georeferenced to the WGS 1984 Datum and UTM Zone 17 South,
corresponding to the Cajamarca region.
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Figure 2. Workflow for assessing urban expansion in the city of Cajamarca

Table 1. Satellite images used in Google Earth Engine (GEE)

ID in GEE

LANDSAT/LCO8/CO2/T1_L2
LANDSAT/LTO05/ CO2/ T1_L2

Satellite Selected Bands

Landsat 8 OLI
Landsat 5 TM

Year of Analysis

2022
1986 and 2004

Blue, Green, Red, NIR, SWIRI and SWIR2

2.3 Physical and Spatial Factors that Determine Urban Expansion

This activity involved the compiling of thematic studies on land use, urban growth, land-use plans and other
studies related to the research that would provide an environmental [30], cultural and socioeconomic context of the
city of Cajamarca. The collection of documents made it possible to identify the physical and spatial factors influencing
the urban expansion of the Cajamarca [26].

2.4 Urban Expansion in the Period 1986-2022
2.4.1 Satellite image preprocessing

To minimize the influence of atmospheric interference, cloud and cloud-shadow masks were applied using the
Quality Assessment (QA) band provided in the Landsat surface reflectance datasets [31]. A combination of the
Fmask algorithm and manual thresholding techniques was used to further remove residual cloud effects. Additionally,
only scenes with less than 30% cloud coverage were selected, and composite mosaics were generated for each year
using the median reflectance to reduce noise. Following this, corrections for clouds and cloud shadows were applied,
resulting in high-quality annual mosaics. Blue, Green, Red, NIR, SWIR1 and SWIR2 bands were selected as predictor
variables for supervised classification. These calibrated spectral bands were then combined to create multiband images
for each year of analysis [32]. Additionally, spectral indices such as Normalized Difference Vegetation Index (NDVI),
Modified Soil Adjusted Vegetation Index (MSAVI), Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation
Index (GCVI), Normalized Difference Water Index (NDWI) and Atmospherically Resistant Vegetation Index (ARVI)
were calculated. Topographic variables, including DEM, slope and aspect, were also incorporated into the analysis.

2.4.2 Classification of LULC

Through field trips, training areas were georeferenced for forest (F), shrubland and grassland (SG), pasture and
crops (PC), urban area (UA), and water (W) classes using a Global Positioning System (GPS) receiver. The training
areas were uploaded to GEE, and then Random Forest (RF) supervised classification was applied to generate a single
map for each year of analysis (1986, 2004 and 2022) [33]. To improve the classifications, a spatial filter was applied
to remove noise from the classified images. Finally, the raster was exported to perform area calculations, estimate
changes by period, and generate cartographic maps.



2.4.3 Determination of rates of change

Average annual rates of change (s) were calculated for each class during the periods 1986-2004 and 2004—2022,
using Eq. (1) as proposed by FAO [34]. Where, S; and S» represent the area of each class at dates ¢; and ¢,
respectively. A negative value of s indicates a loss in the class, while a positive value of s signifies an increase in the

same class.
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2.5 Predicting Urban Growth Using a Simulation Model to 2040

The future prediction of urban growth was carried out using dynamic models that integrate MC-CA methodologies
to model and visualize urban expansion [35]. The CA model was applied to perform future predictions using IDRISI
Taiga software. The prediction was based on two types of variables: the classified maps obtained from Landsat data
(for two specific periods, 2004 and 2022) and independent variables including: i) distance to roads, ii) distance to
rivers, iii) distance to the population center, iv) elevation, and v) slope, which were used to generate the transition
potential matrix [36]. Once the potential matrix was obtained, the CA model was applied to simulate the future urban
growth map for the year 2040. Additionally, to validate the model’s accuracy by comparing the simulated maps with
those obtained (from Landsat data) for the same year in the study area.

2.6 Data Analysis

The thematic accuracy of the generated maps was determined in three steps: calculating the number of reference
areas, sampling design and data processing [37]. The number of reference areas was calculated using Cochran’s Eq.
(2) [38] for each class of the generated maps (1986, 2004 and 2022). For each class, randomly distributed points were
obtained.

2 xpxq
N=—p— @
where,
s level of confidence (95%).
P, q estimated hits and errors, respectively.
g=1-p.
E error allowed (5%).

Verification of the validation areas was performed both in the field and using high-resolution images [39].
Subsequently, metrics were calculated to evaluate the accuracy of the results [40]. Thus, UA was calculated,
corresponding to errors of commission or exclusion (from the user’s perspective), while producer accuracy (PA)
addressed errors omission or inclusion (according to the map maker) [41]. Additionally, overall accuracy (OA) [42]
andthe Kappa coefficient (k) were calculated (Eq. (3)).
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T number of rows.

n total number of verification areas.

Cnn the number of observations in row n and column in n.

Cn+y Ctn total marginal of row n and column n, respectively.

3 Results
3.1 Physical and Spatial Factors that Determine Urban Expansion

Urban growth within a city can be attributed to a variety of interacting factors [43, 44]. Specifically, the urban
growth factors identified in the city of Cajamarca are depicted in Figure 3, relating to the region and the specific
context of the city, as described below:

(a) Demographic growth: Associated with the increase in population driven by demand for housing, employment,
services, and urban activities overall.

(b) Migration: Population growth spurred by demand of individuals seeking housing, employment, and various
urban opportunities.

(c) Economic development: Employment opportunities and the development of economic sectors, such as industry,
commerce, and services, attract people to the city in search of work and improved living conditions.



(d) Infrastructure and services: The availability of robust infrastructure, including roads, public transportation,
health services, education (both public and private universities), and other amenities, contributes to the city’s appeal
as a place to live.

(e) Real estate investment and development: Investments in residential and commercial real estate projects drive
urban growth by creating new housing options and business spaces.

(f) Education: The presence of quality educational institutions attracts students and professionals, generating
significant growth in the urban population.

Population growth Migration
| |

Investments and real
estate development

Education Infrastructure and services

Urban growth Economic development

Figure 3. Physical and spatial factors that determine urban expansion

3.2 Urban Expansion in the Period 1986-2022

The implementation of satellite image preprocessing and classification in GEE included image correction,
calculation of spectral indices, and derivation of topographic variables. The creation of predictor variables such
as spectral bands (Blue, Green, Red, NIR, SWIR1, SWIR2), spectral indices (NDVI, MSAVI, EVI, GCVI, NDWI,
ARVI), and topographic indices (DEM, slope and aspect) allowed for the identification of B, AH, PC, U and classes
in the study area.

The percentages of area by class and by each year of analysis are detailed in Table 2. The forest exhibited an
increase from 1986 to 2022, expanding from 531.42 to 2,549.58 ha, respectively. The CPs also showed a tendency to
increase in area, reaching 1,486.32 ha in the years studied. UA increased significantly from 789.68 ha to 3,849.21 has
between 1986 and 2022. Conversely, the SG class decreased from 19,523.40 ha to 12,970.98 has over the same period.

Table 2. Area in ha and percentage of land use and land cover change (LULC) per year

LULC 1986 %o 2004 % 2022 %
Forest (F) 531.01 2.22 1,309.40 5.48 2,549.58 10.66
Shrub and grassland (SG) 19,523.35 81.66 17,653.10 73.83 12,970.98 54.25
Pasture and crops (PC) 3,035.02 12.69 3,379.10 14.13 4,521.41 18.91

Urban area (UA) 798.68 3.34 1,550.46 6.48 3,849.21 16.10
Water (W) 21.23 0.09 17.23 0.07 18.11 0.08
Total 23,909.29 100.00 23,909.29 100.00 23,909.29 100.00

The spatial distribution of LULC for 1986, 2004 and 2022 is depicted in Figure 4. It is observed that the forest
class (F) is mainly located in the center and north of the area, with a notable expansion towards the east and west by
2022.

The SG class shows a widely dispersed distribution throughout the region during the three periods. As for CPs,
their presence is concentrated in the center of the area and has increased toward the north, east and southeast. The
UA exhibits sustained growth from the central core of the city, expanding towards the northeast, east and southeast,
indicating a pattern of peripheral urbanization. On the other hand, the W bodies show fluctuations in their extent
over time. Map validation metrics (Kappa index, UA, PA, and OA) exceeded 83%, ensuring high reliability in the
classification results.

The changes in land cover and land use classes during two periods of analysis are presented in Figure 5 and
Table 3. The first period (P1) covers the years 1986-2004, while the second period (P2) covers 2004 to 2022. A
decrease in the change towards natural cover (9.07 to 5.92%), in change toward anthropic use (15.25 to 8.24%), and in
the permanence of anthropic use (20.12 to 12.52%) is observed in P2. In contrast, the permanence of natural cover
showed a significant increase, from 55.55% in P1 to 73.32% in P2.
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Table 3. Surface area (ha) of land converted to anthropic use by period

Description P1 P2
1986-2004 %o 2004-2022 %
Change to natural coverage 2,168.86 9.07 1,416.18 5.92
Change to anthropic use 3,646.78 15.25 1,969.83 8.24
Permanence of natural coverage  13,282.12 55.55 17,529.17 73.32
Permanence of anthropic use 4,811.53 20.12 2,994.11 12.52
Total 23,909.29 100.00 23,909.29 100.00

3.3 Prediction of Urban Expansion to 2040

The spatial variables depicted in Figure 6 were processed and incorporated as predictors in the Land Change
Modeler module of IDRISI (https://clarklabs.org/terrset/idrisi-gis/, accessed May 13, 2025) with the objective of
predicting urban growth to 2040. These variables included the DEM, distance to urban towns, distance to rivers,

distance to roads, and terrain slope.
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Figure 6. Input variables of the spatial model used to predict urban growth of the city of Cajamarca

The Land Change Modeler module predicted land cover and land use classes, with results indicating a decrease in
the shrub and grassland classes, but an increase in the forest, urban area, pasture and crop classes. Moreover, the
model provided predictions for changes in 2040, using the 2004 and 2022 maps. The maps generated reported an
accuracy of more than 75%. The historical changes in the urban area for Cajamarca are estimated at 5,768.19 ha, with
expansion towards the western, southern and northeastern areas of the city (Figure 7).
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Surface area loss for each class was also analyzed. In P1, P2, and P3 (2022-2040), the class that lost the most area
was SG, followed by PC. Regarding the intensity of loss at the class level, W and F experienced significant reductions
in P1, while in P2, W, SG, and F were most affected. In P3, the main losses continued to be in W, SG, and F.

The shrubland and grassland class exhibited changes, primarily showing a decrease in surface area. These changes
were directed toward the forest, urban, and pasture and crops classes across all years of analysis. As illustrated in
Figure 8, the urban class demonstrated a consistent increase throughout the years, with the forest, grassland and
shrubland, and pasture and crop classes contributing the most to its expansion.

4 Discussion

LULC change is related to population growth and the development of anthropogenic activities. The evaluation
of the dynamics of urban expansion in Cajamarca using GIS techniques over the 54 years of analysis allowed us
to identify important changes. The increase in UA, PC and F is evident from the reduction of SG. Urban growth
in Cajamarca is substantial [27], creating a vast and fragmented territory similar to other Peruvian cities such as
Lima, Callao, Arequipa, Trujillo, Piura, and Huancayo [25]. This often contributes to environmental and social
deterioration [45]. Despite this, urban areas represent only 2% of the world’s surface while housing more than 55% of
the population living in cities [46]. Therefore, it is necessary to plan the development of cities sustainably that will
reduce environmental impacts and improve the inhabitants’ quality of life.

Multiple physical, socioeconomic and environmental factors have been identified as promoting urban growth
in Cajamarca. These include population growth, migration, availability of basic services such as electricity, water,
sewage, education, health, and investments that cause people to migrate from rural areas to urban areas. These factors
often improve people’s living conditions; however, in other cases, they can negatively impact the environment (e.g.,
solid waste dumps, environmental pollution, loss of biodiversity, conversion of forest and crops to urban areas) [47, 48].
Therefore, it is important to implement adequate urban planning in order to manage urban development and human
activities within the physical environment [49, 50], addressing land use policy alternatives, complying with regulations,
and coordinating with stakeholders at different administrative decision-making levels [50].

The study identified five LULC classes: forest, grassland and shrubland, pasture and crops, urban areas, and water.
In percentage terms, the shrubland and grassland class will represent the largest area (41.72%), followed by urban
area (24.13%), pasture and crops (19.76%), forest (14.24%) and water (0.16%) of the study area by 2040. Likewise,
at the period level of analysis, there is a decrease in the SG class and an increase in the forest, pasture and crops and
urban area classes. The increase in the forest class is likely related to reforestation projects similar to Granja Porcén,
while the increase in the pasture and crops class is closely related to the installation of new agricultural and pasture
plots [51-53].

Urban growth in the city of Cajamarca shows an upward trend from 798.68 ha (3.34%) to 5,768.19 ha (24.13%)
from 1986 to 2040, respectively. Urban growth patterns are consistent with Canelo & Moscoso [54], who demonstrate
that the city’s southward expansion has been primarily driven by the pressure of the informal land market, influenced
by mining investment and limited action by authorities.

The application of tools such as GIS and GEE allowed the detection of LULC changes and the prediction of
land use [55-57]. The possible urban expansion areas in Cajamarca will be located to the northeast, southeast
and south of the city, which could be conditioned with the creation of new human settlements and private housing
developments promoted by real estate agencies influencing urban growth [58]. However, the GEE platform may
have some limitations when working on small areas, such as resolution, which does not allow a detailed analysis of
land cover. Additionally, data collected by satellites may contain more noise and errors, potentially affecting the
accuracy of analyses; the availability of historical data and the presence of clouds may also limit the development
of investigations [59, 60]. Finally, this study reports on the possible urban expansion zones in Cajamarca, which
can be considered as an input for institutions involved in planning and urban development framed within sustainable
development and environmental conservation.

5 Conclusions

This study evaluated the dynamics of urban growth in the city of Cajamarca using GIS techniques and cloud-based
processing over the period 1986-2040. Five LULC classes were identified F, SG, PC, UA, and W, with results
showing increases in F, PC, and UA, and a reduction in SG. These changes are associated with multiple physical,
socioeconomic, and political-institutional factors, including population growth, migration, and the availability of
basic services.

The CA-Markov model effectively predicted urban expansion patterns, indicating that growth will continue toward
the northeast, southeast, and tsouth of the city by 2040. These projections provide valuable inputs for sustainable
urban planning and territorial management in transforming Andean areas.

Future research should integrate additional social and economic variables (e.g., income levels, education, housing
policies), and explore alternative machine learning-based predictive models (e.g., ANN, SVM) to enhance forecasting



accuracy and adaptability to different urban contexts.
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