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Abstract: Fermatean fuzzy set (FRFS) is very helpful in representing vague information that occurs in real world
circumstances. Their eminent characteristic of FRFS is that the degree of membership ℑℓ and degree of non-
membership γג satisfy the condition 0 ≤ ℑℓ3(x)+ℑℓ3(x) ≤ 1, so the space of vague information they can describe
is broader. This study introduces the concept of generalized parameters into the FRFS framework and proposes
a set of generalized Fermatean fuzzy average aggregation operators for the purpose of information aggregation.
Subsequently, the operators are expanded to encompass a generalized parameter based on group consensus, which
is derived from the perspectives of numerous experienced senior experts and observers. The present study offers
a multi-criteria decision-making (MCDM) methodology, which is demonstrated using a numerical example to
successfully showcase the suggested technique. In conclusion, a comparative study is undertaken to validate the
efficacy of the suggested technique in relation to existing methodologies.

Keywords: Generalized Fermatean fuzzy set; Aggregation operators; Group-based generalized parameter

1 Introduction
The process of decision-making encompasses several dimensions, including problem identification, alternative

evaluation, aim and objective consideration, uncertainty and risk management, and option determination. The ability
to effectively handle various circumstances in both personal and professional contexts is considered a vital expertise
utilized by individuals and organizations [1]. The process of decision-making is often characterized by an organized
approach, encompassing many sequential stages. These stages include the identification of a problem or opportunity,
the collection of relevant information, the generation of alternative solutions, the evaluation of available options, the
selection of a preferred choice, and the subsequent implementation and monitoring of the selected course of action.

The decision-making process can be influenced by a variety of contextual factors. The spectrum of decision-
making encompasses a variety of scenarios, ranging from individual choices such as selecting a professional trajectory
or engaging in financial investments, to intricate organizational decisions such as introducing a novel product, entering
a fresh market, or engaging in strategic planning. The process of decision-making also encompasses ethical concerns,
as the decisions made may carry moral or societal ramifications. The process of ethical decision-making entails
the assessment of the moral correctness or incorrectness of actions and their subsequent outcomes. The process of
decision-making can be carried out either individually or collectively. Within organizational settings, it is common
for teams or committees to engage in collaborative decision-making processes, which entail the incorporation of
many viewpoints and areas of expertise. The process of decision-making is characterized by its effectiveness through
iterative steps [2]. Following the implementation of a decision, it is important to engage in the process of monitoring
its consequences, collecting feedback, and then adjusting or revising the decision as deemed appropriate.

The process of making decisions is a fundamental aspect of achieving success and advancing in various domains.
It has significant importance in influencing results and establishing the trajectory of initiatives. The relevance of
this phenomenon is emphasized by the many obstacles and potential advantages that individuals and organizations
encounter in diverse fields. The field of environmental science largely relies on the process of decision-making in
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order to effectively solve urgent ecological concerns. Environmental scientists and politicians are faced with the
task of making decisions on conservation initiatives, sustainable resource management, and methods for mitigating
climate change [3]. Environmental impact assessments (EIAs) play a crucial role in informing choices on the possible
effects of development projects, hence aiding in the preservation and safeguarding of delicate ecosystems [4].

In the fields of engineering and technology, the process of decision-making plays a pivotal role in driving
the advancement of innovation and overall growth. Engineers and technologists have a pivotal role in shaping
our contemporary society through their decision-making processes on product design, technological development,
and infrastructure building. The importance of making effective risk management decisions cannot be overstated in
industries such as aircraft and nuclear power, since they play a critical role in maintaining safety and dependability [5].

In the realm of GSCM, the act of decision-making assumes a position of utmost significance, since it entails
the amalgamation of ecologically friendly practices across the entirety of the supply chain process. The primary
objective of GSCM is to mitigate the ecological consequences associated with the supply chain, while concurrently
optimizing operational effectiveness and satisfying customer requirements [6].

Fuzzy logic assumes a prominent role in the realm of decision-making, particularly in scenarios characterized by
ambiguous borders between various alternatives or states, as well as in the handling of imprecise and unclear data.
Fuzzy logic is a theoretical framework that enables the effective management of ambiguity and vagueness, hence
empowering decision-makers to arrive at conclusions that are characterized by increased nuance and flexibility.

In 1965, Zadeh [7] introduced the notion of fuzzy sets (FSs) as a means to address uncertain situations. Fuzzy
sets are capable of managing imprecise and uncertain data by giving membership grades to components inside a set,
often within the range of [0,1]. The contributions made by Zadeh in this particular field were very innovative, since
some set theoretic characteristics that were originally applicable only to crisp situations were successfully expanded
to encompass fuzzy sets. This notion has been extensively applied in several domains, as evidenced by a multitude of
research. While the membership function is a fundamental aspect of a fuzzy system, it can be difficult to accurately
characterize complicated fuzzy data. In order to address this concern, Atanassov [8] proposed the concept of the
"intuitionistic fuzzy set" (IFS), which encompasses both degrees of membership and non-membership. Over the
course of recent decades, it has been demonstrated that IFSs have exhibited efficacy in aiding scholars in managing
data that exhibits imprecision and unreliability. Pythagorean fuzzy set (PFS), an extension of the IFS, was developed
by Yager [9].The IFS and PFS were unable to adequately illustrate this occurrence. Senapati and Yager [10]
established the notion of FRFS as an extension of IFS and PFS to tackle this problem. The theory of FRFS is
well recognized for its significant relevance in many fields, owing to its comprehensive conceptual framework that
effectively addresses conflicting and erroneous data within a FRF framework.

AOs refer to mathematical functions that are employed in the process of decision-making. Their purpose is to
merge or aggregate several criteria, preferences, or pieces of information into a unified judgment or result. The
AOs play a vital role in diverse decision support systems and MCDM approaches. The process of data aggregation
is of great significance in several industries, such as business, management, social sciences, medicine, technology,
mental health, and artificial intelligence. This process plays a vital role in enabling well-informed decision-making.
Throughout history, the notion of dual consciousness has been perceived as a discrete being or a verbal number.
Nevertheless, the aggregation of the data is a complex undertaking due to the considerable amount of uncertainty
connected with it. Undoubtedly, it is apparent that individuals in positions of authority, sometimes referred to as
AOs, play a crucial and influential role in the domain of MCDM issues. A considerable body of academic study
has focused primarily on FrFSs. The consideration of AOs becomes essential in situations when numerous viable
solutions are available for a particular problem, as it aids in identifying the most advantageous choice. Considerable
scholarly study has been undertaken, revealing substantial advancements in the domain of FrFSs.

Chen et al. [11] proposed a conceptual framework for MCDM within the domain of sustainable building material
selection. Chen et al. [12] proposed a unique methodology for evaluating passenger preferences and quantifying
passenger satisfaction through the utilization of online-review analysis. Wei and Lu [13] introduced the notion of
"Pythagorean fuzzy power AOs" in their study. Wu and Wei [14] introduced the concept of "Pythagorean fuzzy
Hamacher aggregation operators" as described in their publication. Similarly, Garg et al. [15] put out the idea
of "confidence levels based Pythagorean fuzzy aggregation operators" within the framework of its application to
MCDM. Qiyas et al. [16] proposed the notion of Yager operators within the context of a picture fuzzy set environment,
and explored its potential use in emergency program selection. Senapati and Yager [17] provided the fundamental
AOs, Rani and Mishra [18] introduced the Einstein AOs, Jeevaraj presented the concept of interval-valued fuzzy
rough set [19], Garg et al. [20] proposed the notion of Yager AOs and Shahzadi et al. [21] initiated the concept of
Hamacher Interactive AOs for FRFSs. Work related to proposed work can be seen in literatures [22–24]. In their
study, Simic et al. [25] put out a proposition on the sustainable selection of routes for petroleum transportation.
The objective of this research work is to expand upon the concept of aggregating operators that rely on generalized
and group-generalized parameters for Fermatean fuzzy sets. These operators are deemed more efficient in handling
imprecise and uncertain data. Additionally, this study aims to establish a MCDM approach that is founded on the

11



aforementioned operators.
The subsequent sections of this work are structured in the following manner. Section 2 provides a concise overview

of fundamental terminologies pertaining to FRFSs, which will serve as the foundation for the subsequent analysis
conducted in this study. In Section 3, the main results concerning the generalized Fermatean fuzzy set (GFRFS)
are given. In Section 4, some generalized Fermatean fuzzy averaging operators are developed. In Section 5, some
Fermatean fuzzy operators based on group-generalized parameter are presented. In Section 6, the applications of
material selection of high speed naval craft with generalized Fermatean fuzzy average aggregation operators and
group-generalized parameter are shown. The paper is concluded in Section 7.

2 Preliminaries
This section provides a quick overview of the definitions that will be utilized throughout the remainder of the

paper.
Definition 2.1 [10] A FRFS in a finite universe 0 is of the form

M= {<ℵ,ℑℓ
M(ℵ),גγM(ℵ)>:ℵ ∈0}

where, ℑℓ
M(ℵ) : 0→ [0,1] represents the degree of membership and γM(ℵ)ג : 0→ [0,1] represent the degree of

non-membership of the element ℵ ∈0 to the set M, respectively, with the condition that

0≤ℑℓ
M(ℵ)3 γM(ℵ)3ג+ ≤ 1

and the degree of indeterminacy is given as

πM(ℵ)= 3
√

(ℑℓ
M(ℵ)3 γM(ℵ)3ג+ −ℑℓ

M(ℵ)3גγM(ℵ)3)

For each ℵ ∈0, a basic element of the form 〈ℑℓ
M(ℵ),גγM(ℵ)〉 in a FRFS M is called Fermatean fuzzy number

(FRFN). It can be shortly denoted by ð= 〈ℑℓ
M,גγM〉.

2.1 Operational Laws on Fermatean Fuzzy Numbers (FRFNs)
Definition 2.2 [17] Let ð1 = 〈ℑℓ

〈γ1ג,1 and ð2 = 〈ℑℓ
〈γ2ג,2 be FRFNs. Then

(1) ð̄1 = γ1,ℑℓג〉
1〉

(2) ð1 ∨ð2 = 〈max{ℑℓ
γ1},min{ℑℓג,1

〈{γ2ג,2
(3) ð1 ∧ð2 = 〈min{ℑℓ

γ1},max{ℑℓג,1
〈{γ2ג,2

(4) ð1 ⊕ð2 = 〈 3
√

(ℑℓ3
1 +ℑℓ3

2 −ℑℓ3
1ℑℓ3

〈γ2גγ1ג,(2
(5) ð1 ⊗ð2 = 〈ℑℓ

1ℑℓ
2, 3

√
γ3ג)

1 γ3ג+
2 γ3ג−

γג1
3
2)〉

(6) σð1 = 〈 3
√

(1− (1−ℑℓ3
1)σ),גγσ1 〉

(7) ðð1
1 = 〈ℑℓσ

1 , 3
√

(1− γ3ג−1)
1)σ)〉

Definition 2.3 [17] Assume that ð̆k = 〈ℑℓ
k,גγk〉 is the assemblage of FRFNs, and FRFWA:Λn →Λ, if

FRFW A(ð̆1, ð̆2, . . . ð̆n)=
n∑

k=1
Wkð̆k =W1ð̆1 ⊕W2ð̆2 ⊕ . . . ,Wnð̆n

where, Λn is the set of all FRFNs, and W = (W1,W2, . . . ,Wn)T is the weight vector (WV) of (ð̆1, ð̆2, . . . , ð̆n), such
that 0ÉWk É 1 and

∑n
k=1 Wk = 1. Then, the FRFWA is called the Fermatean fuzzy weighted average operator.

Definition 2.4 [17] Let ð̆k = 〈ℑℓ
k,גγk〉 be the assemblage of FRFNs,we can find FRFWG by

FRFW A(ð̆1, ð̆2, . . . ð̆n)=
〈

3

√
(1−

n∏
k=1

(1−ℑℓ3
k)Wk ),

n∏
k=1

γWkג
k

〉
Definition 2.5 [17] Assume that ð̆k = 〈ℑℓ

k,גγk〉 is the assemblage of FRFN, and FRFWG :Λn →Λ, if

FRFWG(ð̆1, ð̆2, . . . ð̆n)=
n∑

k=1
ð̆Wk

k = ð̆W1
1 ⊗ ð̆W2

2 ⊗ . . . , ð̆Wn
n

Then, the FRFWG is called the Fermatean fuzzy weighted geometric operator.
Theorem 2.6 [17] Let ð̆k = 〈ℑℓ

k,גγk〉 be the assemblage of FRFNs, we can find FRFWG by

FRFWG(ð̆1, ð̆2, . . . ð̆n)=
〈 n∏

k=1
ℑℓWk

k , 3

√
(1−

n∏
k=1

γ3ג−1)
k)Wk )

〉
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Definition 2.7 [17] Suppose ℜ̃ = 〈ℑℓ,גγ〉 is a FRFN, then a score function E of ℜ̃ is defined as

E(ℜ̃)=ℑℓ3 γ3ג−

E(ℜ̃) ∈ [−1,1]. The ranking of a FRFN is determined by its score, whereby a higher score indicates a greater
preference for the FRFN. Hence, in order to conduct a comparison of the FRFNs, it is not imperative to depend on
the score function. In order to address this issue, we propose the incorporation of an additional approach known as
the accuracy function.

Definition 2.8 Suppose ℜ̃ = 〈ℑℓ,גγ〉 is a FRFN, then an accuracy function R of ℜ̃ is defined as

R(ℜ̃)=ℑℓ3 γ3ג+

R(ℜ̃) ∈ [0,1]. The high value of accuracy degree R(ℜ̃) defines high preference of ℜ̃.

3 Fermatean Fuzzy Information under Generalized Parameter
Suppose a medical diagnostic problem in which a patient suffers from an unknown disease and presents his/her

preferences as FRFNs above the set of symptoms E = {d1,d2,d3}, where d1 stands for Rheumatoid arthritis (RA), d2
stands for Allergies and asthma (AA) and d3 Liver disease (LD). Let the FRFS Q = {(0.34,0.78)RA , (0.53,0.88)AA ,
(0.89,0.66)LD} represents the preferences of the patient. The data gathered is solely derived from the individual’s
comprehension, personal encounters, and physical well-being when recording the manifestations. In the event that the
physician fails to address the patient’s complaints in a timely manner, there is a potential for an inaccurate prognosis
and subsequent failure to achieve a complete recovery. This is due to the absence of a secondary assessment by
a junior or senior medical professional to verify the information provided by the patient. One option to enhance
the realism of the supplied technique is to incorporate a generic parameter that reflects the expert’s confidence in
the dependability of the information. This addition acknowledges the importance of considering real-life situations
and further strengthens the approach. The patient’s preferences are evaluated by a senior expert or physician,
who provides their information as h = (0.52,0.95). This information corresponds to the under FRFS generalized
parameter, denoted as QG , which consists of the following values:

QG = {(0.34,0.78)RA , (0.53,0.88)AA , (0.89,0.66)LD(0.52,0.95)}

The generalized value shown in bold is a FRFN itself, which makes sure that unclear information is shown
correctly throughout the system of knowledge representation as much as possible. The universal parameter value can
make it easier to improve systems that are already in place, which can lead to more accurate decisions that need to
be made. Without the general measure, the initial evaluation is still not clear, which suggests that the test’s validity
is not certain. So, in the information mapping system, the chance of significant changes to unknown data can only
be ruled out based on the opinion of one witness or expert by getting a second opinion from another expert (in the
form of the general parameter) when the original FRFNs are put into place. So, the generalized Fermatean fuzzy set
(GFRFS) is defined as

Definition 3.1 A GFRFS in a finite universe 0 is of the form

S= {(〈ℵ,ℑℓ
S(ℵ),גγS(ℵ)〉(ℑℓ

g,גγg)) :ℵ ∈0}

where, ℑℓ
S(ℵ) : 0→ [0,1] represents the degree of membership and γS(ℵ)ג : 0→ [0,1] represents the degree of

non-membership of the element ℵ ∈0 to the set S, respectively, with the condition that

0≤ℑℓ
S(ℵ)3 γS(ℵ)3ג+ ≤ 1

ℑℓ
g,גγg ∈ [0,1] denote the level of truth and falsehood of the GFRFS respectively, with the condition 0 ≤

ℑℓ3
g γ3ג+

g ≤ 1. Here (ℑℓ
g,גγg) is called the generalized parameter (GP) that is the FRFN itself given by some other

senior expert / observer showing a preferential evaluation.

4 Fermatean Fuzzy Average Aggregation Operator under GP
In this section we presented the GFRFWA operator, GFRFOWA operator and GFRFHA operator.
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4.1 GFRFWA Operator
Definition 4.1 Let g = (ℑℓ

g,גγg) be the be the GP for the FRFNs ðξ = (ℑℓ
ξ,גγξ), then the GFRFWA operator is

defined as

GFRFW A((s1,s2, . . . ,sn, g))= g⊗FRFWA(ð1,ð2, . . . ,ðn)

Theorem 4.2 Let ðξ = (ℑℓ
ξ,גγξ) be the collection of FRFNs and W = (W1,W2, . . . ,Wn)T is the WV of ðξ such

that Wξ ∈ [0,1] and
∑n
ξ=1 Wξ = 1. Generalized parameter is g = (ℑℓ

g,גγg), then the GFRFWA operator is defined as

GFRFW A((ð1,ð2, . . . ,ðn), g)=g⊗FRFWA(ð1,ð2, . . . ,ðn)

=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3

)
Proof. In order to demonstrate that this theorem is true, we will employ mathematical induction.
For n = 2,

GFRFW A((ð1,ð2), g)= g⊗ (W1ð1 ⊕W2ð2)

First we solve (W1ð1 ⊕W2ð2) by using the operational law of FRFS, we have

W1ð1 ⊕W2ð2 =W1(ℑℓ
γ1)⊕W2(ℑℓג,1

(γ2ג,2

=
(

3
√

1− (1−ℑℓ3
1)W1 γW1ג,

1 ⊕ 3
√

1− (1−ℑℓ3
2)W2 γW2ג,

2

)
=

(
3
√

1− (1−ℑℓ3
1)W1 .(1−ℑℓ3

2)W2 γW1ג,
1 γW2ג.

2

)
Now,

g⊗ (W1ð1 ⊕W2ð2)= (ℑℓ
g,גγg)⊗

(
3
√

1− (1−ℑℓ3
1)W1 .(1−ℑℓ3

2)W2 γW1ג,
1 γW2ג.

2

)
=

(
ℑℓ

g.
3
√

1− (1−ℑℓ3
1)W1 .(1−ℑℓ3

2)W2 , 3
√

3(γgג) + γW1ג)
1 γW2ג.

2 )3 − γW1ג).3(γgג)
1 γW2ג.

2 )3
)

=
(
ℑℓ

g.
3
√

1− (1−ℑℓ3
1)W1 .(1−ℑℓ3

2)W2 , 3
√

3(γgג) + (1− γW1ג).(3(γgג)
1 γW2ג)3(

2 )3
)

=
(
ℑℓ

g. 3

√√√√1−
2∏
ξ=1

(1−ℑℓ3
ξ)Wξ , 3

3(γgג)√√√√ + (1− .(3(γgג)
2∏
ξ=1

γWξג)

ξ
)3

)
We proved for n = 2.
Assuming the n = k result is correct, this means

GFRFW A((ð1,ð2, . . . ,ðn), g)= g⊗FRFWA(ð1,ð2, . . . ,ðn)

=
(
ℑℓ

g. 3

√√√√1−
k∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
k∏
ξ=1

γWξג)

ξ
)3

)
Now we will prove for n = k+1,

GFRFW A((ð1,ð2, . . . ,ðk,ðk+1), g)= g⊗ (W1ð1 ⊕ . . . ,⊕Wkðk ⊕Wk+1ðk+1)

=
(
ℑℓ

g. 3

√√√√1− (1− (ℑℓk+1)3)Wk+1
k∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

3(γgג)√√√√ + (1− 3(Wk+1(γk+1ג))(3(γgג)
k∏
ξ=1

γWξג)

ξ
)3

)
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=
(
ℑℓ

g. 3

√√√√1−
k+1∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

3(γgג)√√√√ + (1− (3(γgג)
k+1∏
ξ=1

γWξג)

ξ
)3

)
This result holds when n = k+1. Consequently, the result is valid for any number under a GP.
Theorem 4.3 Aggregated value obtained by GFRFWA operator is also a FRFN.
Proof. For every ξ= 1,2, ...,n, we have 0≤ℑℓ

ξ, γξג ≤ 1 and 0≤ℑℓ3
ξ γ3ג+

ξ ≤ 1.⇒ 0≤ 1−ℑℓ3
ξ ≤ 1. Therefore,

0≤
n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ 10≤ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ 1 for 0≤ℑℓ

g ≤ 1.

Also, for 0≤ γgג ≤ 1, one can write, 0≤ 3

√
3(γgג) + (1− (3(γgג)

n∏
ξ=1

γWξג)

ξ
)3 ≤ 1.

Now,

=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ

)3
+

(
3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3

)3

= (ℑℓ
g)3

(
1−

n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ

)
+

(
3(γgג) + (1− (3(γgג)

n∏
ξ=1

γWξג)

ξ
)3

)
= ((ℑℓ

g)3 + +(3(γgג)
n∏
ξ=1

γWξג)

ξ
)3 − (ℑℓ

g)3
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ − 3(γgג)

n∏
ξ=1

γWξג)

ξ
)3

≤ ((ℑℓ
g)3 + +(3(γgג)

n∏
ξ=1

γWξג)

ξ
)3 − (ℑℓ

g)3
n∏
ξ=1

γWξג)

ξ
)3 − 3(γgג)

n∏
ξ=1

γWξג)

ξ
)3

as γ3ג
ξ ≤ 1−ℑℓ3

ξ

≤ ((ℑℓ
g)3 + +(3(γgג)

n∏
ξ=1

γWξג)

ξ
)3 − ((ℑℓ

g)3 + (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3

≤ ((ℑℓ
g)3 + (3(γgג)

(
1−

n∏
ξ=1

γWξג)

ξ
)3

)
+

n∏
ξ=1

γWξג)

ξ
)3

≤ 1−
n∏
ξ=1

γWξג)

ξ
)3 +

n∏
ξ=1

γWξג)

ξ
)3 ≤ 1

Therefore the GFRFWA operator’s aggregated value is q-ROPN.
Example 4.4 Let g = (0.60,0.80) be the GP of four FRFNs. ð1 = (0.34,0.78), ð2 = (0.53,0.88), ð3 = (0.89,0.66)

and ð4 = (0.52,0.95) with associated WV W = (0.3,0.1,0.4,0.2), here q = 3, then

ℑℓ
g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ = 0.449745

Also

3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3 = 0.901715

By Theorem 3.2, we have

GFRFW A((ð1,ð2,ð3,ð4), g)= g⊗FRFWA(ð1,ð2, . . . ,ðn)

15



=
(
ℑℓ

g. 3

√√√√1−
k∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
k∏
ξ=1

γWξג)

ξ
)3

)
= (0.449745,0.901715)

Proposition 4.5 Let ðξ = (ℑℓ
ξ,גγξ) be the collection of FRFNs and W = (W1,W2, . . . ,Wn)T is the WV of ðξ

such that Wξ ∈ [0,1] and
∑n
ξ=1 W1 = 1. GP is g = (ℑℓ

g,גγg), the following properties are available in the GFRFWA
operator:

1. (Idempotency) if ðξ = ð ∀i, then

GFRFW A((ð1,ð2, . . . ,ðn), g)= g⊗ð

2. (Boundary condition) if ð−
ξ
= (ℑℓmin

g⊗ðξ ג,
γmax

g⊗ðξ ) and ð+
ξ
= (ℑℓmax

g⊗ðξ ג,
γmin

g⊗ðξ ), then for every Wξ,

ð−ξ ≤GFRFW A((ð1,ð2, . . . ,ðn), g)≤ ð+ξ
3. (Monotonicity) Let ð∗

ξ
= (ℑℓ∗

ξ γ∗ξג, ) be a collection of FRFNs such that ℑℓ
ξ ≤ℑℓ∗

ξ and γξג ≤ γ∗ξג for all i, then
for every Wξ,

GFRFW A((ð1,ð2, . . . ,ðn), g)≤GFRFW A((ð∗1 ,ð∗2 , . . . ,ð∗n), g)

4. (Commutativity) Let ðξ = (ℑℓ
ξ,גγξ) and ð̈ξ = ( ¨ℑℓ

ξ, (γξג¨ be two collection of n FRFNs such that ð̈ξ is any
permutation of ðξ, then

GFRFW A((ð1,ð2, . . . ,ðn), g)=GFRFW A((ð̈1, ð̈2, . . . , , ð̈n), g)

Proof. 1. if ðξ = ð ∀i, then by GFRFWA operator,

GFRFW A((ð1,ð2, . . . ,ðn), g)=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3

)

=
(
ℑℓ

g.
3
√

1− (1− (ℑℓ)3)
∑n
ξ=1 Wξ , 3

√
3(γgג) + (1− (3(γgג)

(
γג

∑n
ξ=1 Wξ

)3)
=

(
ℑℓ

g. 3
√

1− (1− (ℑℓ)3), 3
√

3(γgג) + (1− 3(γג)(3(γgג)
)

=
(
ℑℓ

g.ℑℓ, 3
√

3(γgג) γ3ג+ − 3(γג)3(γgג)
)

= g⊗ð

2. Let ð+
ξ
= (ℑℓmax

g⊗ðξ ג,
γmin

g⊗ðξ ) and ð−
ξ
= (ℑℓmin

g⊗ðξ ג,
γmax

g⊗ðξ ) whereℑℓmin
g⊗ðξ =ℑℓ

g(minℑℓ
ξ), ℑℓmax

g⊗ðξ =ℑℓ
g(maxℑℓ

ξ),

ℑℓmin
g⊗ðξ = 3

√
γ3ג

g + γ3ג−1)
g)(min(גγξ))3, and ℑℓmax

g⊗ðξ = 3
√
γ3ג

g + γ3ג−1)
g)(max(גγξ))3 for all i, it is clearly that

min(ℑℓ
ξ)≤ℑℓ

ξ ≤ max(ℑℓ
ξ)⇒ max(1−ℑℓ3

ξ)≤ (1−ℑℓ3
ξ)≤ min(1−ℑℓ3

ξ), for each W ,

⇒
n∏
ξ=1

(1−max(ℑℓ
ξ)3)Wξ ≤

n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤

n∏
ξ=1

(1−min(ℑℓ
ξ)3)Wξ

⇒ (1−max(ℑℓ
ξ)3)

∑n
ξ=1 Wξ ≤

n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ (1−min(ℑℓ

ξ)3)
∑n
ξ=1 Wξ

⇒ 1− ((1−min(ℑℓ
ξ)3))≤

n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ 1− ((1−max(ℑℓ

ξ)3))

⇒ 3
√

1− ((1−min(ℑℓ
ξ)3))≤ 3

√√√√ n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ 3

√
1− ((1−max(ℑℓ

ξ)3))

⇒ min(ℑℓ
ξ)≤ 3

√√√√ n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ max(ℑℓ

ξ)

As we know, 0≤ℑℓ
g ≤ 1, we can write
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ℑℓ
g.min(ℑℓ

ξ)≤ℑℓ
g. 3

√√√√ n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ℑℓ

g.max(ℑℓ
ξ)ℑℓmin

g⊗ðξ ≤ℑℓ
g. 3

√√√√ n∏
ξ=1

(1−ℑℓ3
ξ)Wξ ≤ℑℓmax

g⊗ðξ

Furthermore, min(גγξ) ≤ γξג ≤ max(גγξ) ⇐⇒ (min(גγξ))3 ≤
n∏
ξ=1

γWξג)

ξ
)3 ≤ (max(גγξ))3. Also for 0 ≤ γgג ≤ 1,

we can write

=⇒ γ3ג−1)
g)(min(גγξ))3 ≤ γ3ג−1)

g)
n∏
ξ=1

γWξג)

ξ
)3 ≤ γ3ג−1)

g)(max(גγξ))3

=⇒ γ3ג
g + γ3ג−1)

g)(min(גγξ))3 ≤ γ3ג
g + γ3ג−1)

g)
n∏
ξ=1

γWξג)

ξ
)3 ≤ γ3ג

g + γ3ג−1)
g)(max(גγξ))3

=⇒ 3
√
γ3ג

g + γ3ג−1)
g)(min(גγξ))3 ≤ 3

γ3ג√√√√
g + γ3ג−1)

g)
n∏
ξ=1

γWξג)

ξ
)3 ≤ 3

√
γ3ג

g + γ3ג−1)
g)(max(גγξ))3

=⇒ γmaxג
g⊗ðξ ≤ 3

γ3ג√√√√
g + γ3ג−1)

g)
n∏
ξ=1

γWξג)

ξ
)3 ≤ γminג

g⊗ðξ

GFRFW A((ð1,ð2, . . . ,ðn), g) = ð = (ℑℓ
g⊗ðξ γg⊗ðξג, ), then we have ℑℓmin

g⊗ðξ ≤ ℑℓ
g⊗ðξ ≤ ℑℓmax

g⊗ðξ and γminג
g⊗ðξ ≤

γg⊗ðξג ≤ γmaxג
g⊗ðξ . Therefore, by score function, we write

ð−ξ ≤GFRFW A((ð1,ð2, . . . ,ðn), g))≤ ð+ξ
Proposition 4.6 If the senior expert’s preference for the evaluated object is viewed to be g = (1,0), then the

GFRFWA operator will be reduced in FRFWA operator.
Proof. If we take g = (1,0) as given then by Theorem 3.2, we have

GFRFW A((ð1,ð2, . . . ,ðn), g)=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3

)

=
(

3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

√√√√ n∏
ξ=1

γWξג)

ξ
)3

)

=
(

3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

n∏
ξ=1

γWξג)

ξ
)3

)
= FRFWA(ð1,ð2, . . . ,ðn).

Proposition 4.7 If the senior expert’s preference for the evaluated object is viewed to be g = (0,1), then the
GFRFWA operator will give the value (0,1).

Proof. If we take g = (0,1) as given then by Theorem 3.2, we have

GFRFW A((ð1,ð2, . . . ,ðn), g)=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

ξ
)3

)

=
(
0, 3

√√√√1+ (1−1)
n∏
ξ=1

γWξג)

ξ
)3

)
= (0,1).

4.2 GFRFOWA Operator
Definition 4.8 Let g = (ℑℓ

g,גγg) be the be the GP for the FRFNs ðξ = (ℑℓ
ξ,גγξ) , then the GFRFOWA operator

is described as
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GFRFW A((ð1,ð2, . . . ,ðn, g))= g⊗FRFOWA(ð1,ð2, . . . ,ðn)

Theorem 4.9 Let ðξ = (ℑℓ
ξ,גγξ) be the collection of FRFNs and W = (W1,W2, . . . ,Wn)T is the WV of ðξ such

that Wξ ∈ [0,1] and
∑n
ξ=1 Wξ = 1. GP is g = (ℑℓ

g,גγg), then the GFRFOWA operator is described as

GFRFW A((ð1,ð2, . . . ,ðn), g)= g⊗FRFOWA(ð1,ð2, . . . ,ðn)

=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
σ(i))3)Wξ ,

3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

σ(i))
3
)

(σ(1),σ(2), . . . ,σ(n)) is a permutation of (1,2, . . . ,n), such that ðσ(i−1) ≥ ðσ(i) for any i.
Proof. The proof can be done as Theorem 3.2.
Example 4.10 Let g = (0.6,0.8) be the GP of four Fermatean fuzzy numbers. ð1 = (0.34,0.78), ð2 = (0.53,0.88),

ð3 = (0.89,0.66) and ð4 = (0.52,0.95) with associated WV W = (0.3,0.1,0.4,0.2), then firstly

E (ð1)=−0.4352

E (ð2)= 0.5326

E (ð3)= 0.4175

E (ð4)= 0.7168

On the behalf of score functions, ðσ(1) = ð3,ðσ(2) = ð1,ðσ(3) = ð2 and ðσ(4) = ð4

ℑℓ
g. 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
σ(i))3)Wξ = 0.431465

Also

3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג)

σ(i))
3 = 0.917045

By Theorem 3.9, we have

GFRFOW A((ð1,ð2,ð3,ð4), g)=g⊗FRFOWA(ð1,ð2, . . . ,ðn)

=
(
ℑℓ

g. 3

√√√√1−
k∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

3(γgג)√√√√ + (1− (3(γgג)
k∏
ξ=1

γWξג)

ξ
)3

)
= (0.431465,0.917045)

Proposition 4.11 Let ðξ = (ℑℓ
ξ,גγξ) be the collection of FRFNs and W = (W1,W2, . . . ,Wn)T is the WV of ðξ

such that Wξ ∈ [0,1] and
∑n
ξ=1 Wξ = 1. GP is g = (ℑℓ

g,גγg), the following properties are available in the GFRFOWA
operator:

1. (Idempotency) if ðξ = ð ∀i, then

GFRFOW A((ð1,ð2, . . . ,ðn), g)= g⊗ð

2. (Boundary condition) if ð−
ξ
= (ℑℓmin

g⊗ðξ ג,
γmax

g⊗ðξ ) and ð+
ξ
= (ℑℓmax

g⊗ðξ ג,
γmin

g⊗ðξ ), then for every Wξ,

ð−ξ ≤GFRFOW A((ð1,ð2, . . . ,ðn), g)≤ ð+ξ

3. (Monotonicity) Let ð∗
ξ
= (ℑℓ∗

ξ γ∗ξג, ) be a collection of FRFNs such that ℑℓ
ξ ≤ℑℓ∗

ξ and γξג ≤ γ∗ξג for all i, then
for every Wξ,
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GFRFOW A((ð1,ð2, . . . , ,ðn), g)≤GFRFOW A((ð∗1 ,ð∗2 , . . . ,ð∗n), g)

4. (Commutativity) Let ðξ = (ℑℓ
ξ,גγξ) and ð̈ξ = ( ¨ℑℓ

ξ, (γξג¨ be two collection of n FRFNs such that ð̈ξ is any
permutation of ðξ, then

GFRFOW A((ð1,ð2, . . . ,ðn), g)=GFRFOW A((ð̈1, ð̈2, . . . , ð̈n), g)

5. If the senior expert considers g = (1,0) to be his or her preference for the evaluated object, the GFRFOWA
operator will be replaced by the FRFOWA operator.

6. If the preference of the senior expert for the evaluated object is g = (0,1), then the GFRFOWA operator will
return the value (0,1).

Proof. Here we leave proof.

4.3 GFRFHA Operator
Definition 4.12 Let g = (ℑℓ

g,גγg) be the be the GP for the FRFNs ðξ = (ℑℓ
ξ,גγξ) , then the GFRFHA operator

is described as

GFRFHA((ð1,ð2, . . . ,ðn, g))= g⊗FRFHA(ð1,ð2, . . . ,ðn)

Theorem 4.13 Let ðξ = (ℑℓ
ξ,גγξ)(ξ= 1,2, . . . ,n) be the collection of FRFNs and W = (W1,W2, . . . ,Wn)T is the

WV of ðξ such that Wξ ∈ [0,1] and
∑n
ξ=1 Wξ = 1. GP is g = (ℑℓ

g,גγg) and the standard WV is d= (d1,d2, . . . ,dn)T

such that dξ ∈ [0,1] and
∑n
ξ=1dξ = 1. then the GFRFHA operator is defined as

GFRFHA((ð1,ð2, . . . ,ðn), g)=g⊗FRFHA(ð1,ð2, . . . ,ðn)

=
(
ℑℓ

g. 3

√√√√1−
n∏
ξ=1

(1− (ℑ̆ℓ
σ(i))3)Wξ ,

3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג̆)

σ(i))
3
)

where, ð̆ξ = ndξðξ, n is the number of FRFNs and dξ standard WV of ðξ and (σ(1),σ(2), . . . ,σ(n)) is a permutation
of (1,2, . . . ,n), such that ð̆σ(i−1) ≥ ð̆σ(i) for any i.

Proof. The proof can be done same as Theorem 3.2.
Example 4.14 Let g = (0.6,0.3) be the GP of four Fermatean fuzzy numbers. ð1 = (0.79,0.36), ð2 = (0.37,0.61)

and ð3 = (0.61,0.72) with associated WV W = (0.5,0.3,0.2), here q = 3. Standard WV will be d = (0.6,0.2,0.2)
first we find ð̆ξ = ndξðξ for each ðξ, then we find score functions of each ð̆ξ.

∂̆1 = (0.890261,0.158981)

∂̆1 = (0.313146,0.743358)

∂̆1 = (0.523093,0.821107)

The score function will be,

E
(
∂̆1

)= 0.701571

E
(
∂̆2

)=−0.380058

E
(
∂̆3

)=−0.410471

On the behalf of score functions, ð̌σ(1) = ð̆1, ð̆σ(2) = ð̆3 and ðσ(3) = ð̆2

ℑℓ
g. 3

√√√√1−
n∏
ξ=1

(1− (ℑ̆ℓ
σ(i))3)Wξ = 0.421921

Also

3

3(γgג)√√√√ + (1− (3(γgג)
n∏
ξ=1

γWξג̆)

σ(i))
3 = 0.523227

19



By Theorem 3.13, we have

GFRFOW A((ð1,ð2,ð3), g))=
(
ℑℓ

g. 3

√√√√1−
k∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ , 3

3(γgג)√√√√ + (1− (3(γgג)
k∏
ξ=1

γWξג)

ξ
)3

)
= (0.421921,0.523227)

5 Fermatean Fuzzy Average AOs Based on Group-Generalized Parameter
This entire section is devoted to enlarging collaborators beyond AOs by incorporating the perspectives of multiple

observers/experts on the original data in order to better incorporate the diverse preferences of decision-makers. This
can be accomplished by providing GGFRFWA, GGFRFOWA, and GGFRFHA operators.

5.1 GGFRFWA Operator
Definition 5.1 To validate the FRF details, let q be the number of experts / observers. If gz = (ℑℓ

gz γgzג, ) be the
experts/observers for the FRFNs ðξ = (ℑℓ

ξ,גγξ) , then the GGFRFWA operator is described as

GGFRFW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFWA(ð1,ð2, . . . ,ðn)

Theorem 5.2 To validate the FRF details, let q be the number of experts / observers. If gz = (ℑℓ
gz γgzג, ) be the

experts/observers for the FRFNs ðξ = (ℑℓ
ξ,גγξ). W ′ = (W ′

1 ,W ′
2 , . . . , ,W ′

q )T and W = (W1,W2, . . . ,Wn)T are the WVs
of experts/observers and ðξ respectively. W ′

ξ
∈ [0,1] ,

∑3
ξ=1 W ′

ξ
= 1, Wξ ∈ [0,1] and

∑n
ξ=1 Wξ = 1, then the GGFRFWA

operator is described as

GGFRFW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFWA(ð1,ð2, . . . ,ðn)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z . 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

√√√√ 3∏
z=1

(
γWג ′

z
gz

)3 +
n∏
ξ=1

(
γWξג

ξ

)3 −
3∏

z=1

(
γWג ′

z
gz

)3.
n∏
ξ=1

(
γWξג

ξ

)3
)

Proof. We use mathematical induction to prove this theorem
For n = 2

GGFRFW A((ð1,ð2), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFWA(ð1,ð2)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z ,
n∏

k=1
γWג ′

z
gz

)
⊗ (W1ð1 ⊕W2ð2)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z ,
n∏

k=1
γWג ′

z
gz

)
⊗

(
3
√

1− (1−ℑℓ3
1)W1 .(1−ℑℓ3

2)W2 γW1ג,
1 γW2ג.

2

)
=

(
3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z .
3
√

1− (1−ℑℓ3
1)W1 .(1−ℑℓ3

2)W2 ,

3

√
n∏

k=1
γWג) ′

z
gz )3 + γW1ג)

1 γW2ג.
2 )3 −

n∏
k=1

γWג) ′
z

gz γW1ג).3(
1 γW2ג.

2 )3
)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z . 3

√√√√1−
2∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

√√√√ 3∏
z=1

(
γWג ′

z
gz

)3 +
2∏
ξ=1

(
γWξג

ξ

)3 −
3∏

z=1

(
γWג ′

z
gz

)3.
2∏
ξ=1

(
γWξג

ξ

)3
)

We proved for n = 2.
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Assume that result for n = k is true , we have

GGFRFW A((ð1,ð2, . . . ,ðk), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFWA(ð1,ð2, . . . ,ðk)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z . 3

√√√√1−
k∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

√√√√ 3∏
z=1

(
γWג ′

z
gz

)3 +
k∏
ξ=1

(
γWξג

ξ

)3 −
3∏

z=1

(
γWג ′

z
gz

)3.
k∏
ξ=1

(
γWξג

ξ

)3
)

Now we will prove for n = k+1,

GGFRFW A((ð1,ð2, . . . ,ðk+1), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFWA(ð1,ð2, . . . ,ðk+1)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z . 3

√√√√1−
k+1∏
ξ=1

(1− (ℑℓ
ξ)3)Wξ ,

3

√√√√ 3∏
z=1

(
γWג ′

z
gz

)3 +
k+1∏
ξ=1

(
γWξג

ξ

)3 −
3∏

z=1

(
γWג ′

z
gz

)3.
k+1∏
ξ=1

(
γWξג

ξ

)3
)

Result holds for n = k+1. In this way we completed proof.
Example 5.3 To validate the FRF details, let gz = {g1, g2, g3} be the set of experts / observers with WV W ′ =

{0.5,0.3,0.2}, where g1 = (0.8,0.2), g2 = (0.6,0.8), and g3 = (0.9,0.5). Here we have four FRFNs. ð1 = (0.89,0.56),
ð2 = (0.43,0.67), ð3 = (0.78,0.44) and ð4 = (0.98,0.32) with WV W = (0.4,0.2,0.3,0.1), here q = 3, then
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By Theorem 4.2, we have

GGFRFW A((ð1,ð2,ð3,ð4), (g1, g2, g3))= FRFWA(g1, g2, g3)⊗FRFWA(ð1,ð2,ð3,ð4)

=
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= (0.67068,0.559272)

Proposition 5.4 Let ðξ = (ℑℓ
ξ,גγξ) be the collection of FRFNs, there are q experts/observers to evaluate the FRF

information. If gz = (ℑℓ
gz γgzג, ) be the experts/observers for the FRFNs ðξ, the following properties are available

in the GGFRFWA operator:
1. (Idempotency) if ðξ = ð and gz = g, for all i and z then

GGFRFW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= g⊗ð

2. (Monotonicity) Let ð∗
ξ
= (ℑℓ∗

ξ γ∗ξג, ) be a collection of FRFNs such that ℑℓ
ξ ≤ℑℓ∗

ξ and γξג ≤ γ∗ξג for all i, then

GGFRFW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))≤GGFRFW A((ð∗1 ,ð∗2 , . . . ,ð∗n), (g1, g2, . . . , gq))

3. (Commutativity) Let ðξ = (ℑℓ
ξ,גγξ) and ð̈ξ = ( ¨ℑℓ

ξ, (γξג¨ be two collection of n FRFNs such that ð̈ξ is any
permutation of ðξ, then
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GGFRFW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))=GGFRFW A((ð̈1, ð̈2, . . . , ð̈n), (g1, g2, . . . , gq))

4. If the senior expert’s preference for the evaluated object is viewed to be g = (1,0) for all z, then the GGFRFWA
operator will be reduced in FRFWA operator.

5. If the senior expert’s preference for the evaluated object is viewed to be g = (0,1) for all z, then the GGFRFWA
operator will give the value (0,1).

Proof. Here we leave proof.

5.2 GGFRFOWA Operator
Definition 5.5 To validate the FRF details, let q be the number of experts / observers. If gz = (ℑℓ

gz γgzג, ) be the
experts/observers for the FRFNs ðξ = (ℑℓ

ξ,גγξ), then the GGFRFOWA operator is described as

GGFRFOW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFOWA(ð1,ð2, . . . ,ðn)

Theorem 5.6 To validate the FRF details, let q be the number of experts / observers. If gz = (ℑℓ
gz γgzג, ) be

the experts/observers for the FRFNs ðξ = (ℑℓ
ξ,גγξ). W ′ = (W ′

1 ,W ′
2 , . . . , ,W ′

q )T and W = (W1,W2, . . . ,Wn)T are the
WVs of experts/observers and ðξ respectively. W ′

ξ
∈ [0,1],

∑3
ξ=1 W ′

ξ
= 1, Wξ ∈ [0,1] and

∑n
ξ=1 Wξ = 1, then the

GGFRFOWA operator is described as

GGFRFW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFOWA(ð1,ð2, . . . ,ðn)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z . 3

√√√√1−
n∏
ξ=1

(1− (ℑℓ
σ(i))3)Wξ ,

3

√√√√ 3∏
z=1

(
γWג ′

z
gz

)3 +
n∏
ξ=1

(
γWξג

σ(i)

)3 −
3∏

z=1

(
γWג ′

z
gz

)3.
n∏
ξ=1

(
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)

(σ(1),σ(2), . . . ,σ(n)) is a permutation of (1,2, . . . ,n), such that ðσ(i−1) ≥ ðσ(i) for any i.
Proof. The proof is same as Theorem 4.2.
Example 5.7 To validate the FRF details, let gz = {g1, g2, g3} be the set of experts / observers with WV W ′ =

{0.5,0.3,0.2}, where g1 = (0.8,0.2), g2 = (0.6,0.8), and g3 = (0.9,0.5). Here we have four FRFNs. ð1 = (0.89,0.56),
ð2 = (0.43,0.67), ð3 = (0.78,0.44) and ð4 = (0.98,0.32) with associated WV W = (0.4,0.2,0.3,0.1). Here q = 3,
first we find score functions of all ðξ.

E(ð1)= 0.529353

E(ð2)=−0.221256

E(ð3)= 0.389368

E(ð4)= 0.908424

On the behalf of score functions, ðσ(1) = ð4,ðσ(2) = ð1,ðσ(3) = ð3 and ðσ(4) = ð2 then
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)3 = 0.494345

By Theorem 4.6, we have
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GGFRFOW A((ð1,ð2,ð3,ð4), (g1, g2, g3))= FRFWA(g1, g2, g3)⊗FRFOWA(ð1,ð2,ð3,ð4)

=
(
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= (0.738374,0.494345)

Proposition 5.8 Let ðξ = (ℑℓ
ξ,גγξ) be the collection of FRFNs, there are q experts/observers to certify the FRF

information. If gz = (ℑℓ
gz γgzג, ) (ξ= 1,2, . . . , q) be the experts/observers for the FRFNs ðξ, the following properties

are available in the GGFRFOWA operator:
1. (Idempotency) if ðξ = ð and gz = g, for all i and z then

GGFRFOW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= g⊗ð

2. (Monotonicity) Let ð∗
ξ
= (ℑℓ∗

ξ γ∗ξג, ) be the collection of FRFNs such that ℑℓ
ξ ≤ ℑℓ∗

ξ and γξג ≤ γ∗ξג for all i,
then

GGFRFOW A((ð1,ð2, . . . , ,ðn), (g1, g2, . . . , gq))≤GGFRFOW A((ð∗1 ,ð∗2 , . . . ,ð∗n), (g1, g2, . . . , gq))

3. (Commutativity) Let ðξ = (ℑℓ
ξ,גγξ) and ð̈ξ = ( ¨ℑℓ

ξ, (γξג¨ be two collection of n FRFNs such that ð̈ξ is any
permutation of ðξ, then

GGFRFOW A((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))=GGFRFOW A((ð̈1, ð̈2, . . . , ð̈n), (g1, g2, . . . , gq))

4. If the senior expert’s preference for the evaluated object is viewed to be g = (1,0) for all z, then the GGFRFOWA
operator will be reduced in FRFOWA operator.

5. If the senior expert’s preference for the evaluated object is viewed to be g = (0,1) for all z, then the GGFRFOWA
operator will give the value (0,1).

Proof. Here we leave proof.

5.3 GGFRFHA Operator
Definition 5.9 To validate the FRF details, let q be the number of experts / observers. If gz = (ℑℓ

gz γgzג, ) be the
experts/observers for the FRFNs ðξ = (ℑℓ

ξ,גγξ), then the GGFRFHA operator is described as

GGFRFHA((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFHA(ð1,ð2, . . . ,ðn)

Theorem 5.10 To validate the FRF details, let q be the number of experts / observers. If gz = (ℑℓ
gz γgzג, ) be the

experts/observers for the FRFNs ðξ = (ℑℓ
ξ,גγξ). W ′ = (W ′

1 ,W ′
2 , . . . , ,W ′

q )T and W = (W1,W2, . . . ,Wn)T are the WVs
of experts/observers and ðξ respectively. W ′

ξ
∈ [0,1] ,

∑3
ξ=1 W ′

ξ
= 1, Wξ ∈ [0,1] and

∑n
ξ=1 Wξ = 1, then the GGFRFHA

operator is described as

GGFRFHA((ð1,ð2, . . . ,ðn), (g1, g2, . . . , gq))= FRFWA(g1, g2, . . . , gq)⊗FRFOHA(ð1,ð2, . . . ,ðn)

=
(

3

√√√√1−
3∏

z=1
(1− (ℑℓ

gz )3)W
′

z . 3

√√√√1−
n∏
ξ=1

(1− (ℑ̆ℓ
σ(i))3)Wξ ,

3

√√√√ 3∏
z=1

(
γWג ′

z
gz

)3 +
n∏
ξ=1

(
γWξג̆

σ(i)
)3 −

3∏
z=1

(
γWג ′

z
gz

)3.
n∏
ξ=1

(
γWξג̆

σ(i)
)3

)
where, ð̆ξ = ndξðξ, n is the number of FRFNs and dξ standard WV of ðξ and (σ(1),σ(2), . . . ,σ(n)) is a permutation
of (1,2, . . . ,n), such that ð̆σ(i−1) ≥ ð̆σ(i) for any i.

Proof. Proof is same as Theorem 4.2.
Example 5.11 To validate the FRF details, let gz = {g1, g2, g3} be the set of experts / observers with WV W ′ =

{0.5,0.3,0.2}, where g1 = (0.8,0.2), g2 = (0.6,0.8), and g3 = (0.9,0.5). Here we have four FRFNs. ð1 = (0.79,0.46),
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ð2 = (0.66,0.89) and ð4 = (0.56,0.72) with associated WV W = (0.4,0.2,0.4). Here q = 3, standard WV will be
dξ = (0.5,0.2,0.3) first we find ð̆ξ = ndξðξ for each ðξ, then we find score functions of each ð̆ξ.

ð̆1 = (0.861342,0.311987)

ð̆2 = (0.568808,0.932468)

ð̆3 = (0.542364,0.744045)

The score function will be,

E(ð̆1)= 0.60867 E(ð̆2)=−0.626745 E(ð̆3)=−0.252365

On the behalf of score functions, ð̌σ(1) = ð̆1, ð̆σ(2) = ð̆3 and ðσ(3) = ð̆2
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By Theorem 4.10, we have

GGFRFHA((ð1,ð2,ð3), (g1, g2, g3))= FRFWA(g1, g2, g3)⊗FRFHA(ð1,ð2,ð3)

=
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= (0.56445,0.681039)

6 MCDM Approach based on proposed AOs
Let us consider B = {B1,B2, . . . ,Bm} be the set of alternatives, L̆ = {L̆1,L̆2, . . . ,L̆n} be the set of criteria and

W = {W1,W2, . . . ,Wn} is the WV, such that W j ∈ [0,1] and
∑n

j=1 W j = 1. DMs are evaluating alternatives to criteria
and evaluation values must be in FRFNs. Assume that (Bi j)m×n = (ℑℓ

i j,גγ i j)m×n is the decision matrix provided by
DM. Where ℑℓ

i j and γג i j indicates the degree of satisfied and unsatisfied respectively corresponding the alternative
Bξ to criteria L̆ j . Let us consider a group of other observers / experts to make the circumstances more credible,
G= {g1,g2, . . . ,gn} with WV W ′ = {W ′

1 ,W ′
2 , . . . ,W ′

n}. These experts give their assessment in the form of FRFNs to
the preference of each alternative denoted by gk = (ℑℓ

gk γgkג, ). Following are the steps of algorithm to solve the
MCDM problem.

Algorithm
INPUT
Step 1:
Take the opinion of the expert on each alternative in the form of FRFNs against the various criteria and then

obtain a decision matrix [B]m×n = (ℑℓ
i j,גγ i j)m×n. If normalization of decision matrix is required then normalize

the decision matrix. If there are different types of criteria or attributes like cost and benefit, then we normalize the
decision matrix by using compliment of criteria like cost. By normalize the decision matrix we deal all criteria or
attributes in the same way. Otherwise, different criterion or attributes should be aggregate in different ways.

OUTPUT
Step 2:
Collect the group of other experts / observers choice on each alternative based on the GP principle and then

obtain a generalized parameter matrix [W]m×l = (ℑℓ
i j,גγ i j)m×l .

Step 3:
Combine the matrices acquired in steps 1 and 2 to form a new [L]m×(n+k) matrix structure, which reflects the

expert’s evaluation of each alternative against the criteria under GPs.
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Step 4:
By using GGFRFWA operator, We aggregate the efficiency of each alternative of the L row-wise matrix in

order to achieve overall performance and Oξ is indicated. Here, we also use GGFRFOWA operator and GGFRFHA
operator.

Step 5:
Evaluate the score functions for all Oξ for the collective overall FRFNs.
Step 6:
Rank all the Oξ according to the score values.

7 Case Study
The area of GSCM relies heavily on decision-making, since its major goal is to include environmentally friendly

practices across the supply chain process, while simultaneously ensuring operational efficiency and satisfying con-
sumer needs. Decisions made throughout the entirety of the supply chain, encompassing procurement, transportation,
manufacturing, distribution, and waste management, possess significant ramifications for sustainability. Within the
field of GSCM, the initial pivotal decision frequently centers on the process of selecting and evaluating suppli-
ers [26, 27]. In order to make informed decisions, decision-makers are required to evaluate potential suppliers not
just on the basis of cost and quality, but also with regard to their environmental practices and sustainability initia-
tives. The first selection establishes the basis for an enduring supply chain. In addition, sustainable procurement
decisions are a significant factor, as firms make choices to utilize environmentally conscious materials and suppliers,
resulting in a reduction of the ecological impact associated with products. During the process of product design,
many determinations are undertaken pertaining to the selection of materials, implementation of energy-efficient
production techniques, and adoption of packaging strategies aimed at reducing waste and emissions [28]. The
decisions pertaining to route optimization and mode selection in the field of transportation and logistics have a direct
impact on fuel consumption and emissions. These decisions involve finding the most efficient routes and selecting
the appropriate modes of transportation, while also considering the importance of timely delivery and taking into
account environmental factors. Effective inventory management decisions play a crucial role in mitigating waste
and minimizing energy consumption. By maintaining optimal inventory levels, organizations may effectively curtail
overproduction and avoid superfluous resource utilization [29, 30].

Waste management decisions play a critical role in the field of GSCM, with a specific emphasis on practices
such as recycling, reusing, and responsible disposal. These decisions aim to reduce environmental impact and
advance the concepts of a circular economy. In order to maintain adherence to environmental standards and laws
and mitigate any legal complications, supply chain experts are required to make well-informed judgments about
regulatory compliance. Furthermore, stakeholder engagement decisions are a crucial aspect of GSCM, as firms are
required to effectively express their dedication to sustainability to various stakeholders such as consumers, investors,
and advocacy groups. This facilitates the establishment of favorable connections and serves as evidence of their
environmental accountability. In the realm of GSCM, the significance of continuous improvement decisions cannot
be overstated, since the pursuit of sustainability is an ever-evolving objective. Regular evaluations of the ecological
ramifications of supply chain activities, along with subsequent strategic choices aimed at enhancing performance, are
crucial for ensuring enduring sustainability [31]. Risk management choices play a significant role in organizational
operations, since they include the anticipation and mitigation of environmental hazards. These risks may arise
from climatic events or regulatory changes, leading to disruptions in the supply chain. To address these challenges,
businesses must adopt proactive methods and develop contingency plans [32].

The process of decision-making in GSCM is complex and involves several dimensions. The process encom-
passes the assessment of suppliers, the identification and utilization of sustainable materials, the implementation
of environmentally-conscious design decisions, the optimization of transportation routes, the prudent management
of inventory, the responsible handling of waste, the adherence to regulatory requirements, the active engagement
of stakeholders, the ongoing enhancement of sustainability initiatives, and the mitigation of environmental hazards.
The actions made by an organization have a significant influence on its environmental footprint, reputation, and
capacity to succeed in a society that is increasingly prioritizing sustainability [33].

An Electronics, a prominent multinational corporation in the electronics manufacturing industry, is committed
to mitigating its environmental impact and promoting sustainability. The organization is currently confronted with
a pivotal choice concerning the designation of a fresh provider for electronic components, a decision that is in
accordance with their dedication to GSCM. This case study delves into the examination of the decision-making
process involving four alternative suppliers and the full evaluation of these providers by Electronics using four
criteria.

Electronics has identified four potential suppliers for electronic components, each with its unique characteristics:
B1: Supplier A is a regional supplier that has established a commendable track record in terms of delivering

high-quality products and maintaining a consistent level of dependability. Nevertheless, their efforts to embrace
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sustainability principles have not yielded significant advancements. The organization is renowned for its close
closeness and prompt responsiveness to fluctuations in demand.

B2: Supplier B is a renowned worldwide supplier renowned for its steadfast dedication to sustainability. The
company has successfully integrated environmentally sustainable production practices, obtained relevant environ-
mental certifications, and actively participates in community engagement activities. Nevertheless, the cost offered
by the company is somewhat greater when compared to its competitors.

B3: Supplier C provides electronic components at a notably reduced price in comparison to the other available
options. Although Supplier A’s sustainability measures are somewhat modest in comparison to those of Supplier B,
their cost is rather attractive.

B4: Supplier D is widely recognized for its pioneering and advanced technology, which has the potential to
facilitate the creation of components that are more efficient in terms of energy consumption. The organization has
made notable progress in the pursuit of sustainability; nonetheless, it lags below Supplier B in terms of advancement
in this area. The items they sell may provide advantages in terms of long-term sustainability.

Electronics has established a set of four criteria to assess the various supplier choices, assigning precise weights
to each criterion to indicate its relative significance.

L̆1 Environmental Impact: This criterion evaluates the extent to which the provider demonstrates a dedication to
mitigating environmental harm by using sustainable practices. The evaluation encompasses several aspects, including
but not limited to energy efficiency, waste reduction, emissions management, and compliance with environmental
requirements.

L̆2 Quality and Reliability: Ensuring quality and dependability is of utmost importance in order to uphold
production standards and mitigate interruptions within the supply chain. This criterion assesses the supplier’s
historical performance in consistently delivering items that are free from defects and meeting the agreed-upon
delivery schedule.

L̆3 Cost: The importance of cost-effectiveness cannot be overstated in terms of expenditure management and
maintaining competitiveness within the industry. This criterion evaluates the supplier’s price competitiveness.

L̆4 Innovation: The supplier’s capacity to offer cutting-edge technology that coincides with Electronics’ dedica-
tion to energy efficiency and environmentally friendly goods is exemplified through innovation. This phenomenon
covers the progress made in technology and the potential for future advantages in terms of sustainability.

7.1 Numerical Illustration
Here we consider set of alternatives given as above B= {B1,B2,B3,B4}, with WV W = (0.40,0.20,0.10,0.30)

after discussion with experts we select four attributes, L̆1= environmental impact, L̆2 = quality and reliability, L̆3 =
cost and L̆4 = innovation. For verification of decision matrix we have other group of senior experts G= {g1,g2,g3}
with WV W ′ = {0.40,0.30,0.30}.

Step 1:
Evaluate the decision matrix, [B]m×n = (ℑℓ

i j,גγ i j)m×n, given in Table 1.

Table 1. FRF matrix of expert assessment [B]4×4

L̆1 L̆2 L̆3 L̆4

B1 (0.78, 0.32) (0.68, 0.21) (0.97, 0.25) (0.81, 0.10)
B2 (0.46, 0.49) (0.32, 0.79) (0.62, 0.77) (0.38, 0.49)
B3 (0.52, 0.17) (0.46, 0.56) (0.78, 0.60) (0.39, 0.89)
B4 (0.22, 0.77) (0.41, 0.20) (0.46, 0.70) (0.20, 0.61)

Step 2:
The group of other senior experts / observers’ preference for each alternative and the corresponding generalized

parameter matrix [B]m×l = (Wi j,גγ i j)m×l , given in Table 2.

Table 2. FRF matrix of GP preference [W]4×3

g1 g2 g3

B1 (0.83, 0.16) (0.79, 0.23) (0.69, 0.13)
B2 (0.32, 0.46) (0.46, 0.71) (0.91, 0.17)
B3 (0.56, 0.17) (0.46, 0.82) (0.748, 0.63)
B4 (0.25, 0.71) (0.36, 0.25) (0.49, 0.38)
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Step 3:
Obtain the matrix [L]m×(n+k), given in Table 3.

Table 3. FRF matrix of GP preference [W]4×3

L̆1 L̆2 L̆3 L̆4 g1 g2 g3

B1 (0.78, 0.32) (0.68, 0.21) (0.97, 0.25) (0.81, 0.10) (0.83, 0.16) (0.79, 0.23) (0.69, 0.13)
B2 (0.46, 0.49) (0.32, 0.79) (0.62, 0.77) (0.38, 0.49) (0.32, 0.46) (0.46, 0.71) (0.91, 0.17)
B3 (0.52, 0.17) (0.46, 0.56) (0.78, 0.60) (0.39, 0.89) (0.56, 0.17) (0.46, 0.82) (0.748, 0.63)
B4 (0.22, 0.77) (0.41, 0.20) (0.46, 0.70) (0.20, 0.61) (0.25, 0.71) (0.36, 0.25) (0.49, 0.38)

Step 4:
Calculate Oξ for the collective overall Fermatean fuzzy numbers using GqROPWA operator.

O1 = (0.644469,0.234939)

O2 = (0.319351,0.610586)

O3 = (0.272107,0.502131)

O4 = (0.120209,0.610157)

Step 5:
Calculate the score functions for all Oξ for the collective overall Fermatean fuzzy numbers.

E(O1)= 0.254706

E(O2)=−0.195067

E(O3)=−0.106458

E(O4)=−0.225419

Step 6:
The preference order of the alternatives, therefore, is t1 ≻ t3 ≻ t2 ≻ t4. So, t1 select as a best alternative.

7.2 Comparative Analysis
t1 which is alternative to the above analysis that it provides the best in some mentioned criteria. If the analysis

done on the recommendation of one expert/observer of times, in terms of reliability of the information provided,
then we have the following conclusions:

1. If only g1 is to be considered, then by the above analysis score functions are E(O1) = 0.30357, E(O2) =
−0.256442, E(O3)=−0.0431266 and E(O4)=−0.46031. Thus, t1 ≻ t3 ≻ t2 ≻ t4.

2. If only g2 is to be considered, then by the above analysis score functions are E(O1) = 0.252055, E(O2) =
−0.464596, E(O3)=−0.565853 and E(O4)=−0.171914. Thus, t1 ≻ t4 ≻ t2 ≻ t3.

3. If only g3 is to be considered, then by the above analysis score functions are E(O1) = 0.171035, E(O2) =
−0.117394, E(O3)=−0.282135 and E(O4)=−0.202691. Thus, t1 ≻ t2 ≻ t4 ≻ t3.

The ranking acquired by taking into account only one expert / observer at a time in the truthfulness of the
information provided is different, but the best possible alternative remains the same, indicating and verifying that
each expert has its own priorities and parametric principles due to its own perception, understanding, views, and
many more parameters.

8 Conclusion
The topic of MCDM has garnered significant attention from a multitude of scholars, who have conducted

extensive study in this area. The methodologies employed for this undertaking primarily rely on the specific nature
of the decision problem being examined. The majority of real-world scenarios exhibit characteristics of uncertainty,
imperfection, imprecision, and vagueness. Numerous methodologies have been suggested for the aggregation of
FRFNs. The current FRF aggregation operators were formulated based on the underlying premise that decision
makers possess a comprehensive understanding of the available choices. However, such a scenario is not typically
seen in real-world settings, as the assessments made by decision-makers regarding the available options are subjective
and influenced by their own perceptions. Hence, the development of novel procedures becomes imperative. In order
to tackle this matter, the concept of generalized FRFS is introduced, which involves integrating the notion of a
generalized parameter from an external expert or observer within a FRF setting. This approach provides a framework
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for evaluating the reliability of the information in the original FRFS, with the aim of eliminating any distortion in
expert preference. The inclusion of a generalized parameter in the analysis offers a significant advantage in mitigating
potential errors resulting from imprecise information. This is achieved by including external expert opinions during
the initial evaluations. The practicality and viability of the proposed methodology are demonstrated through the use
of a numerical illustration.
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