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ABSTRACT 

Received: 15 February 2025 

The study uses embedded machine learning (ML) to focus on solar energy harvesting and Revised: 15 April 2025 

storage  optimisation.  The  research  investigated  environmental  parameters,  input  features, Accepted: 15 May 2025 

including temperature, relative humidity, target variable, month and day, and solar surface Available online: 30 June 2025 

radiation. A dataset for 5 years was used. An ML algorithm was employed for the study, and the linear regression feedforward neural network (FFNN) was used. The normal root mean squared (nRMSE) and R-squared (R2) scores were used as criteria to evaluate the 

 Keywords: 

model's  performance.  A  solar  tracker  system,  built  with  Arduino  and  ESP32 

 machine learning (ML), solar panel, lithium microcontrollers, maximises energy collection. The system harnesses the power of solar battery, 

 sensors, 

 microcontroller, 

panels  to  convert  sun  radiation  into  electrical  energy,  which  is  then  stored  in  a  3.7  V 

 feedforward neural network (FFNN) rechargeable battery. This battery powers the sensors, ensuring continuous operation. The root  mean  squared  error  (RMSE)  value  was  80.48  W/m²,  which  measures  the  typical prediction  error  and  optimises  energy  harvesting.  The  R2  of  0.896  shows  the  model experiences ~90% of the solar irradiance variability data. The higher R2 ensures the model reliably  captures  environmental  parameters  critical  for  adjusting  solar  panels  and maximising energy efficiency. The research's practical implications show that we can have a  high  uptime  for  solar  power  systems,  close  to  24  hours.  Embedded  ML  can  enhance renewable energy management. 


1. INTRODUCTION

distributing,  and  consuming  solar  energy.  The  study  also explored how the challenges of solar energy can be addressed In  current  times,  the  explosive  growth  of  artificial using  AI  and  ML,  and  as  a  way  to  help  create  a  more intelligence  (AI)  has  had  transformative  changes  in  several sustainable  energy  future  [21].  The  study  [22]  proposed  a sectors  [1,  2].  The  capability  of  machine  learning  (ML)  to system to solve solar tracking by arranging the solar module process large data and derive meaningful insights has brought to track the Sun, handling the air velocity and pressure created in  an  era  of  unique  innovations  [3,  4].  This  paradigm  shift on  the  structure  due  to  the  different  angles,  and  creating air prompts  us  to  study  novel  applications,  especially  in  fields resistance,  thereby  tracking  the  sun  and  achieving  structural where  intelligent  decision-making  will  make  a  substantial stability and optimisation. Study [23] reviewed types of solar difference  [5,  6].  One  such  area  is  in  renewable  energy PV  and  solar  tracking  systems,  focusing  on  the  design  and management,  considering  solar  energy  systems  [7-9].  Solar performance  analysis  of  the  various  dual-axis  tracking  solar energy has a promising solution for various sectors [10-12]. 

systems. The choice of the use of trackers depends mainly on Practical strategies for harnessing solar energy are essential to the physical features of the land. 

achieve  robustness  and  reduce  dependence  on  fossil  fuel Embedded  ML  integration  can  have  transformative resources [13-15]. 

potential in renewable energy, involving solar energy systems, In recent years, the coming in of ML and AI into various emphasizing their role in improving solar cell efficiency and domains has spurred advancements, and one such domain of contributing to a greener future. ML revolution in renewable great benefit is renewable energy management technologies, energy  systems  is  providing  innovative  solutions  for especially  solar  energy  harvesting  and  storage  optimisation. 

optimising  efficiency  and  performance  in  solar  energy 

[16, 17]. Harnessing the power of ML in energy harvesting, systems,  thereby  optimising  the  output  of  energy  [24,  25]. 

storage,  and  management  laid  the  foundations  for  more Hence,  the  significance  of  this  study  lies  in  its  potential  to structured  and  sustainable  practices  [18].  Integrating  ML 

contribute  to  global  sustainable  energy  solutions  [26], algorithms  enhances  energy  harvesting  efficiency  and demonstrating  the  effectiveness  of  embedded  ML  and  edge introduces predictive maintenance and optimisation strategies computing in optimising solar energy systems. This study is 

[19, 20]. AI and ML have turned out to be powerful tools that vital  in  many  dimensions,  looking  at  sensitive  aspects  of can  be  deployed  to  transform  the  method  of  generating, renewable 

energy 

management 

and 

technological 
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convergence.  Efficient  energy  harvesting  and  optimised presented the Emergence of Edge Computing, exploring edge battery  management  contribute  to  steady  equipment  life, computing  technologies  and  their  implications.  The  study reducing the need for recurring replacements and minimising identified  edge  computing  as  a  critical  enabler  for  real-time environmental impact [27]. This study explores how advanced data processing and reduction in latency, and the paper had a technologies  can  be  harnessed  to  address  pressing limitation  in  the  application  of  not  extending  the  work  to environmental  challenges  and  improve  the  sustainability  of renewable  energy  systems  [39].  The  paper  examined  the energy systems. Hence, the study aims to develop a system to impact  of  AI  on  photovoltaic  systems,  revolutionising  solar demonstrate an efficient solar energy harvesting and storage energy. 

optimisation system using embedded ML. 

The  study  considered  AI  applications  in  photovoltaic systems.  It  demonstrated  significant  improvements  in  solar energy  efficiency through AI, but with insufficient focus on 2. RELATED WORK 

small-scale  integrated  systems  with  real-time  adjustments. 



The  authors  [40]  presented  an  innovative  solar  energy Solar  energy  systems  often  grapple  with  inefficiencies  in management system supplying energy to several loads within energy  harvesting,  leading  to  sub-optimal  performance, intervals  and  charging  and  discharging  battery  banks.  The increased  downtime,  and  heightened  environmental  impact study  used  a  modularised  method  to  design,  simulate, 

[28,  29].  As  the  integration  of  solar  trackers  becomes  more construct, and test the energy conversion. Soomar et al. [41] 

common, there is a need for innovative solutions that enhance conducted  a  statistical  analysis,  emphasising  the  efficiency energy  yield  through  precise  solar  panel  alignment  and and performance of some solar technologies and identifying incorporate  advanced  technologies  that  can  handle  the their global rankings in terms of power output. The study also evolving intricacy of renewable energy systems [30, 31]. 

assumes  that  the  main  goals  of  optimisation  methods  are  to The ability of ML algorithms to analyse data patterns and reduce  investment,  operation,  and  maintenance  costs  and make  informed  decisions  that  align  seamlessly  with  the emissions  to  improve  system  dependability.  Ogundipe  et  al. 

intricacies of managing solar energy systems is vital [32, 33]. 

[42]  presented  advancements  in  energy  storage  solutions, Exploiting  these  technologies  promises  to  enhance  energy including  high-capacity  batteries  and  hybrid  systems  that yield from solar panels and introduce intelligent techniques for enhance the reliability and efficiency of solar energy, making system optimisation to ensure a sufficient economic return on it  a  practical  alternative  for  residential,  commercial,  and investment  in  solar  energy  systems.  Dobrilovic  et  al.  [34] 

industrial applications. The study also noted that reducing the analysed the use of ML techniques for evaluating solar panel cost of solar energy increases its accessibility and promotes its performance in edge sensor devices. The study utilised Python adoption worldwide. 

Scikit-learn and micromlgen libraries on Arduino clone boards The  authors  in  the  study  [43]  explored  Efficiency  and (ESP8266)  to  implement  edge  intelligence  to  predict  solar Sustainability  in  Solar  Photovoltaic  Systems,  considering panel  voltage  output  and  deploy  a  decision  tree  model. 

Maintenance,  sizing  technologies,  optimisation,  material However, the study was limited to UV and BH1750 sensors, degradation,  and  advanced  monitoring  systems  as  essentials which  did  not  cover  all  ambient  conditions;  the  scope  was for sustaining solar system efficiency over time. 

confined  to  voltage  prediction  and  did  not  extend  to  other performance metrics like current or power. Khadka et al. [35] 



presented  current  solar  photovoltaic  panel  cleaning  systems 3. MATERIALS AND METHODS 

practices  and  prospects  of  ML  implementation.  The  paper reviewed current solar panel cleaning practices and potential ML  models  are  an  essential  element  of  AI  that  crucially ML implementations, but lacked real-time data integration and enhances  the  function  of  energy  storage  systems,  including actuator implementation. 

batteries.  The  algorithms  can  predict  energy  demand  and In study [36], the authors used regression models to predict adjust  charge  and  discharge  cycles  accordingly  [44]. 

solar  irradiance  with  all-sky  image  features  but  did  not Operational  optimisation  of  renewable  energy  systems  can incorporate  real-time  actuator  adjustments  for  optimisation. 

deploy  ML  by  continuously  adjusting  system  parameters  to Peltonen et al. [37] analysed many faces of edge intelligence, maximise  system  output.   The  orientation  and  tilt  of  solar considering  edge  intelligence  applications  and  benefits,  and panels  can  be  optimised  by  ML  models  using  real-time highlighted  diverse  applications  and  benefits  of  edge weather  data  of  solar  PV  systems  to  ensure  that  the  panels computing,  including  reduced  latency  and  improved  data receive  the  most  sunlight  when  positioned  [45].  The  study processing.  The  study  had  a  limitation  focused  on  specific methodology overview is given in Figure 1. 

environmental monitoring  applications.  Satyanarayanan  [38] 

 

 

 

Figure 1.  The solar PV tracking system block diagram 196
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3.1 Method overview 

embedded  systems,  which  is  linear  regression.  The  trained 

 

model  is  then  optimised  to  minimise  memory  and 3.1.1 The system setup 

computational requirements, ensuring efficient deployment on This  involves  selecting  appropriate  components  and the ESP32 microcontroller. 

preparing them for integration. The Arduino Uno and ESP32 



microcontrollers  were  chosen  for  their  low  power 3.1.5 System implementation 

consumption and computational efficiency, making them ideal Once the ML model is trained, it is deployed on the ESP32 

for energy-constrained applications. The light intensity sensor microcontroller.  The  model  is  configured  to  operate  in  real (photodiode),  temperature  sensor,  and  humidity  sensor  are time, analysing incoming data from the Arduino and making configured to monitor environmental conditions accurately. A predictions  about  optimal  sensor  operations  and  energy 3.7 V rechargeable lithium-ion battery is the primary energy management  strategies.  This  implementation  ensures  the storage  medium,  while  a  solar  panel  converts  sunlight  into system operates autonomously and efficiently. 

electrical energy to power the solar PV tracker system. 





3.1.6 Energy management 

The  energy  management  strategy  leverages  predictions from  the  ML  model  to  adjust  the  solar  panel's  orientation dynamically,  maximising  energy  harvesting  throughout  the day. Low-power modes are implemented to conserve battery life, where sensors and microcontrollers are deactivated during periods  of  inactivity,  such  as  nighttime  or  extended  cloudy conditions. 



3.1.7 Simulation and testing 

Performance  metrics  were  deployed  to  assess  the  energy harvested, battery charge cycles, system uptime, and overall optimisation.  The  system  was  tested  to  evaluate  its functionality  and  performance.  Figure  2  illustrates  the  solar tracker logic flowchart of the study. 




3.2 Solar PV system description 

The solar PV system assembles components comprising the solar tracker kit, designed to optimise energy harvesting. The Keystudio Solar Panel Tracking Kit provided sensors such as the light intensity module, a pivotal component selected for its accuracy, low power consumption, and adaptability to varying environmental  conditions.  This  module,  strategically positioned on the solar tracker, is the primary sensor capturing real-time data on ambient light conditions. The solar tracker system operates by continuously monitoring the intensity and direction of sunlight through its sensors. 

 



 


3.3 Key components 

Figure 2.  Solar tracker logic flowchart 3.3.1 Keystudio Uno 

3.1.2 Sensor integration 

Keystudio  Uno  is  a  variation  of  the  Arduino  Uno.  The The  sensors  were  calibrated  before  integration  into  the primary control unit handles sensor data acquisition and servo system to ensure accurate data collection. The light intensity, motor control. The Keystudio Uno has 14 digital input/output temperature, and humidity sensors are installed and connected pins, USB connection, 16 MHz crystal oscillator, power jack, to  the  Arduino  Uno,  which  handles  data  gathering  and reset  button,  and 2  ICSP  headers.  The V

preprocessing. This setup ensures the sensors provide reliable CC  can  be  switched 

through a slide switch between 3.3 V and 5 V. The Keystudio input for subsequent system operation stages.  

Uno is given in Figure 3. 





3.1.3 Data transmission 

A  robust  communication  protocol  is  established  between the  Arduino  Uno  and  ESP32  to  facilitate  seamless  data transfer.  The  Arduino  transmits  preprocessed  data  from  the sensors  to  the  ESP32  using  serial  communication.  This transmission allows the ESP32 to analyse the data and make predictions for optimising system performance.  



3.1.4 ML model deployment 

Key  features  for  the  ML  model  were  identified  to  guide energy  optimisation  decisions.  Sample  data  is  collected  and preprocessed  to  train  a  lightweight  ML  model  suitable  for Figure 3.  Keystudio Uno 


197

[image: Image 10]

[image: Image 11]

[image: Image 12]

[image: Image 13]

[image: Image 14]

[image: Image 15]

3.3.2 Solar panel 

3.3.5 DHT11 temperature and humidity sensor The solar panel is a crucial solar energy harvesting system The Sensor monitors environmental conditions to assist in for converting sunlight into electrical energy. The solar panel predicting  optimal  operational  parameters  for  energy with dimensions of 137 mm by 85 mm is given in Figure 4. 

conservation. Figure 7 presents the DHT11 temperature and The  main  factors  affecting  solar  panels'  output  performance humidity sensor. 

include load impedance, sunlight intensity, temperature, and illuminance.  The  Polyethene  Terephthalate  (PET)  Solar  PV 

Panel was deployed in the study, a type of thin-film solar panel known  for  being  durable  and  flexible.  The  Solar  Panel specifications are shown in Table 1. The maximum charging current provided by the solar panel is 80 mA. The solar panel requires  extended  periods  of  direct  sunlight  to  charge  the battery sufficiently. 







Figure 7.  DHT11 temperature and humidity sensor 3.3.6 Solar USB charging module 

The  module  charges  the  lithium-ion  battery  2200  mAh, ensuring  a  sustainable  power  supply.  The  boost  module increases the battery output voltage to 6.6 V. Figure 8 shows the solar charging module. The parameters for the module are given in Table 2. 







Figure 4.  Solar panel 



Table 1. Parameters of the solar panel 

 

Solar Panel Ratings  


Specification Values  

Power rating 


1.5 W 

Panel dimensions 

137 mm × 85 mm × 2 mm 

Rating of voltage 

6 V 



Rating of current 

250 mA 



Weight 

36.5 g 

Figure 8.  Solar USB charging module 3.3.3 BH1750 digital light intensity module Table 2. Parameters of solar USB charging module 

The  module  measures  ambient  light  intensity  accurately, 

 

supplementing the photo-resistor. Figure 5 shows the module External Battery 


2200 mAh Battery 

mounted beside the aforementioned solar panel. 

Solar panel interface input 

4.4-6 V 



voltage 

Battery constant voltage charging 

4.15-4.24 V 

value 

Maximum output current 

1 A 

Output voltage 

6.6 V 

Output interface 

3 P 2.54 mm Bent Needle 

Maximum charging current 

800 mA 

1. Micro USB 



Charging interface 

2. HP2.0MM interface for 



solar panel 

Figure 5.  BH1750 light intensity module Environmental attributes 

ROHS 





3.3.4 Photo-resistor module 

3.3.7 Servo motors 

The module detects light intensity from different directions, The solar panel's position is adjusted based on the processed enabling the system to determine the optimal panel orientation. 

data  from  the  sensors,  making  it  face  the  direction  of The photo-resistor module is given in Figure 6. 

maximum sunlight. There are 2 of them provided to ensure the flexibility of the solar panel's movements. 











Figure 6.  Photo-resistor 

Figure 9.  LCD display with I2C interface 198
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3.3.8 LCD display with I2C interface 

box that holds the battery. 

This  is  used  to  view  the  illuminance,  temperature,  and humidity at a particular time. Figure 9 shows the LCD display in front and with the I2C interface behind it. 



3.3.9 Smartphone charging module 

The  solar  kit  also  has  a  charging  module  that  can  be deployed  to  charge  mobile  devices.  Figure  10  depicts  the 

 

smartphone charging module. 

              (a)                            (b) 



 

Figure 11. (a) 2200 mAh lithium battery; (b) Battery box 3.4 Solar PV system description 



The weather conditions dataset used in this study was taken from  an  open  source  as  incorporated  in  Solcast  [46].  The spreadsheet had over 80,000 data points. The resolution was set  to  Ota,  Ogun  state  as  the  location,  with  coordinates Latitude  6.6927°N,  Longitude  3.23655°E.  Past  data  was collected over about 5 years (from June 2019 to June 2024) to Figure 10.  Smartphone charging module ensure  a  comprehensive  dataset  that  takes  seasonality  into account  and  captures various  environmental  conditions.  The 3.3.10 Battery and the battery box 

dataset  includes  temperature,  time  of  the  day,  relative The  kit  uses  a  2200  mAh  lithium  battery,  which  is humidity, solar radiation, and detailed day/year information, recommended to have a capacity greater than 2200 mAh. The which  are  essential  for  optimizing  energy  production  from energy harvested from the solar panel is stored in the battery. 

solar panel sources. The data were taken at 30-minute regular Figure 11 shows the 2200 mAh lithium battery and the battery intervals. Table 3 presents the solar data sample from the file. 

 

Table 3. Parameters of solar USB charging module 

 

Day of Year (Day no. in 365 Days.) Time of Day (mins) Relative Humidity (%) Air Temperature (℃) Solar Irradiance (W/m2) 160 

30 

94.8 

26 

0 

160 

60 

94.8 

26 

0 

160 

90 

94.9 

26 

0 

160 

120 

95.2 

26 

0 

160 

150 

95.3 

25 

0 

160 

180 

95.3 

25 

0 

160 

210 

95.2 

25 

0 

160 

240 

94.9 

26 

0 

160 

270 

94.9 

26 

0 

160 

300 

95.2 

26 

0 

160 

330 

95.2 

26 

0 

160 

360 

94.9 

26 

9 

160 

390 

94.4 

26 

54 


3.5 Data preparation 

regression-trained  TensorFlow  type  of  ML  program  was 

 

employed  in  the  study  to  predict  solar  energy  generation  in Historical data mentioned in section 3.4 were used to train terms of global horizontal irradiance (GHI) [47, 48]. A batch ML models. The dataset was split into training and test sets. 

size of 32 was deployed for a more frequent model update. The Out  of  the  total  dataset,  80%  of  the  samples  were  used  for model  was  built  using  features  such  as  sinusoidal training  the  model,  while  the  remaining  20%  were  used  for transformations of time of day and day of the year, along with testing  to  evaluate  its  performance  on  unseen  data.  Data temperature and humidity, to capture both the cyclical nature preprocessing technique, normalisation was deployed for the of  solar  irradiance  and  its  dependence  on  environmental study dataset, to reduce the size, increase the robustness of the factors. The sinusoidal transformation of the time of day was model, and improve the training time of the neural network. 

specifically  chosen  to  represent  its  periodic  nature,  as  solar The  solar  surface  radiation  values  as  the  target  value  were irradiance follows a daily cycle that repeats every 24 hours. 

scaled  with  a  MinMaxScaler  to  ensure  consistent  scaling This transformation allows the model to learn these cyclical across all inputs, and the input features were normalised using patterns  more  effectively  than  using  raw  time  values.  The a StandardScaler. The variable's features were standardised to proposed  model  was  trained  and  evaluated  using  a ensure  consistency  and  enhance  ML  models'  effectiveness. 

feedforward  neural  network  (FFNN).  The  FFNN  was The features are split into two: the input features, temperature, employed  to  predict  solar  irradiance  for  optimizing  solar relative  humidity,  month,  and  day,  and  the  target  variable. 

energy  harvesting.  The  model  is  implemented  as  an  FFNN, Temporal  aggregation  was  conducted  to  capture  seasonal consisting of an input layer with ReLU activation functions, patterns  and  variations  over  time.  The  daily  weather  data hidden  layers,  and  an  output  layer.  A  FFNN  consists  of includes  temperature,  relative  humidity,  month,  and  day.  A multiple layers of interconnected neurons with a deep learning 199
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architecture [49]. Figure 12 shows the common configuration 3.8.3 Temperature 

of FFNN. 

Temperature  influences  the  amount  of  solar  radiation. 



Atmospheric absorption and scattering are usually  increased by  higher  temperatures,  which  affects  solar  radiation  levels. 

Monitoring  temperature  helps  optimise  energy  storage  and system  operation,  thereby  influencing  battery  efficiency  and performance. 



3.8.4 Relative humidity 

Relative  humidity  impacts  how  solar  radiation  is transmitted and scattered, and also influences the atmosphere's 

 

composition.  Changes  in  relative  humidity  can  affect  cloud 

 

formation  and  the  amount  of  atmospheric  particulates Figure 12.  FFNN general configuration interacting with solar radiation. 





3.6 Neural network 


3.9 Performance criteria  

 

 

The  neural  network  was  implemented  using  TensorFlow The selection of performance criteria relies on the nature of and consists of three layers: 

the  task,  which  can  be  regression,  classification,  or optimisation. The study deployed two regression performance 3.6.1 Input layer 

metrics, including root mean squared error (RMSE) [51] and The input receives the data that was used to train the model. 

coefficient of determination, R-squared (R2) [52], deploying The  input  layer  processed  environmental  features  such  as predicted  and  actual  values.  RMSE  and  R2  as  performance sinusoidal transformations of time of day and day of the year, metrics were chosen for this study because RMSE is easier to as  well  as  temperature  and  humidity.  These  features  were interpret in a research study when compared with other metrics normalised to ensure consistent scaling across inputs. 

and  R2  normally  provides  a  baseline  for  comparing  models, when also compared with other metrics. The metrics predict 3.6.2 Hidden layers 

continuous variables like energy generation or consumption. 

The  model  included  two  dense  hidden  layers  using  the Eqs.  (1)  and  (2)  show  the  R2  and  the  RMSE  matrices, ReLU  activation  function.  These  layers  extracted  non-linear respectively. 

relationships  between  input  features  and  solar  irradiance, enabling  the  model  to  capture  complex  patterns  of  solar 2

n

irradiance values. 

∑

(y

R2 =1- i=1 actual,i−ypred,i )  

(1) 

2



∑n (y

i=1

actual,i− y

̅actual,i)

3.6.3 Output layer 



The output layer consists of a single neuron that provides a The  RMSE  metric  was  used  to  penalize  more  significant continuous  regression  output,  predicting  solar  irradiance  in errors heavily. RMSE gives insight into the performance of the watts per square meter. 

model under extreme conditions. 






3.7 Loss function 

√1

2

∑n (y

 

n i=1 actual,i −  ypred,i)

(2) 

nRMSE =



The loss function measures how well the model predicts the ymax − ymin

solar energy output for a given set of inputs [50], considering the  numerous  features  that  affect  energy  production.  The where, ypred,i is the predicted value of the ith data, yactual,i is features include temperature, relative humidity, and the month the actual value for the ith data point, and n is the total number and day. The loss function adjusts its parameters to optimize of data points. y̅actual,i is the mean of the actual values, ymax is its predictions over time. The learning rate controls the step the maximum value of the actual data, and ymin is the minimum size  taken  towards  the  minimum  of  the  loss  function  when value of the actual data. 

training the dataset. Hence, a learning rate of 0.001 was used 

 

for the study to give the model optimal, accurate predictions. 


3.10 Feature conversion 




3.8 The proposed model features 

Time  of  day  conversion:  The  study  uses  a  sinusoidal 

 

function to convert the time of day into a format suitable for a 3.8.1 Time of day 

M=- model that helps to capture the periodic nature of daylight The time parameter captures daily changes in solar radiation as given in Eqs. (3) and (4). This conversion transforms the levels.  Solar  energy  availability  varies  throughout  the  day. 

time  into  two  features  representing  the  cyclical  pattern  of  a This feature helps predict optimal energy harvesting times and day. 

manage sensor activity. 





2π  ×  hour

3.8.2 Day of the year 

Time of day (sin) = sin (

) 

(3) 

24

Seasonal  changes  affect  sunlight  intensity  and  duration. 



Including  this  feature  allows  the  model  to  give  results  for 2π  ×  hour

seasonal variations in solar energy. The day of the year helps Time of day (𝑐𝑜𝑠) = cos (

) 

(4) 

24

to  identify  seasonal  cycles, such  as  solar  angle  changes  and day length, that affect solar radiation. 

Day of the year conversion: Convert the date into a day-of-200
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the-year format: 

the  solar  panel's  physical  movements,  while  the  ESP32 



handled data processing and ML tasks. Various sensors were Day of the Year = Date 

(5) 

integrated  into  the  system  to  monitor  environmental conditions such as light intensity, temperature, and humidity. 

Eq.  (5)  represents  the  day  of  the  year  using  sinusoidal These sensors provided real-time data for optimising the solar functions to capture seasonal variations as with the time-of-panel's  orientation  and  performance.  Figures  14,  15,  and  16 

day conversion. The expression for energy harvesting is given present the prototype of the designed solar tracking system, the in Eq. (6). 

solar  panel  tracker  when  not  powered  and  when  powered, respectively.  The  LCD  displayed  parameters  such  as Energy Harvesting Efficiency 

temperature, humidity, and luminous intensity. 

Power Output

(6) 

=

× Area of the Solar Panel  



Solar Irradiance



Battery charge and discharge rates are given in Eqs. (7) and (8). 



Energy Harvested

Charging Rate  =



(7) 

Battery Capacity



Energy Consumed 



Discharging Rate  =



(8) 



Battery Capacity



Figure 14.  Prototype of the designed solar tracking system The  duty  cycle  to  balance  energy  consumption  and operational efficiency used for power management is given in Eq. (9). 



Active Duration 

Duty Cycle  =



(9) 

Total Duration

 

3.11 Implementing embedded ML with the ESP32 

 



The  ESP32  microcontroller  was  selected  for  the  study  to add an intelligence layer by using embedded ML algorithms Figure 15.  Solar tracker, when not powered to  predict  the  best  times  and  positions  for  solar  panel adjustments.  It  considers  several  factors,  including  time  of day, day of the year, temperature, and humidity, to optimize energy  harvesting  and  minimize  power  consumption.  The ESP32, shown in Figure 13, is designed for energy efficiency, which is crucial for a solar-powered system where conserving battery life is essential due to its low power consumption. The ESP32's  built-in  real-time  clock  (RTC)  allows  it  to  keep accurate time, providing essential factors critical for the ML 

model.  Arduino  does  not  come  with  a  built-in  RTC.  Its features of Wi-Fi and Bluetooth capabilities facilitate wireless communication  and  data  transmission,  making  it  easier  to Figure 16. Solar tracker, when powered interface  with  other  devices  if  needed.  With  its  dual-core processor,  the  ESP32  can  handle  complex  tasks,  including 3.11.2 Software development 

running  ML  algorithms,  without  significant  latency,  with The software was modular, with separate code bases for the robust  processing  power.  The  external  sensors  and  modules Arduino and ESP32. The Arduino was programmed to control make  it  an  essential  solar  tracking  and  optimisation  system the servo motors to adjust the solar panel's angle, considering component. 

the  input  from  the  ESP32.  ML  algorithms  were  trained  and embedded into the ESP32. 



3.11.3 System optimisation and testing System  testing  was  conducted  to  validate  the  accuracy  of the ML models and the responsiveness of the hardware. It was placed  beside  the  window  of  a  room  on  the  second  highest floor of a 4-storey building for nearly a week straight. It was observed that the system was able to stay active for most of the day; the sensors were active for about a third of the day, Figure 13.  ESP32 microcontroller unit and the system completely shut down after 7 days, primarily due to how often it rained during that period. After confirming 3.11.1 Hardware setup 

that the system was operating optimally, it was deployed in the The core hardware components included an Arduino Uno same position to monitor its performance over about 10 days. 

and an ESP32 microcontroller. The Arduino Uno  controlled Data  collected  during  this  phase  was  used  to  determine  the 201

[image: Image 24]

system  performance  metrics.  Figure  17  presents  the  solar tracking system used to charge devices, such as laptops. 

 

3.12 Implementing embedded ML with the ESP32 

 

The  solar  tracking  system  begins  its  operation  with  the initialisation of the Arduino Uno and ESP32 microcontrollers. 

The  battery  powers  the  calibrated  sensors.  The  Arduino 

 

monitors  the  environmental  parameters  throughout  the  day 

 

using integrated sensors to collect data. The data is transmitted Figure 17.  Solar tracker connected to a laptop to the ESP32, where an embedded ML algorithm processes the information to predict the solar irradiance. The ESP32 sends the calculated adjustment values back to the Arduino, which 4. RESULTS AND DISCUSSION 

drives the servo motors to reorient the solar panel toward the 

 

optimal  position.  As  sunlight  is  converted  into  electrical Harvesting solar energy and optimising storage using ML 

energy by the solar panel, the system stores the energy in a 3.7 

was the focus of the research. Incorporating ML into renewable V lithium-ion battery via a solar USB charging module. The energy  systems  introduces  a  positive  application  in  power system  operates  autonomously,  with  the  ML  algorithm systems [53]. The study explored an ML model for harvesting ensuring  that  sensors  and  motors  are  only  active  when solar energy, management, and optimising energy. 

necessary, conserving battery life.  The operational approach ensures  efficient  energy  harvesting  and  storage  while 4.1 Daily energy parameter harvested maintaining minimal energy consumption, enabling the solar 

 

tracking system to function sustainably for extended periods. 

The solar panel was exposed to sunlight on consecutive days After training, the model was converted to TensorFlow Lite during the testing period. The energy harvested was recorded format  and  deployed  on  an  ESP32  microcontroller  for  real-every hour over 10 days. The daily energy parameter harvested time  inference.  This  lightweight  deployment  enables  the results  are  summarised  in  Table  4.  The  average  energy system  to  operate  autonomously,  predicting  GHI  and harvested  per  day  was  approximately  1.35  Wh.  This  data optimising solar panel orientation efficiently without reliance indicates a relatively consistent energy capture, with variations on cloud-based resources. 

due to changing weather conditions. 

 

Table 4. Daily energy parameter harvested 

 

Day Energy Harvested (Wh) Charge Cycles Weather Simulation Light Intensity (W/m²) Uptime (Hours) Activation Duration (Hours) 1 

1.2 

0.5 

Cloudy 

300 

23.5 

8.5 

2 

1.4 

0.6 

Slightly cloudy 

500 

23.9 

9.0 

3 

1.1 

0.4 

Cloudy 

250 

22.9 

8.0 

4 

1.5 

0.6 

Sunny 

850 

24.0 

9.5 

5 

1.3 

0.5 

Slightly cloudy 

450 

23.2 

8.2 

6 

1.6 

0.7 

Sunny 

900 

24.0 

9.7 

7 

1.4 

0.6 

Slightly cloudy 

500 

23.7 

8.8 

8 

1.2 

0.5 

Cloudy 

300 

23.5 

8.6 

9 

1.3 

0.5 

Slightly cloudy 

500 

23.4 

8.3 

10 

1.5 

0.6 

Sunny 

860 

24.0 

9.0 


4.2 Battery charge cycles 

tracked  to  ensure  they  were  powered  only  when  necessary. 

 

The sensors were active for an average of 8.76 hours per day, The  battery's  number  of  charge  cycles  during  the  testing showing that the ML model effectively predicted the optimal period  was  monitored.  The  process  of  charging  the  battery times for sensor operation. The ML model optimised sensor from 0 percent to 100 percent and then discharging it back to activity,  reducing  unnecessary  power  consumption  and 0% is known as the charge cycle. The average number of daily extending the battery's lifespan. This approach ensured that the charge cycles was approximately 0.55, indicating efficient use system  remained  energy-efficient  even  under  varying of the harvested energy. 

environmental  conditions.  The  solar  tracker  energy  system results  indicate  that  integrating  embedded  ML  and  edge 4.3 System uptime 

computing  significantly  improved  the  efficiency  of  solar 

 

energy harvesting and storage efficiency [54]. The consistent The system uptime was recorded to evaluate the operational energy  harvesting  and  high  system  uptime  suggest  that  the duration of the system without interruptions. The system was solar  tracker  and  power  management  strategies  were designed to enter low-power mode during periods of inactivity effectively  implemented.  The  normal  root  mean  squared to  conserve  energy.  The  system  maintained  an  uptime  of (nRMSE)  was  80.48  W/m²,  approximately  44.57%  of  the approximately  24  hours  on  most  days,  demonstrating  the mean  GHI  and  8.31%  of  the  maximum  GHI.  This  indicates effectiveness of the power management strategies. 

that the model performs well during peak energy production 

 

conditions while maintaining reasonable accuracy overall. The 4.4 Sensor activity duration 

R2 score of 0.896 shows that the model captures nearly 90% 

 

of  the  variance  in  GHI,  demonstrating  strong  predictive The  duration  for  which  the  sensors  were  active  was  also capabilities. Multiple optimisers were tested, including Adam 202

Optimiser, Stochastic Gradient Descent (SGD), and root mean humidity,  and  time  of  day,  as  needed  for  the  Arduino  and square propagation (RMSprop). RMSprop achieved a slightly ESP32 for this study. The model's limitations, such as having better loss of 0.0063 compared to 0.0068 for Adam and 0.0068 

data from different locations being trained, can give the model for SGD, reflecting a minor performance advantage as given issues because  of  climate  variations;  moreover,  the battery's in Table 5. The low loss values across all optimisers reaffirm nonlinear ageing process gives less precision. 

the model's architecture and preprocessing pipeline suitability Investigating the integration of cloud-based ML models for for this regression task. Therefore, the loss (0.0064) reflects more  extensive  data  analysis  and  management,  and how  well  the  model  minimises  errors  during  training.  That overcoming potential limitations the embedded systems pose, means the model learned the patterns in the data effectively, developing  more  powerful  and  specialized  microcontrollers enabling accurate solar irradiance predictions. 

capable  of  handling  more  complex  ML  models  and  larger 

 

datasets  tailored  to  renewable  energy  applications  could  be Table 5. Multiplier optimiser 

used  for  enhanced  performance,  which  can  be  an  area  for 

 

further studies. The energy stakeholders can make decisions Optimizer  Adam 

Sdg 


Rmsprop 

and develop sustainable policies for tropical locations. 

Loss 

0.0068  0.0068 

0.0064 







The  study  had  an  RMSE  value  of  80.48  W/m²,  which ACKNOWLEDGMENT 
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irradiance  variability  data.  A  higher  R2  ensures  the  model reliably  captures  environmental  parameters  critical  for adjusting solar panels and maximizing energy efficiency. The DATA AVAILABILITY STATEMENT 

experimental  results  show  the  viability  of  deploying 

 

embedded ML for efficient renewable energy management. 

The  data  used  in  this  study  are  publicly  available  from The findings provide valuable insights that can be scaled up Solcast [46]. 
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The study uses embedded machine learning (ML) to focus on solar energy harvesting and
storage optimisation. The rescarch investigated environmental parameters, input featurcs,
including temperature, relative humidity, target variable, month and day, and solar surface
radiation. A dataset for 5 years was used. An ML algorithm was employed for the study,
and the linear regression feedforward neural network (FFNN) was used. The normal root
mean squared (NRMSE) and R-squared (R?) scores were used as criteria to evaluate the
model's performance. A solar tracker system, built with Arduino and ESP32
microcontrollers, maximises energy collection. The system hamesses the power of solar
panels to convert sun radiation into electrical energy, which is then stored in a 3.7 V
rechargeable battery. This battery powers the sensors, ensuring continuous operation. The
root mean squared error (RMSE) value was 80.48 W/m?, which measures the typical
prediction error and optimises cnergy harvesting. The R of 0.896 shows the model
experiences ~90% of the solar irradiance variability data. The higher R ensures the model
reliably captures environmental parameters critical for adjusting solar panels and
maximising energy cfficiency. The rescarch's practical implications show that we can have
a high uptime for solar power systems, close to 24 hours. Embedded ML can enhance

renewable energy management.

1. INTRODUCTION

In current times, the explosive growth of artificial
intelligence (AI) has had transformative changes in several
sectors [1, 2]. The capability of machine learning (ML) to
process large data and derive meaningful insights has brought
in an era of unique innovations [3, 4]. This paradigm shift
prompts us to study novel applications, especially in fields
where intelligent decision-making will make a substantial
difference [5, 6]. One such area is in renewable energy
management, considering solar energy systems [7-9]. Solar
energy has a promising solution for various sectors [10-12].
Practical strategies for harnessing solar energy are essential to
achieve robustness and reduce dependence on fossil fuel
resources [13-15].

In recent years, the coming in of ML and Al into various
domains has spurred advancements, and one such domain of
great benefit is renewable energy management technologies,
especially solar energy harvesting and storage optimisation.
[16, 17]. Harnessing the power of ML in energy harvesting,
storage, and management laid the foundations for more
structured and sustainable practices [18]. Integrating ML
algorithms enhances energy harvesting efficiency and
introduces predictive maintenance and optimisation strategies
[19, 20]. Al and ML have turned out to be powerful tools that
can be deployed to transform the method of generating,
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distributing, and consuming solar energy. The study also
explored how the challenges of solar energy can be addressed
using Al and ML, and as a way to help create a more
sustainable energy future [21]. The study [22] proposed a
system to solve solar tracking by arranging the solar module
to track the Sun, handling the air velocity and pressure created
on the structure due to the different angles, and creating air
resistance, thereby tracking the sun and achieving structural
stability and optimisation. Study [23] reviewed types of solar
PV and solar tracking systems, focusing on the design and
performance analysis of the various dual-axis tracking solar
systems. The choice of the use of trackers depends mainly on
the physical features of the land.

Embedded ML integration can have transformative
potential in renewable energy, involving solar energy systems,
emphasizing their role in improving solar cell efficiency and
contributing to a greener future. ML revolution in renewable
energy systems is providing innovative solutions for
optimising efficiency and performance in solar energy
systems, thereby optimising the output of energy [24, 25].
Hence, the significance of this study lies in its potential to
contribute to global sustainable energy solutions [26],
demonstrating the effectiveness of embedded ML and edge
computing in optimising solar energy systems. This study is
vital in many dimensions, looking at sensitive aspects of
renewable  energy  management and  technological
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