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ABSTRACT 

Received: 27 April 2025 

Renewable  energy  installations  are  rising  at  a  fast  pace  because  societies  r./uire  both Revised: 10 June 2025 

emission  reduction  and  alternative  clean  energy  sources.  Policymakers,  together  with Accepted: 20 June 2025 

industry  stakeholders,  find  it  troublesome  to  use  traditional  energy  prediction  models Available online: 30 June 2025 

because these systems operate without clarity and fail to handle intricate market systems properly.  This  research  solves  these  issues  through  a  machine  learning  (ML)  model prediction  of  renewable  energy  use.  Then,  it  enhances  predictions  through  explainable 

 Keywords: 

artificial intelligence (XAI) methods to achieve better accuracy and trustworthiness. Our Local 

 Interpretable 

 Model-Agnostic 

analysis  includes  multiple  ML  algorithms  from  the  ensemble  category  consisting  of Explanations  (LIME),  renewable  energy, Random Forests (RF) and Gradient Boosting in addition to advanced boosting algorithms explainable  artificial  intelligence  (XAI), XGBoost  and  Light  Gradient  Boosting  Machines  (GBM).  Local  Interpretable  Model-energy  forecasting,  prediction  models, Agnostic Explanations (LIME) reveal the decision-making procedures during predictions machine learning (ML) 

while  delivering  understandable  explanations  about  the  model's  conduct  to  users.  The methodology  adopts  a  thorough  model  testing  methodology  using  extensive  datasets, which  include  multiple  variables  related  to  renewable  energy  consumption,  including economic  metrics  and  environmental  aspects.  Researchers  obtained  predictive performance  excellence  with  interpretability  benefits  from  their  models  in  predicting renewable  energy  usage.  The  Light  GBM  model  delivered  97.40%  accuracy  when analyzing data, while the LIME process showed GDP growth and electricity access as key determining variables. XAI integration in renewable energy forecasting presents important progress  that  livers  enhanced,  transparent  yet  actionable  energy  predictions  that  build trusted reliability for use in the industry. The study demonstrates the power of uniting ML 

with XAI techniques for better comprehension of renewable energy patterns, which enables better decisions for sustainable energy development. 


1. INTRODUCTION

number of ML models are not interpretable, effectively a black box,  and  the  models  cannot  be  used  to  detect  nonlinear The widespread adoption of renewable energy technologies relationships  or  changes  over  a  time  period.  It  is  these such as wind power, solar, ocean power, geothermal power, shortcomings  that  force  the  main  scientific  question  of  this hydroelectric  power,  hydrogen  power,  and  bio-power  has study to be: how can current models of renewable energy that received  international  attention  because  of  their  beneficial make predictions be improved so that they not only improve environmental effects, high rate of technological development, on  the  accuracy  of  their  predictions  but  also  become  more and  consistency  with  long-term  targets  of  reducing  climate explainable  under  the  influence  of  the  complications  of  the effects.  Some  of  these  achievements  notwithstanding,  the market systems and nonlinear trends in the data? To overcome actual  generation  and  consumption  of  renewable  energy  is this, the current study considers a hybrid system that resorts to very  difficult  to  predict,  which  poses  a  problem.  The  non-high-performance  ensemble  ML  models  and  explainable stationary and discontinuous characteristics of the renewable artificial intelligence (XAI) methods. An XAI system plays a sources  and  the  intricate  interdependence  on  weather, crucial  role  in  the  establishment  of  processes,  methods,  and economy,  and  infrastructure  render  classical  forecasting approaches  that  elicit  comprehensible  explanations  of  the effects, not  sufficient  in  modeling  the nonlinearities  and  the latest ML models [1]. 

dynamism of contemporary energy networks. 

XAI is fundamental to disentangling AI  decision-making, Causes of these complexities have been solved by machine especially  in  the  energy  sector,  where  the  implications  of learning  (ML)  and  deep  learning  (DL)  models  as  they  can automated  decision  automation  become  of  paramount learn patterns to be used in large, high-dimensional datasets. 

importance to regulatory approval and functional trust. With But there are two major shortcomings that still exist: a large renewable  energy,  XAI  makes  it  easier  to  comprehend  or 321

explain the ML predictions in a renewable energy system and ML models come up as an effective solution to tackle these it allows stakeholders to become aware of how and why the forecasting problems. They are better at identifying complex, system works; therefore, more effective energy solutions are non-linear  relationships  in  historical  data  than  traditional promoted, as well as less costly and even more reliable energy forecasting methods. Furthermore, the use of XAI makes the solutions. 

predictions  more  interpretable.  The  trustworthiness  of  the The energy sector encounters several issues regarding the predictions for stakeholders and policymakers is enhanced by methods of production, transmission, and distribution, namely, XAI, which makes the results clear and explainable. In order the management of costs, security of the system, efficiency of to  provide  insight  to  enable  the  worldwide  adoption  of operation, and inconsistency of carbon footprint. What makes renewable  energy  further,  this  study  hopes  to  develop  both this happen is the dynamic amount of data that is put through accurate  and  interpretable  models  to  utilize  the  energy energy companies, which require data to be processed, stored, consumption of renewable energy over time. 

and analyzed in a quest to optimize services and minimize risk. 

 

To overcome these issues, AI technologies are used more and 

 

more  and  have  a  positive  impact  by  reducing  energy 2. RELATED WORKS 

consumption, stabilizing demand, increasing the reliability of the grid, and detecting issues, including natural gas leaks [2]. 

Artificial Intelligence through ML and DL establishes itself Also, Khalil and Enjadat [3]. focused on a better understanding as an effective mechanism to enhance prediction together with of  the  regional  climate  adaptation  approaches,  vide  its  case diagnostic  capabilities.  Multiple  forecasting  domains  adopt location  in  Karak  City  only,  whereas  support  local  data these  ML  methodologies  for  their  applications  within analysis is necessary to address global climate variability. 

environmental science, disease prevention and healthcare [6], The  emergence  of  AI  has  also  been  augmented  with demand forecasting, fraud detection, traffic management, and accelerated  developments  within  the  ML  and  DL  methods. 

notably  in  the  energy  sector  [7-13].  The  number  and The  integration  of  AI  in  the  energy  infrastructure  is  also complexity  of  research  efforts  regarding  ML-based  power represented  by  smart  grid  technologies  that  are  supposed  to demand forecasting models  have  increased substantially. As power a 15 trillion market ecosystem by 2030 [4]. And all by an  example,  Kandananond  [14]  has  proposed  different itself the renewable energy field is expected to grow to 75.82 

forecasting methods like Multiple Linear Regression (MLR) billion by 2030 with an increase in demand of clean energy and Autoregressive Integrated Moving Average (ARIMA) to and  intelligent  systems.  These  patterns  explain  why  it  is forecast power consumption. On the other hand, Lü et al. [15] 

necessary  to  digitalize  energy  systems,  and  AI  has  a  game-used  a  simulation-based  approach  grounded  on  physical changing  role  in  the  processes  [5].  In  that  regard,  XAI principles  to  estimate  energy  usage.  However,  those  linear approaches,  including  one  known  as  Local  Interpretable statistical techniques neglect nonlinear relations that are clear Model-Agnostic  Explanations  (LIME),  gain  importance  not through irregular demand patterns [16]. Goudarzi et al. [17] 

only over the model transparency, but also as tools to make the used ARIMA with wide brute force algorithms, K-means and insights generated by AI, be understandable and actionable by False Nearest Neighbor energy prediction of university library the  human  decision-makers.  Incorporating  XAI  into  the data, and performance was measured using a set of metrics. 

foundation of the ML prediction pipeline, this paper proposes ML-based approaches demonstrate better performance than to move further on the level of the forecast accuracy and model traditional  physical  and  statistical  methods  because  they transparency, providing a capable framework that would not extract  special  features  from  historical  data  according  to only improve the results of the modern black-box solutions but studies [18, 19]. The industrial sector utilizes large-scale ML 

also  provide  a  basis  to  interpretable  models.  This  twofold integration to monitor essential industrial assets through early contribution  of  performance  and  explainability  directly fault detection and condition surveillance through approaches addresses the changing demand of energy analysts, operators, such  as  Long  Short-Term  Memory  (LSTM)  networks  and and policymakers who are forced to work in a more data- and Convolutional Neural Networks (CNNs), as well as dynamic more diligently complex energy environment. 

identification  models,  according  to  references  [20-23]. 

 

Businesses  use  these  methods  to  protect  against  dangerous, 1.1 Motivation 

unexplored  technology  risks  while  driving  down  production interruptions through budget-friendly upkeep methods. 

The escalating demand for energy in recent years has been Zhou  et  al.  [24]  introduced  a  hybrid  DL  model  that propelled  by  factors  such  as  industrial  growth,  economic implements  attention  mechanisms  and  CNNs  together  with expansion,  and  population  increases  across  the  globe.  As  a LSTM  networks  and  clustering  components  inside  wireless result,  critical  challenges  such  as  ensuring  energy  security, sensor networks for improved photovoltaic power generation supporting  economic  development,  and  minimizing prediction  abilities.  The  model  demonstrates  superior greenhouse gas emissions have intensified. The environmental performance compared to conventional techniques, including impact  of  fossil  fuel  dependence  has  made  the  transition  to Artificial Neural Networks (ANNs) and vanilla LSTMs, based sustainable  energy  sources  imperative.  Renewable  energy  is on  Experimental  Self-Attention  Transformer  (ESAT) increasingly recognized as a crucial, eco-friendly alternative experimental outcomes. 

to conventional energy sources. However, adding renewable Blasch et al. [25] examined public sector building energy energy to current grids raises unique challenges. The sensing usage  forecast  through  R  part  regression  trees  and  Random of  these  renewable  sources,  such  as  wind  and  solar,  is Forest  (RF)  and  Deep  Neural  Networks  (DNN),  utilizing inherently intermittent, leading to variable outputs of energy. 

variable  reduction  strategies.  The  research  study  established As such, accurate forecasts of not only energy demand but also RF as the most successful method. Specific forecasts of energy the  production  of renewable energy  are  essential  in  keeping consumption have proven to be better using DL-based models supply  and  demand  in  balance,  optimizing  production,  and than  alternative  methods  of  analysis.  Recent  advancements planning the future of the infrastructure. 

have  seen  the  application  of  DL  and  DNNs  in  energy 322
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prediction  models  [26].  For  example,  Wang  et  al.  [27] 

user confidence [18, 24-28]. 

introduced a weather classification system using a Generative The literature review delves into the diverse applications of Adversarial  Network  (GAN)  and  a  CNN-based  model  that ML and DL across various sectors, including environmental outperformed  traditional  ANN-based  models.  Similarly, science,  healthcare,  demand  forecasting,  and  energy Zhang  et  al.  [28]  utilized  CNN  models  to  forecast  solar prediction.  Although  the  review  provides  an  extensive electricity generation and daily electricity prices. 

examination of prevalent models such as MLR, ARIMA, as Comparison tables, like Table 1, showcase various methods, well as more sophisticated approaches like ANNs, GBM and including  CNN-LSTM,  ANN,  LSTM,  Support  Vector RF, it falls short in pinpointing the precise research problem Machine (SVM), and advanced ensembles combining MLR, or  gap  that  this  study  aims  to  fill.  For  example,  while  the RF,  Support  Vector  Regression  (SVR),  DNN,  and  Gradient literature  documents  the  application  of  traditional  ML 

Boosting Machines (GBM). These tables present performance techniques  such  as  ARIMA  and  K-means  in  energy metrics  such  as  Root  Mean  Square  Error  (RMSE)  or  Mean consumption  forecasting,  these  methods  often  falter  when Absolute  Percentage  Error  (MAPE),  covering  prediction confronted with the non-linear and unpredictable patterns of horizons ranging from as brief as five minutes to as long as energy  demand,  as  highlighted  by  the  studies  [14-16].  The one  week.  Notably,  none  of  these  models  has  incorporated literature  also  mentions  modern  approaches  like  CNN  and XAI techniques, which points to a significant opportunity for LSTM  networks,  which  have  demonstrated  the  potential  to future  research  to  enhance  model  interpretability  and  boost enhance predictive accuracy [24, 25]. 



Table 1. Comparison of energy forecasting techniques and outcomes Forecasting 

XAI 

Ref. 

Property Type 

Performance Metric 

Forecast Interval 


Technique 

Applied? 

Kim and Cho [29] 

Household 

CNN-LSTM 

RMSE 0.61 

Hourly 

No 

Kong et al. [30] 

Residential 

LSTM 

MAPE 0.22 

Every 30 minutes 

No 

Bourhnane et al. [31] 

Residential 

LSTM-RNN 

MAPE 0.44 

Every 30 minutes 

No 

Goudarzi et al. [17] 

Residential 

Pooling RNN 

RMSE 0.45 

Every 30 minutes 

No 

Mosavi et al. [19] 

Residential 

LSTM 

R2 0.835 

Every 5 minutes 

No 

He and He [23] 

Residential 

LSTM-ConvLSTM 

RMSE 368 KW 

Weekly 

No 

Wen et al. [32] 

Non-residential 

ANN 

RMSE 5.71 

Hourly 

No 

MLR-RF-SVR-

RMSE: MLR 206.0, RF 168.7, SVR 

Fan et al. [33] 

Non-residential 

Hourly 

No 

DNN-GBM 

136.0, DNN 175.7, GBM 136.0 

Li et al. [34] 

Non-residential 

SVM 

RMSE 1.17 

Hourly 

No 

Bertolini et al. [18] 

Non-residential 

RF 

RMSE 5.53 

Hourly 

No 

RMSE: RF 26.34, DT 19.20, SVM 

Loukatos et al. [22] 

Non-residential  RF-DT-SVM-KNN 

Hourly 

No 

16.12, KNN 17.01 

Luo et al. [20] 

Residential 

ANN-SVM-DT 

RMSE: ANN 1.68, SVM 1.65, DT 1.84 

Hourly 

No 

1 minute, 1 hour, 1 

Schwendemann et al. [21] 

Residential 

CNN-LSTM 

MSE 0.35 

No 

day, 1 week 

However, it remains unclear what specific gap in renewable important  variables,  such  as  CO2  emissions.  In  this  stage, energy  forecasting  these  advancements  are  targeting. 

statistical summaries and visualizations are used to identify the Furthermore,  the  review  points  out  that  most  advanced patterns and outliers in the data. 

models,  including  CNN,  LSTM,  and  various  ensemble techniques, do not integrate XAI methods. The lack of XAI, as noted  in  references  [17-23,  29-34],  is  recognized  as  a significant opportunity for improving model transparency and boosting user trust. Yet, the paper does not concretely outline how it plans to tackle this omission or how it will distinguish its  approach  from  prior  research.  In  conclusion,  while  the review  offers  a  thorough  discussion  of  existing  forecasting technologies,  it  lacks  a  clear  articulation  of  the  specific research  problem  or  gap  that  this  study  intends  to  address. 

Future work should specify how the incorporation of XAI and the proposed combinations of models will overcome current shortcomings in the forecasting of energy consumption. 

 

 


3. PROPOSED METHODOLOGY 

The proposed methodology outlines, shown in Figure 1, a comprehensive approach to analyzing sustainable energy data with  the  aim  of  improving  energy  consumption  forecasting. 

First,  the  company  collects  data  from  a  global  sustainable 

 

energy  database.  We  perform  extensive  exploratory  data 

 

analysis (EDA) on this dataset to characterize it better, check Figure 1. Flowchart showing the proposed methodology for for  missing  values,  and  check  the  distribution  of  some data processing and analysis 
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The data undergoes different preparation steps after analysis Global Data on Sustainable Energy, and is prepared by Tanwar to  handle  missing  values  and  normalize  data  types.  A 

[35] and published on Kaggle. The dataset shows a multeity, significant  part  of  the  methodology  constructs  an  essential multi-country  panel  of  sustainable  energy  indicators  that binary target variable that categorizes points into two groups extends  across  2000-2020.  It  constitutes  a  wide  range  of based on meeting a particular threshold for renewable energy variables necessary in the study of global energy transitions, use. Central to this methodology is the application of several including  access  to  electricity,  utilization  of  clean  cooking ML  models  to  predict  high  renewable  energy  usage.  These fuels,  installed  renewable  electricity  generation  capacity  per could  include  decision  trees,  ensemble  methods,  advanced capita, and fuel-source breakdown of electricity generation in gradient boosting, and DL models. The methods are compared fossil  fuels,  nuclear  energy,  and  renewables.  Others  include based on their predictive performance to find the best solution. 

CO2 emissions per capita, the share of low-carbon electricity, Then,  all  performance  metrics,  such  as  accuracy,  recall, the  degree of energy  intensity, primary  energy  consumption precision, and F1 score, will be calculated to have a clear view per head, and other important economic indicators such as the of the performance of each model. 

growth of gross domestic product and gross domestic product Transparent  and  interpretable  ML  models  are  possible per capita. Geographic metrics, like the population density, the because of XAI techniques, which the methodology integrates. 

territory of a country, and geographical coordinates, are also Understanding  and  trustworthiness  of  model  predictions  are implemented in the dataset, together with the indicators of the guaranteed  by  this  approach,  which  benefits  both  the international  financial  flows  focusing  on  the  clean  energy stakeholders  and  energy  policymakers.  This  proposed programs  in  the  developing  world.  These  features  of  the methodology  is,  therefore,  a  combination  of  detailed  data dataset  render  it  especially  useful  to  evaluate  the  progress analysis, advanced ML, and explainable AI that improves the made towards Sustainable Development Goal 7 (SDG 7), to prediction  of  renewable  energy  consumption.  Developing carry out cross-national comparisons and carry out temporal robust  and  interpretable  models  capable  of  facilitating  the trend  analysis,  as  well  as  to  build  ML  models  that  predict adoption  of  sustainable  energy  practices  on  a  global  scale energy  consumption  and  carbon  emissions.  Its  design  and requires a holistic approach at this level. 

breadth enable the transparency of sound statistical modeling and  policy  analysis,  particularly  last-mile  explainable  AI 3.1 Dataset overview 

approaches  to  better  interpretability  in  renewable  energy modeling. 

The publicly  available dataset used in this study is called 

 

Table 2.  Description of features in the sustainable energy dataset Feature 


Description 

Entity 


Name of the country or region for which the data is reported. 

Year 

Reporting year, ranging from 2000 to 2020. 

Access to electricity (% of population) 

Percentage of the population with access to electricity. 

Access to clean fuels for cooking (% of population) Percentage of the population primarily using clean fuels for cooking. 

Renewable-electricity-generating-capacity-per-capita Installed renewable energy capacity per person. 

Financial flows to developing countries (US$) Aid from developed countries for clean energy projects expressed in US dollars. 

Renewable energy shares in total final energy consumption (%) Percentage of renewable energy in total final energy consumption. 

Electricity from fossil fuels (TWh) 

Electricity generated from fossil fuels in terawatt-hours. 

Electricity from nuclear (TWh) 

Electricity generated from nuclear sources in terawatt-hours. 

Electricity from renewables (TWh) 

Electricity generated from renewable sources in terawatt-hours. 

Low-carbon electricity (% electricity) 

Percentage of electricity from low-carbon sources. 

Primary energy consumption per capita(kWh/person) Energy consumption per person in kilowatt-hours. 

The energy intensity level of primary energy (MJ/$2011 PPP GDP) Energy use per unit of GDP at purchasing power parity. 

Value_CO2_emissions (metric tons per capita) Carbon dioxide emissions per person in metric tons. 

Renewables (% equivalent primary energy) Equivalent primary energy from renewable sources. 

GDP growth (annual %) 

Annual GDP growth rate based on constant local currency. 

GDP per capita 

Gross domestic product per person. 

Density (P/Km2) 

Population density in persons per square kilometer. 

Land Area (Km2) 

Total land area in square kilometers. 

Latitude 

Latitude of the country’s centroid in decimal degrees. 

Longitude 

Longitude of the country’s centroid in decimal degrees. 

There is one entry layer per country, in this case, called an low-carbon  sources,  which  includes  both  nuclear  and 

"Entity", and annual data points for the years 2000 to 2020. It renewable  energy.  Additionally,  it  measures  primary  energy tracks the share of the population with access to electricity, the consumption  per  capita,  energy  usage  efficiency  relative  to percentage  dependent  on  clean  cooking  fuels,  and  installed GDP in purchasing power parity terms, and CO2 emissions per renewable  energy  capacity  per  capita,  and  it  does  so capita. Other recorded metrics include the equivalent primary meticulously. The dataset also measures the financial capital energy derived from renewable sources, annual GDP growth coming into developing countries for clean energy projects in rate, GDP per capita, population density, total land area, and U.S. dollars. In terms of energy production, the dataset tracks the  geographic  coordinates  (latitude  and  longitude)  of  each electricity  generated  from  fossil  fuels,  nuclear  power,  and country’s  centroid,  as  shown  in  Table  2.  This  structured renewable  sources,  expressed  in  terawatt-hours.  It  further overview of the dataset encapsulates the breadth and depth of details  the  share  of  renewable  energy  in  the  final  energy the  data  available  for  analysis,  facilitating  a  comprehensive consumption  and  the  percentage  of  electricity  derived  from understanding  of  global  sustainable  energy  trends  and 324
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supporting  the  evaluation  of  progress  towards  achieving database. The variable that has the highest number of missing broader environmental and developmental goals.  

records is the variable whose title is Renewables (% equivalent 

 

primary energy) with 2,137 missing values, followed by the 3.2 EDA 

variable financial flows to developing countries, as well as that of Renewable electricity per capita. Such high incompleteness The EDA conducted on the dataset provides a fundamental emphasizes high  levels  of data  unavailability  with  regard  to understanding of the key metrics related to sustainable energy important indicators connected with sustainability and energy across various countries from 2000 to 2020. Initially, summary changes. The solution to such empty values is important to the statistics offer a glimpse into the distribution of each feature robustness  and  validity  of  the  analysis  and  the  policy within the dataset, encompassing measures of central tendency recommendations that lie down the road. Continuing the EDA, and  dispersion.  The  analysis  identifies  any  missing  values Figure  3  shows  the  distribution  of  CO2  emissions  across across different columns, which is crucial for maintaining the countries.  The  chart  highlights  disparities  between  nations, integrity  of  subsequent  analyses.  Missing  values  were with  a  small  number  of  countries  producing  very  high managed  through  strategies  that  include  the  omission  of emissions  while  the  majority  maintain  lower  levels.  This incomplete records and imputation with median values, where provides  insight  into  global  emission  inequalities  and  the pertinent.  The  metric  underlying  dataset  attributes  is concentration of environmental impact. 

represented  mathematically,  for  example,  mean,  standard In further examination of the EDA, Figure 4 illustrates the deviation, expressed as: 

trend of the CO2 emissions by the leading five global smokers. 



The graphic  assists  in  breaking  down  highs  and  lows  in  the emissions  which  illuminate  the  success  or  failure  of  the 𝑛

𝑛

1

1

environmental policies and the impact that economic growth 𝜇 =

∑ 𝑥  and 𝜎 = √ ∑(𝑥



(1) 

𝑛

𝑖

𝑛

𝑖 − 𝜇)2

has on the green initiatives. Although the given dataset has a 𝑖=1

𝑖=1

vast scope of renewable energy indicators of several countries during the period between 2000 and 2020, it is necessary to where,  𝜇  and  𝜎  are  the  mean  and  standard  deviation, evaluate its completeness and representativeness. The data set respectively, and 𝑥

encompasses  extensive  socioeconomic,  environmental  and 𝑖 are the data points. 

The  correctness  and  relevance  of  the  dataset  columns  are energy-specific characteristics of almost all the countries that then verified to ensure that further analyses are performed on are  well-known  worldwide,  thus  providing  a  macro correct and comprehensive data. The year column is shown in perspective on sustainable energy trends. There may be partial bold during formatting checks, with the requirement that it is records  or  nil  values  of  some  countries  because  of  unstable an  integer,  which  is  particularly  important  for  time-series reporting  by  countries  or  limitations  on  collecting  data.  To analysis.  Figure  2  presents  the  first  ten  energy-related reduce this a number of imputation methods were employed, measures  with  the  greatest  number  of  missing  values.  The including median substitution or record deletion, depending on variable  with  the  highest  number  of  missing  records  is the situation. Nonetheless, the volume of data is sufficiently 

‘Renewables  (%  equivalent  primary  energy)’  with  2,137 

large  to  allow  trend  analysis  at  a  global  scale,  comparative missing  values,  followed  by  ‘Financial  flows  to  developing screening, as well as ML analysis due to the presence of such countries’  and  ‘Renewable  electricity  per  capita’.  Such gaps. Its infrastructure reflects regional differences and long-incompleteness highlights the challenges of data unavailability term  trends  so  that  it  is  indicative  of  renewable  energy in  sustainability  and  energy  indicators.  This  skew  indicates development worldwide, although it is important to report the that while a few countries have high emissions, most maintain results with caution on a narrower scale, including national or relatively low CO2 outputs. 

sub-regional  areas  where  the  lack  of  data  could  still  be  the Figure 2 demonstrates the first ten energy-related measures reality. 

that  have  the  greatest  amount  of  missing  values  in  the 



 

 



 

 

Figure 2.  Metrics with most missing values Figure 3.  Distribution of CO2 emissions by country 325
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Figure 4.  CO2 emissions over time by top 5 countries 3.3 Preprocessing 

standard deviation of the 𝑗𝑡ℎ feature in the training data. 

 

Although  tree-based  models  like  Decision  Tree,  RF,  or The preprocessing stage of the analysis pipeline is crucial LightGBM  do  not  objectively  need  normalization,  we  used for  preparing  the  dataset  for  subsequent  machine-learning Minmax scaling on all features to allow a uniform comparison tasks. Initially, the dataset is loaded into a panda Data Frame between all the features and the models since we want all of from a specified path. As such, this dataset includes multiple them  to  be  represented  in  the  same  way  to  make  fair data  types  with  clearly  different  preprocessing  strategies. 

comparison. Such normalization is specifically useful to those Numerical  columns  had  any  missing  values  filled  with algorithms  that  optimize  with  distance  or  gradient-based columns  meant  to  maintain  the  numerical  stability  of optimization, which include Gradient Boosting and XGBoost, calculations while keeping the distribution of columns intact. 

and results in better convergence and consistent results. 

Mathematically, this imputation can be expressed as: A bar chart as shown in Figure 5 displaying the distribution of  classes  is  generated  to  visually  check  the  balance  of  the 𝑛

1

classes  in  the  target  variable.  This  visualization  helps  in 𝜇𝑗 = ∑ 𝑥  

(2) 

capturing the skewness or balance in the target variable, which 𝑛

𝑖𝑗

𝑖=1

guides the possible strategies to be taken during model training or  how  the  data  sampling  technique  can  be  adopted  in  the where, 𝜇𝑗 is the mean of the 𝑗𝑡ℎ column, and 𝑥𝑖𝑗 indicates the process. 

𝑖𝑡ℎ data in column j. 



For categorical data, missing values are filled with the mode per column, which keeps the most relevant category in each feature.  Based  on  the  ‘Renewable  energy  share  in  the  total final energy consumption (%)’, a binary target variable is then generated  based  on  whether  the  value  is  above  a  defined threshold, in this case, 20%, turning this into a classification problem. The next step after cleaning the data, selecting the features,  and  finding  out  which  variables  is  most  useful  in predicting the target. Other selected features include access to electricity, the use of clean fuels for cooking, various metrics of  energy  production,  etc.  We  then  split  these  features  into training  and  testing  subsets,  making  sure  the  distribution  of data is representative of the average case in both subsets. The last  step  is  to  normalize  the  range  of  its  features  using  a standard scaler. Many ML algorithms work better when input data is normalised, especially algorithms that consider the size of their input data. The scaling process is defined as: 𝑥

𝑥′

𝑖𝑗 − 𝜇𝑗

 

𝑖𝑗 =



(3) 

𝜎

 

𝑗



Figure 5.  Distribution of classes in the "high renewable where, 𝑥′

energy share" label 

𝑖𝑗  is  the  scaled  value,  𝜇𝑗  and 𝜎𝑗  are  the  mean  and 326

3.4 ML models 

method  is  effective  in  reducing  bias  and  variance, especially in complex classification tasks. 

The  models  were  chosen  depending  on  their  suitability 

•  XGBoost:  The  XGBoost  model  is  extensively  tuned theory of renewable energy data. Modeling mixed data types with a maximum depth of three, learn- ing rate of 0.102, and  nonlinearity  can  easily  be  modeled  with  trees,  whereas and  484  trees  (n_estimators=484).  It  also  adjusts  the strong  results  can  be  achieved  with  ensemble  or  boosting model complexity (gamma=0.93) and minimum child algorithms such as XGBoost or LightGBM on structured data weight (min_child_weight=9.91) to control overfitting. 

and regularization, and large datasets in the real world, such as 

•  LightGBM: The LightGBM model uses 100 trees with large energy-related data sets. 

a learning rate of 0.1 and a depth of five. Known for its This analysis utilizes a suite of ML models with carefully efficiency on large datasets, LightGBM builds tree leaf-tuned  parameters  specific  to  each  model  to  optimize  the wise rather than level-wise, resulting in faster learning predictive  accuracy  for  classifying  the  share  of  renewable and better accuracy on imbalanced data sets. 

energy  consumption.  Selecting  models  and  tuning  model Each  model’s  parameters  were  selected  after  a  series  of hyperparameters  is  also  crucial,  as  the  choice  made  at  this validation  tests  to  balance  the  bias-variance  trade-off stage  governs  the  performance  of  the  models  and  the effectively. The configurations are designed to maximize the applicability of the findings within real-world systems. 

predictive performance while ensuring that the models remain The selection of the ML models employed in this research computationally feasible and interpretable. 

work  was  empirical  as  well  as  theoretical  in  terms  of  being Manual  tuning  of  the  hyperparameters  based  on  the compatible with the characteristics of renewable energy data, exploratory experiments on the training set was carried out to such  as  nonlinearity,  intermittency,  and  multivariate  effects, select  the  best  hyperparameters  of  each  model.  In  case  of among  many  others.  Tree-based  models  Tree-based  models simpler models as Decision Tree and RF, we tuned parameters, (e.g.,  Decision  Trees,  RF,  Extra  Trees)  will  treat i.e.,  max_depth,  n_estimators,  and  even  max_features  by heterogeneous  features  and  noise  well.  The  models  that  are examining  performance  values  (accuracy,  F1  score,  etc.)  on most  applicable  to  the  modeling  of  the  highly  complex  and the validation split based on the training data and performed sparse model, in particular, the imbalanced dataset, such as in this  process  with  iterations,  as  shown  in  Table  3.  In  more solar  and  wind  energy  adoption,  include  boosting  (e.g., complex  models  like  XGBoost  and  LightGBM,  the Gradient Boosting, XGBoost, LightGBM). 

randomized  search  was  used  on  a  pre-set  range  of LightGBM, specifically, is particularly effective in the case hyperparameters values, which in case of XGBoost is learning of big and skewed data sets because of its efficient leaf-wise rate, max_depth, n_estimators, gamma and min_child_weight, tree building. The resulting alignment will make sure that the and much the same these values in the case of LightGBM. The selected  models  are  fit  to  the  structural  complexity  and objective of such a process was to find a trade-off between the variability of renewable energy systems. 

complexity of the model and performance of generalization by 

•  Decision Tree Classifier: The Decision Tree model has providing robust, observable outcomes with computationally a  maximum  depth  of  three  layers.  The  depth  was controlled costs. 

chosen to avoid having the model become too complex 

 

and overfit the training data. Reducing the complexity Table 3.  Hyperparameter tuning methods and search ranges of  a  tree  helps  with  the  generalization  of  the  unseen for each ML model 

data. 



•  RF classifier: This ensemble model, based on 30 trees Tuning 

Model 


Parameters Explored 

(n_estimators=30) has a maximum depth of three and a Method 

maximum number of features used for splits equal to Decision 

max_depth:  [2-4],  criterion:  ['gini', Grid Search 

two (max_features=2). By considering multiple trees, Tree 

'entropy'] 

we are reducing variance and not overfitting ourselves n_estimators: [10, 30, 50], max_depth: [3, RF 

Grid Search 

in the dataset, which allows for robust performance in 5] 

max_depth:  [3-10],  learning_rate:  [0.01-the presence of noise. 

Randomized 

XGBoost 

0.3], n_estimators: [100-500], gamma: [0-

•  Extra Trees classifier: Similar to RF, the Extra Trees Search 

1], min_child_weight: [1-10] 

classifier is defined with 30 trees and a max depth of Randomized  max_depth:  [3-10],  learning_rate:  [0.01-five. It uses a different method for splitting nodes, using LightGBM 

Search 

0.2], n_estimators: [100-300] 

a  randomly  selected  threshold  per  feature  rather  than the optimal threshold as seen in RF, which leads to a To ensure robust evaluation, the data is split into training quick training process at the cost of some increase in and testing sets in an 80-20 ratio, and features are scaled using variance. 

a standard scaler to normalize the data distribution, which is 

•  Gradient  Boosting  Classifier:  Gradient  Boosting  is crucial  for  models  that  rely  on  distance  calculations  like  k-configured with 10 boosting stages (n_estimators=10) nearest neighbors. 

and a steep learning rate (1.0) with maximum tree depth 

 

2.  This  aggressive  learning  framework  is  designed  to 3.5 Explainable AI-LIME 

converge upon a low-error model speedily, but with the downside  of  a  low  error  ceiling  that  is  increasingly In the realm of ML, particularly in contexts requiring high-approaching  zero  as  training  proceeds,  requiring stakes  decision-making,  the  interpretability  of  model careful  management  to  avoid  overshooting  the predictions is paramount. LIME is a method also developed in minimum error. 

response to the lack of transparency of ‘black-box’ models: its 

•  AdaBoost Classifier: AdaBoost uses 50 weak learners function is to help interpret decisions made by such models, (n_estimators=50) in sequence, focusing on correcting for  example,  DNN  and  complex  ensembles.  The  core  idea the mistakes of the previous learners in the chain. This behind LIME is to approximate the local prediction behavior 327

of these models in the neighborhood of a particular prediction. 

validation  not  only  enhances  the  soundness  of  the  reported LIME creates a dataset located in the neighborhood around the statistics, but it also helps in the justification of the incidental instance to  explain by perturbing it. These samples are then implementability of the model as applied to real-world energy used  to  train  an  interpretable  model  (usually  a  linear  one), forecasting in general. This analysis can later be extended by which is less complex and more transparent than the original. 

evaluating  the generalization of models in  terms of  regional The fundamental idea is to weigh the noisy samples by how shifts or domain-shifted data. 

close  they  are  to  the  instance  of  interest  so  that  the  local In order to confirm if variances in predictive performance surrogate  model  can  be  a  good  approximation  at  that  point. 

among  the  ML  models  were  significant  or  not,  we  placed  a The weighting function is mathematically represented as: paired  t-test  on  the  best  two  models  with  the  highest comparison  accuracy:  LightGBM  and  XGBoost.  The  test 

‖𝑥 − 𝑥

contrasted the veracity of expectations per case in the test set. 

𝜔(𝑥) = exp (−

0‖2) 

(4) 

2𝜎2

The  t-statistic  came  to  0.9427  and  the  p-value  was  0.3461, meaning that the discrepancy in the classification performance where,  𝑥  represents  a  perturbed  sample,  𝑥

of the two models is not significant up to the 0.05 level. The 0  is  the  original 

instance,  and 𝜎  is  a  bandwidth  parameter  that  controls  the fact that LightGBM had the best accuracy of 97.12% and F1 

scope  of  locality.  The weights 

score of 97.43% indicates that the performance of LightGBM 

𝜔(𝑥) decay  exponentially  far 

from 

is  not  significantly  better  than  that  of  XGBoost,  which  has 𝑥0, concentrating the learning of the surrogate model on the locality around the instance. 

96.57  percent  accurate  and  96.98  percent  F1  score.  Its An  interpretable  surrogate  model  trained  on  this  data  can introduction  adds  robust  foundation  to  cross-validation  of then be used to represent the model behavior around models  much  in  the  same  way  practice  should  follow  when 𝑥0, that 

is,  which  features  contribute  to/drive  the  model  output.  For choosing the best possible models to put to use when making example, in a classification problem, LIME might show that decisions  in  real-world  energy  forecasting  problem-solving certain features made a positive or negative contribution to the endeavors,  not  to  mention  making  reference  to  performance class prediction, helping provide actionable insight as to why values as well as statistical verification thereof. 

the  model  made  that  particular  prediction.  LIME  model XGBoost  Step  has  also  performed  well,  with  an  overall success depends on how suitable the features are for use in the accuracy of 94.66%, a recall rate of 95.60%, and a precision surrogate  model  structure.  Models  select  features  regarding rate  of  94.90%.  These  figures  suggest  that  XGBoost,  like their  influence  on  prediction  outcomes  and  their  registered LightGBM, is quite adept at correctly classifying the instances importance according to model metrics. Each feature gain or and maintaining a balance between sensitivity and precision. 

loss of  influence  has  a  direct  impact on  the  linear  surrogate The  F1  score  for  XGBoost  is  approximately  95.25%, model  expressed  through  its  coefficients.  This  transparency indicating  robustness  in  model  predictions.  However,  it  is helps create more trust in those models and allows them to be slightly slower in training than LightGBM, taking about 0.158 

deployed  in  sensitive  and  higher  stake  environments.  In seconds.  AdaBoost’s  performance,  while  commendable, addition, these kinds of explanations are extremely useful for shows some drop-off, with an accuracy of 88.22% and a recall debugging  models,  ensuring  regulatory  compliance,  and of  88.02%.  The  precision  rate  of  90.68%  is  higher  than  its enabling a cycle of iterative improvements to the algorithms. 

recall,  indicating  a  tendency  towards  more  conservative classification but with higher reliability in positive predictions. 

 

The F1 score for AdaBoost stands at 89.33%, and the training 4. EXPERIMENTAL RESULTS 

time is relatively longer, about 0.245 seconds, which may be a 

 

factor  to  consider  in  larger-scale  applications.  The  Gradient The experimental evaluation of the ML models deployed in Boosting model displays lower efficacy with an accuracy of this  study  demonstrates  an  extensive  range  of  performance 84.79% and a high recall rate of 90.71%, indicating a strong across multiple metrics, namely accuracy, recall, precision, F1 

sensitivity but at the cost of precision, which is at 83.56%. This score, error rate, and training time. These metrics help us to discrepancy is reflected in an F1 score of 86.99%, pointing to understand  the  best  model  here,  considering  the  renewable a potential area for model tuning to improve precision without energy share prediction for classification. 

sacrificing recall. Remarkably, Gradient Boosting is the fastest The LightGBM is the top performer, with an accuracy of among  the  models  tested,  with  a  training  time  of  just  0.018 

around  97.40%  and  a  recall  score  of  98.29%.  This  not  only seconds. 

means  that  LightGBM  is  accurate  overall  but  also  has  the Models  like  the  Decision  Tree,  RF,  and  Extra  Trees power to detect positive-class observations. With a precision demonstrate varying degrees of performance, with accuracies rate of 97.10% along with the recall, we can be assured that ranging from 78.49% to 84.66% and recall rates from 68.46% 

whatever  prediction  we  are  making  belongs  to  a  specific to 76.77%. These models generally have higher error rates, up disease. The harmonic means between precision and recall, the to  21.51%  for  Extra  Trees,  indicating  challenges  in F1 score is also a high 97.69%. LightGBM is also fast, taking generalizing  predictions  across  the  dataset.  Their  training about  0.126  seconds  to  train,  portraying  the  virtue  of  both times vary, with Decision Tree being notably quicker at 0.012 

efficacy and efficiency. 

seconds  but  Extra  Trees  slower  at  0.155  seconds.  while In order to assess how the model of the highest accuracy, LightGBM  and  XGBoost  stand  out  in  terms  of  overall LightGBM, generalizes the training data, we performed a 5-performance,  other  models  like  AdaBoost  and  Gradient fold  cross-validation  on  the  training  data.  Cross-validation Boosting  present  valuable  characteristics  that  could  be attained an accuracy result of 96.85% +/- 0.67%, which sheds advantageous depending on specific application requirements. 

light on the model feeling stability, because of the divergent The  varying  performances  underscore  the  importance  of performance  in  terms  of  data  division.  This  small  variance model selection based on the specific metrics that align best implies  that  this  model  does  not  overfit  and  is  able  to with the project’s goals. Besides predictive performance, we generalize  to  new  information.  The  addition  of  cross-looked  at  computational  complexity  and  scalability  of  any 328

[image: Image 10]

model. The ensemble methods that use trees, such as RF and share in the total final energy consumption (%)’ with a value Extra Trees, are rather fast to train but might suffer in terms of of  0.34  has  the  highest  positive  impact  on  the  prediction, efficiency  when  dealing  with  high-dimensional  data  or significantly pushing the model towards a classification of ‘1’. 

scalability  with  large  numbers  of  trees.  Enhancements  of This is visually represented by the bar extending to the right, models  such  as  XGBoost,  Gradient  Boosting,  provide indicating  a  strong  positive  influence.  Other  features excellent accuracy with the cost of increased training time and contributing positively, though to a lesser extent, include: tuning, which could be problematic, especially when dealing 

•  ‘Latitude’  has  a  value  of  0.56,  emphasizing in real-time models. On the contrary, LightGBM tailors itself geographical  factors  possibly  linked  to  solar  energy to be highly efficient and scalable, training far more rapidly potential. 

and  requiring  significantly  less  memory,  using  histogram-

•  ‘GDP growth’ indicates an economic dimension where, based learning such that lighter trees can be trained leaf-wise. 

a 0.31 increase aligns with increased renewable energy This  renders  LightGBM  most  suitable  to  work  with  vast adoption. 

amounts of data as well as predict energy in real-time, where 

•  ‘Year’  with  a  value  of  1.00,  suggesting  temporal quick results are vital. Such considerations are very critical in progression towards more renewable energy usage. 

the  choice  of  models  that  should  be  deployed  in  operations 

•  ‘Access to clean fuels for cooking’ with a value of 0.63, rather than in experimental conditions. 

supporting the narrative that access to cleaner energy The  LIME  provides  an  insightful  interpretation  for sources correlates with higher renewable energy shares. 

individual  predictions  made  by  complex  ML  models, Conversely, features  such  as  ‘Electricity  from fossil  fuels facilitating  an  understanding  of  the  model’s  behavior  in (TWh)’ with a value of 0.00 and ‘Land Area (Km2)’ also at specific  cases.  This  detailed  interpretation  is  crucial  in 0.00 exert no discernible negative influence, as indicated by applications  where  understanding  the  rationale  behind  a their  lack  of  contribution  in  the  model’s  decision  towards prediction is as important as the prediction’s accuracy. 

classifying this instance underclass ‘1’. 

Although  the  models  had  demonstrated  their  strong The  analysis  of  this  LIME  output  not  only  validates  the predictive capabilities, it should be noted that the prediction model’s  reliance  on  logical  and  expected  indicators  of errors  could  also  be  related  to  other  factors  other  than renewable  energy  use  but  also  highlights  the  complex algorithmic  deficiencies.  These  consist  of  the  data  quality interplay  of  various  factors  that  the  model  considers  in  its problems like missing values, inconsistent reporting, and noise predictions. This transparency  aids stakeholders in verifying in  measurements,  particularly  in  cross-national  data.  In the  model’s  alignment  with  intuitive  and  empirical addition,  the  underlying  mathematical  conditions  of  the expectations,  enhancing  trust  and  facilitating  further models, i.e. stationarity or the independence of features, might refinement of the model based on insights gained from such not represent the reality of energy systems in a holistic manner. 

detailed explanations as shown in Table 4. 

Anomalies  can  also  be  imposed  by  external  factors  such  as sudden policy changes, economic shocks and extreme weather Table 4.  Summary of ML model performances situations, which are not easily learned by models using past patterns. All these components lead to residual errors and are F1 


Error  Training 

factors  to  be  put  into  consideration  with  respect  to  model Model  Accuracy Recall Precision  Score  Rate  Time (s) output interpretation and future course of improvement. 

LightGBM  97.40%  98.29%  97.10%  97.69%  2.60% 

0.126 

In the given instance (Figure 6), LIME has been applied to XGBoost  94.66%  95.60%  94.90%  95.25%  5.34% 

0.158 

elucidate the decision-making process of a model predicting AdaBoost  88.22%  88.02%  90.68%  89.33% 11.78% 

0.245 

renewable energy share based on several features. The output Gradient  84.79%  90.71%  83.56%  86.99% 15.21%  0.018 

shows  that  the  model  predicts  a  high  likelihood  (1.00 

Boosting 

probability)  that  the  renewable  energy  share  in  total  final Decision  84.66%  76.77%  94.86%  84.86% 15.34%  0.012 

Tree 

energy  consumption  is  above  a  certain  threshold,  hence RF 

82.33%  75.79%  91.18%  82.78% 17.67% 

0.088 

classifying this instance into class ‘1’. The interpretation panel Extra Trees  78.49%  68.46%  90.91%  78.10% 21.51% 

0.155 

lists the features along with their weights in influencing this particular prediction. Notably, the feature ‘Renewable energy 



 

 

Figure 6.  LIME output for an instance classified within the context of renewable energy share prediction 329

Although  the  present  research  aims  at  the  analysis  of  the technical insights that contributed to the enhancement of this performance of single ML models, in further studies it might work's  quality.  The  constructive  discussions  and  critical be  worthwhile  to  investigate  model  fusion  approaches,  i.e. 

reviews helped refine the methodology and improve the clarity ensembles and stacking, in order to integrate the capabilities of the results. 

of  various  algorithms.  These  methods  can  also  improve  the 

 

applicative  force  and  accuracy  of  the  predictions  through 
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Renewable energy installations are rising at a fast pace because societies r./uire both
emission reduction and alternative clean energy sources. Policymakers, together with
industry stakeholders, find it troublesome to use traditional energy prediction models
because these systems operate without clarity and fail to handle intricate market systems
properly. This research solves these issues through a machine learning (ML) model
prediction of renewable energy use. Then, it enhances predictions through explainable
artificial intelligence (XAI) methods to achieve better accuracy and trustworthiness. Our
analysis includes multiple ML algorithms from the ensemble category consisting of
Random Forests (RF) and Gradient Boosting in addition to advanced boosting algorithms
XGBoost and Light Gradient Boosting Machines (GBM). Local Interpretable Model-
Agnostic Explanations (LIME) reveal the decision-making procedures during predictions
while delivering understandable explanations about the model's conduct to users. The
methodology adopts a thorough model testing methodology using extensive datasets,
which include multiple variables related to renewable energy consumption, including
economic metrics and environmental aspects. Researchers obtained predictive
performance excellence with interpretability benefits from their models in predicting
renewable energy usage. The Light GBM model delivered 97.40% accuracy when
analyzing data, while the LIME process showed GDP growth and electricity access as key
determining variables. XAI integration in renewable energy forecasting presents important
progress that livers enhanced, transparent yet actionable energy predictions that build
trusted reliability for use in the industry. The study demonstrates the power of uniting ML
with XAI techniques for better comprehension of renewable energy patterns, which enables
better decisions for sustainable energy development.

1. INTRODUCTION

number of ML models are not interpretable, effectively a black
box, and the models cannot be used to detect nonlinear

The widespread adoption of renewable energy technologies
such as wind power, solar, ocean power, geothermal power,
hydroelectric power, hydrogen power, and bio-power has
received international attention because of their beneficial
environmental effects, high rate of technological development,
and consistency with long-term targets of reducing climate
effects. Some of these achievements notwithstanding, the
actual generation and consumption of renewable energy is
very difficult to predict, which poses a problem. The non-
stationary and discontinuous characteristics of the renewable
sources and the intricate interdependence on weather,
economy, and infrastructure render classical forecasting
effects, not sufficient in modeling the nonlinearities and the
dynamism of contemporary energy networks.

Causes of these complexities have been solved by machine
learning (ML) and deep learning (DL) models as they can
learn patterns to be used in large, high-dimensional datasets.
But there are two major shortcomings that still exist: a large
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relationships or changes over a time period. It is these
shortcomings that force the main scientific question of this
study to be: how can current models of renewable energy that
make predictions be improved so that they not only improve
on the accuracy of their predictions but also become more
explainable under the influence of the complications of the
market systems and nonlinear trends in the data? To overcome
this, the current study considers a hybrid system that resorts to
high-performance ensemble ML models and explainable
artificial intelligence (XAI) methods. An XAl system plays a
crucial role in the establishment of processes, methods, and
approaches that elicit comprehensible explanations of the
latest ML models [1].

XAI is fundamental to disentangling Al decision-making,
especially in the energy sector, where the implications of
automated decision automation become of paramount
importance to regulatory approval and functional trust. With
renewable energy, XAl makes it easier to comprehend or
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