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Abstract: The quest for heightened precision in fuzzy system predictions has culminated in the development of an
innovative model that integrates a Fuzzy K-Clustering (FKC) algorithm with a fuzzy neural network (FNN). In this
approach, the novel FKC algorithm, herein introduced, undertakes the clustering of sample data. Subsequently, the
clustering outcomes inform the configuration of the FNN, specifically guiding the determination of node quantities
across its layers and the initial network parameters. A distinctive hybrid learning algorithm, designated as the
Conjugate Recursive Least Squares (CRLS), facilitates the optimization of network parameters via distinct methods
tailored to parameter types. This model underwent empirical validation using 2-minute interval average wind speed
data from surface meteorological stations in China. Analytical comparisons between model predictions and actual
wind speed data revealed an average absolute error of 0.2764m/s, an average absolute percentage error of 2.33%,
and a maximum error of 0.6035m/s. The findings substantiate the model’s superior predictive capability. This study
thus presents a significant advancement in fuzzy system prediction methodologies, underscoring the potential of the
FKC and FNN in complex data analysis.
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1 Introduction

In the pursuit of robust decision-making tools across various sectors, predictive models are paramount for
reducing uncertainties and optimizing resource utilization. Traditional precise modeling and decision-making
approaches encounter significant challenges in complex, uncertain domains, spurred by the explosive growth of
data accompanying rapid advancements in information technology [1]. In such scenarios, fuzzy systems have been
extensively utilized as a powerful mathematical instrument, particularly for tackling issues replete with fuzziness,
uncertainty, and complexity [2]. Confronted with systems involving uncertainty, multiple variables, and intricate
interactions, conventional methodologies often fail to model accurately. Fuzzy systems, celebrated for their flexibility,
adeptly navigate such complexities, effectively managing uncertainties and ambiguities to furnish enhanced decision-
making capabilities.

For accurate predictions in fuzzy systems, it is essential that inherent patterns and features within the data are
identified, thereby facilitating the aggregation of pertinent data points. Two main strategies for data partitioning have
been delineated [3]. The first is characterized by the uniform division of initial fuzzy subsets based on the data’s
domain, yet this technique is limited by an assumption of uniform data distribution—an assumption often not aligned
with real-world data—potentially leading to subsets that do not truly reflect the actual distribution characteristics
of the data. The second strategy, more commonly utilized, leverages clustering algorithms to cluster sample data
and then projects this onto various dimensions to determine the initial fuzzy subsets [4]. A variety of clustering
algorithms are available for this purpose, including nearest-neighbor clustering, k-means, hierarchical clustering,
and Fuzzy C-Means (FCM) [5]. Bryant and Cios [6] introduced a method using reverse nearest-neighbor counts
to estimate observation density, thus obviating the necessity of manually setting neighbor parameters, which in turn,
has been shown to increase the accuracy of clustering. In the context of k-means clustering, Xia et al. [7] described
an approach using spheres to represent each cluster, efficiently identifying neighboring clusters and reducing the need
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for distance calculations, demonstrating superior performance and computational efficiency compared to traditional
k-means methods. Chu and Xun [8] put forth a hierarchical clustering algorithm for categorical data based on the
average of similarity measures, aiming to overcome the dependency on arbitrary similarity thresholds. Concerning
FCM clustering, Lei et al. [9] addressed the algorithm’s noise sensitivity and the added computational complexity
from local spatial information by introducing morphological reconstruction operations to mitigate noise impact.
While these clustering methods have improved outcomes to a degree, the choice of initial values still significantly
impacts the results. Moreover, certain methods incorporate additional operations such as spherical descriptions
and morphological reconstructions, potentially leading to higher computational costs, particularly when processing
large-scale data.

Common prediction models that are currently utilized include time series methods, Support Vector Machine
(SVM) approaches, and neural network techniques [10]. It has been identified that time series methods may fall
short in their focus on data fitting without sufficiently considering factors that affect predictive accuracy [11]. The
performance of SVM is highly contingent upon the selection of parameters; inappropriate parameter choices are
known to compromise model efficiency [12]. FNN, on the other hand, possess robust adaptability, learning from data
and autonomously adjusting weights and parameters to accommodate various types of problems, thereby achieving
high-accuracy predictions. Numerous scholars have proposed methods for the learning of FNN parameters. Wang
et al. [13] established a multi-layer feed-forward neural network endowed with fuzzy weights and thresholds.
Hong et al. [14] utilized a back-propagation (BP) neural network to adjust membership functions. To address
the slow convergence rates typical of classical BP algorithms, Gao [15] introduced an adaptive interval conjugate
gradient method, which has been applied to the learning process of FNN parameters. While these methods
exhibit certain advantages in handling specific types of network parameters, challenges persist in actual optimization
processes, especially when networks contain a mix of linear and non-linear parameters, potentially leading to reduced
computational speed and, consequently, affecting the predictive outcomes.

In response to the shortcomings identified in the aforementioned studies, a predictive model based on the FKC
algorithm and FNN is introduced. Initially, the proposed FKC algorithm is employed to effectively partition the
dataset, followed by the construction of a FNN structure based on the clustering outcomes. A hybrid learning
algorithm, also introduced herein, is utilized to optimize network parameters, culminating in the model’s precise
prediction capabilities. Empirical evidence has demonstrated that the predictive model proposed herein exhibits a
marked superiority over several alternative prediction models, achieving smaller errors and higher accuracy.

2 Cluster Analysis
2.1 Preliminary Knowledge

The K-means algorithm, a commonly employed hard clustering method, is centered around the iterative search for
the minimal distance between data points and cluster centers, thereby effectuating data segmentation. Specifically,
given a dataset x = [x1, · · · , xn], the algorithm’s objective is to identify k cluster centers that minimize the Euclidean
distance between data points and the said centers. Its advantages include high computational efficiency and distinct
clustering outcomes. However, its sensitivity to the initial selection of cluster centers is a notable limitation [16];
different initial points can lead to disparate results.

In contrast to the K-means algorithm, the Fuzzy C-Means (FCM) algorithm represents a quintessential soft
partitioning method. Here, the categorical membership of a data point does not adhere to the dichotomous hard
partitioning rules but is determined by membership degrees that sum to one, indicating the likelihood of belonging
to various categories. This algorithm incorporates a membership degree matrix to express the fuzzy relationships
between data points and categories, allowing a data point to concurrently belong to multiple categories, thereby
offering a more flexible classification. Although FCM holds certain advantages over traditional hard clustering
methods, especially when dealing with diverse and overlapping data, it is characterized by high computational
complexity due to the continuous updates required for membership degrees and cluster centers [17], with results
prone to convergence at local minima.

2.2 Novel Clustering Algorithm Model and Procedure

A new clustering algorithm, denominated FKC, is introduced in this study. This algorithm synthesizes charac-
teristics such as inter-category similarity and intra-category compactness, and devises a new clustering discriminant
criterion named Similarity and Density (SDS). Diverging from traditional methodologies, a hybrid strategy is adopted
that amalgamates the strengths of K-means and FCM. An initial clustering is conducted using K-means to determine
preliminary cluster centers. Subsequently, a secondary fuzzy classification via FCM is applied to further refine the
clustering outcomes.
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2.2.1 Mathematical model of the FKC algorithm
The mathematical expression for the FKC algorithm is represented as an optimization problem seeking extreme

values of the following objective function:

Min J(u, c) =

p∑
j=1

k∑
i=1

um
ijdij (xj , ci) (1)

where, p denotes the number of given sample data, k represents the number of categories after clustering by the
FKC algorithm; x = {x1, x2, · · · , xp} is a set containing p groups of data, signifying the input sample data;
c = {c1, c2, . . . , ck} designates the set of cluster centers, encompassing k cluster centers; dij (xj , ci) = ∥xj − ci∥2
signifies the Euclidean distance between data point xj and cluster center ci.uij represents the degree of membership
of data point xj to cluster center ci; m is the fuzziness parameter, employed to control the level of fuzziness
in the membership matrix uij [18]. A higher value of m increases the fuzziness of the categorization; when
m → ∞, uij → 1/k, classification information can no longer be provided.
2.2.2 New criterion for clustering discrimination

An exemplary criterion for clustering discrimination should take into account the compactness within a category
and the separation between different categories [19] to ensure that classification results distinctly delineate each
category while maintaining cohesion within them.

The expression for the clustering discrimination criterion, Similarity and Density (SDS), is as follows:

SDS =
1

k

k∑
j=1

max (uij)−
1

G

p−1∑
i=1

p∑
j=i+1

[
1

k

k∑
c=1

min (uic, ujc)

]
(2)

where the value of G is given by:

G =

p−1∑
i=1

i (3)

The clustering discrimination criterion is composed of two parts.
The first part reflects the degree of compactness within the same category. For each data point xi, the closer

the maximum membership degree max (uij) is to 1 , the closer the sample is to the center of its respective fuzzy
category. Hence, a fuzzy set max (uij) is considered a good classification indicator, with higher values denoting
greater compactness within a category.

The second part reflects the degree of separation between categories. The separation between ci and cj is
assessed using the intersection of two fuzzy sets. If a data point xi is close to a category center ci, then min (uic, ujc)
will approach zero, indicating a clear separation between the categories ci and cj . Conversely, if min (uic, ujc)
approaches 1/p, it implies that the data point xi has an equal degree of membership across all categories, which in
turn denotes the most ambiguous category division.
2.2.3 Flow of the FKC algorithm

The flow of the FKC algorithm is shown in Figure 1.
Step 1. Set the maximum number of clusters Z=10
Step 2. Divide the given sample data x = [x1, · · · , xp] into k categories and randomly select k samples as the

initial cluster centers
Step 3. Calculate the Euclidean distance between all data points and the cluster centers, and assign each data

point to the class of the nearest cluster center
Step 4. Update the cluster center of each category, that is, take the average value of all data points in the category

as the new cluster center
Step 5. If the difference between the two cluster center vectors is less than the set threshold or the maximum

number of iterations has been reached, proceed to Step 6; otherwise, return to Step 3
Step 6. Take the cluster centers cj obtained in Step 5 as the initial cluster centers for Step 7
Step 7. Set the fuzziness parameter m and the permissible error of the system ε. The parameter m determines

the fuzziness of the membership degree and is usually set to 2
Step 8. Calculate the membership matrix uij between data points xi and cluster centers cj
Step 9. Update the cluster centers cj according to the membership matrix uij
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Figure 1. Flow of the FKC algorithm
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Step 10. If the difference between the two cluster center vectors is less than the set threshold or the maximum
number of iterations has been reached, proceed to Step 11; otherwise, return to Step 8

Step 11. Calculate the clustering discrimination criterion
Step 12. Increment the number of categories k=k+1
Step 13. If the number of categories k exceeds the maximum number of clusters Z, proceed to Step 14; otherwise,

return to Step 2
Step 14. Assume that as the number of categories increases from 1 to K, the discrimination criterion function

approaches 1, and when the number of categories exceeds K, the discrimination criterion does not increase or even
shows a decreasing trend, indicating that the optimal number of clusters K has been found

Step 15. After the iteration is complete, determine the category of each data point according to the final
membership matrix

3 Establishment and Parameter Optimization of FNN
3.1 Determination of Initial Structure

The FKC algorithm was employed to cluster the dataset, resulting in k categories, each with its respective cluster
centers, denoted by cj =

(
c1j , c2j , . . . , cnj , c(n+1)j

)
, j = 1, 2, . . . , k. Utilizing these cluster centers, an initial

model of a FNN can be established.
The inference rules of the model are expressed as follows:

IF x1 is Aj
1 (x1) and x2 is Aj

2 (x2) and . . . and xn is Aj
n (xn) , Then y is wj , j = 1, 2, . . . , k (4)

where, Aj
i (i = 1, 2, . . . , n; j = 1, 2, . . . , k) is the value set of variable xi. The membership function defining the

degree to which xi belongs to Aj
i is defined as uj

i (i = 1, 2, . . . , n; j = 1, 2, . . . , k), which can be represented by a
Gaussian function with a favorable fit:

uj
i = exp

[
− (xi −mij)

2
/2σ2

ij

]
, i = 1, 2, . . . , n, j = 1, 2, · · · , k (5)

where, mij is the center of the j-th membership function of the i-th variable; σij is the width of the j-th membership
function of the i-th variable, indicating the deviation of the i-th variable from its cluster center.

mij = (m1j ,m2j , · · · ,mnj) = (c1j , c2j , · · · , cnj) (6)

σij = (σ1j , σ2j , · · · , σnj) (7)

The values of σij are determined by:

σij = |cj − c̃j | /ς (8)

where, cj is the j-th cluster center, and c̃j is the nearest cluster center to the j-th center. The value of ς ranges from
[2, 4]. Consequently, the conclusion function in the rules is defined as:

wj = pj0 + pj1x(1) + pj2x(2) + · · ·+ pjnx(n) (9)

where, the initial value of the constant term pj0 is pj0 = c(n+1)j .
The final rule output is given by:

Y =

 k∑
j=1

hjwj

 /

 k∑
j=1

hj

 (10)

where, hj = uj
i (x1)u

j
i (x2) . . . u

j
i (xn) =

∏n
i=1 u

j
i (xi)
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Figure 2. Structure of the FNN

Based on the number of input variables n, the number of clusters k, and the parameters of the inference rules
uj
i , hj , and wj , the number of nodes in each layer of the FNN and the initial values of the parameters are determined.

The structure of the FNN is illustrated in Figure 2.
The specific functions of the antecedent network are as follows:
The first layer: Input Layer. Each input variable corresponds to one input node, making a total of n input nodes.

Each input node transmits data to the next layer [20], and is connected to the k nodes of the second layer, where k is
the number of clusters.

The second layer: Membership Function Layer. This layer receives data from the input layer and calculates
the degree of membership of the input data using Gaussian functions as membership functions. There are n*k
nodes in this layer, each representing a different fuzzy set, and their output reflects the degree of membership of the
corresponding fuzzy set.

The third layer: Rule Layer. This layer contains k nodes, each representing a fuzzy rule, forming a fuzzy rule
base consisting of k rules. Each node is connected only to the corresponding nodes in the membership function layer
for the input variables.

The fourth layer: Normalization Layer. This layer performs normalization calculations on the output of the rule
layer and contains k nodes. The normalization calculation formula is h̄j =

hj∑k
j=1 hj

.
The specific functions of the consequent network are as follows:
The first layer: Input Layer. This layer has n+1 nodes. Among them, the input of the 0-th node is 1, which

provides a constant term for the generated rule consequent. The remaining nodes receive input variables from x1 to
xn.
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The second layer: Conclusion Rule Layer. This layer contains k nodes, each representing a rule.
The third layer: Fuzzy Decision Layer. This layer has k nodes, with the output of the j-th node being fj = wj h̄j .
The fourth layer: Conclusion Output Layer. Based on the output of the fuzzy decision layer, the final output of

the model is calculated y(x) =
∑k

j=1 fj .

3.2 Parameter Optimization

Upon the completion of the initial structure of the FNN, optimization of the centers mij and widths σij of the
membership functions in the antecedent network, as well as the conclusion parameter W of the consequent network,
is required. This process is aimed at progressively approximating the expected output [21], thereby enhancing the
precision of the network, wherein parameters mij and σij , belonging to the premises of the fuzzy rules, exhibit
non-linear characteristics; whereas, parameter W corresponding to the conclusion part of the fuzzy inference rules,
demonstrates linear characteristics [22].

In light of this, a hybrid learning algorithm, termed CRLS, is proposed. This method employs a recursive least
squares algorithm for the optimization of linear parameter W and a conjugate gradient algorithm for the optimization
of mij and σij .
3.2.1 Optimization of linear parameters

The expected output of the FNN can be represented as:

d(i) =

k∑
j=1

gj(i)θj + ε(i) (11)

where, d(i) is the desired output; gj(i) represents the regression coefficients; θj denotes the j-th linear parameter;
and ε(i) is the error.

When p sets of sample data are processed through the FNN, the expected output can be expressed as:

D(p) = G(p)Θ(p) + E(p) (12)

where,

D(p) = [d(1)d(2) . . . d(p)]T (13)

Gp = HT =
[
gT (1)gT (2) . . . gT (p)

]T (14)

Θ(p) = WT = [θ1θ2 . . . θp]
T (15)

E(p) = [ε(1)ε(2) . . . ε(p)]T (16)

By setting Q(p) =
(
GT (p)G(p)

)−1, the linear parameter W can be derived:

W = Θ̂(p) = Θ̂(p− 1) + L(p)
(
d(p)−GT (p)Θ̂(p− 1)

)
(17)

where,

L(p) = Q(p)G(p) = Q(p− 1)G(p)
[
1 +GT (p)Q(p− 1)G(p)

]−1 (18)

Q(p) =
[
I − L(p)GT (p)

]
Q(p− 1) (19)
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3.2.2 Optimization of non-linear parameters mij and σij

The performance index of the FNN can be represented as:

Ei =
1

2
(di − yi)

2
, i = 1, 2, . . . , p (20)

where, for the i-th input vector, di denotes the desired output, and yi represents the actual output; p indicates the
number of samples.

To optimize the non-linear parameters mij and σij , the centers mij and widths σij of the membership functions
of the FNN are combined into a set M = {m,σ}, with the performance index serving as the optimization objective
function:

min
M

Ei =
1

2
(di − yi)

2 (21)

The optimization steps are as follows:
Step 1. Assign an initial point M (0) with precision ε > 0, where D is the number of elements in vector M .
Step 2. Set the initial value, g0 = ∇E

(
M0

)
,n = 0; define S(n) = −gn = −∇E

(
M (n)

)
as the search direction

vector for a cycle of n times, with the gradient direction g for each parameter in M being:

∂E

∂m
= (dp − yp)

∂f

∂ξj

∂ξ

∂mij
(22)

∂E

∂σ
= (dp − yp)

∂f

∂ξj

∂ξ

∂σij
(23)

where, ∂f
∂ξj

=
wj(p)−yp∑k

j=1 ξj
,

∂ξj
∂mij

=
(xip−mij(p−1))

σ2
ij(p−1)

ξj ,
∂ξj
∂σij

=
(xip−mij(p−1))2

σ3
ij(p−1)

ξj , j = 1, 2, . . . , k.
Step 3. Set the learning rates for the centers mij and widths σij of the membership functions in M as η1 and

η2, respectively, that is, η = {η1, η2}. To avoid system instability caused by improper selection of learning rates, an
adaptive adjustment method for learning rates is utilized. Thus, the new vector M (n+1) in this direction is:

M (n+1) = M (n) + ηs(n) (24)

where, when ∆E > 0, η = ηφ, φ > 1; when ∆E < 0, η = ηβ, β > 1;φ, β are constants. The corresponding
gradient is gn+1 = ∇E

(
M (n+1)

)
.

Step 4. If Ei < ε, then the iteration concludes; otherwise, proceed to Step 5 .
Step 5. If n < D− 1, compute the conjugate direction s(n+1) = −gn+1 +

∥gn+1∥2

∥gn∥2 s(n),n = n+ 1, and execute
Step 3; otherwise, set M (0) = M (D) and execute Step 2.
3.2.3 The process of parameter optimization using the hybrid learning algorithm

Figure 3 shows the flow of the CRLS algorithm.
Step 1. Initialize the iteration count n = 0, error precision ε > 0, and define learning rate η, etc.
Step 2. For the given set of p data groups, forward propagate through the FNN and acquire the conclusion

parameter W of the consequent network using the recursive least squares method.
Step 3. Obtain the FNN output Y, and calculate the error E.
Step 4. Back propagate the error E through the FNN to obtain the gradient vector related to the membership

function centers mij and widths σij of the antecedent network.
Step 5. Adjust the values of mij and σij using the conjugate gradient algorithm.
Step 6. Increment the iteration count k = k + 1.
Step 7. Check whether the set iteration number or error precision requirements are met. If not, return to Step 2;

otherwise, the algorithm terminates, and the parameter optimization process for the FNN is complete.
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Figure 3. Flow of the CRLS algorithm

4 Experimental Verification
4.1 Evaluation Criteria

The ground meteorological observation data collected by the China Meteorological Administration are employed
as a case study, with a data sampling interval of 2 minutes, documenting average wind speeds at different times.
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The wind speed at the next forecast time point v(t + 1) is defined as the decision attribute. Considering the high
correlation between the wind speeds of the previous 15 minutes v(t− 14), v(t− 13), . . . , v(t) and the forecast time,
these wind speeds are listed as influencing factors. Data from one month in the historical records are selected for
FKC clustering analysis, and data at 30 time points from a subsequent day are chosen as test samples to assess the
predictive accuracy of the model.

The model’s predictive performance is measured using three indicators: mean absolute error (EMAE), mean
absolute percentage error (EMAPE), and maximum error (EMAX), whose expressions are as follows:

EMAE =
1

n

n∑
i=1

|vi − v′i| (25)

EMAPE =
1

n

n∑
i=1

|vi − v′i|
vi

(26)

EMAX = max (|vi − v′i|) (27)

where, vi represents the actual wind speed values and v′i denotes the model-predicted wind speed values.

4.2 Implementation and Analysis of the Prediction Model

The FKC algorithm was employed for data clustering. The parameters for the FKC algorithm are set as follows:
the number of cluster categories k=1, with k initial cluster centers chosen at random, the maximum number of
iterations Tmax = 20, and the fuzziness index m=2. When the number of cluster categories increased from 1 to 10,
it’s found that the growth of the criterion function value for cluster discrimination was rapid from 1 to 4 but almost
negligible from 4 to 10. Consequently, the optimal number of clusters was determined to be 4 (Figure 4).

Figure 4. Determination of the optimal number of clusters
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Figure 5. Iteration results of the clustering algorithms

When the number of clusters was 4, FKC was compared experimentally with K-means and FCM algorithms.
The clustering effectiveness of these three algorithms was compared and analyzed using the cluster discrimination
criterion proposed in this paper. The closer the criterion function value is to 1, the better the clustering effect. The
iterative results of the three algorithms are shown in Figure 5.

Analysis of Figure 5 reveals that, during 20 iterations, the criterion function value of the FKC algorithm ranged
within [0.96,0.98], while the function value for the K-means algorithm was between [0.832,0.886], and for the FCM
algorithm, it was between [0.855,0.918]. Therefore, the clustering result of the FKC algorithm is superior to the
other two algorithms. Furthermore, the fluctuation amplitude of the FKC algorithm did not show as drastic changes
as the other two algorithms with the increase of iterations, indicating that its stability is also superior to the others.

Since the wind speed of the previous 15 moments v(t− 14), v(t− 13), . . . , v(t) can affect the wind speed of the
next forecast moment v(t+1), it is necessary to construct a fuzzy neural network with 15 inputs and 1 output, where
the input variables are the wind speeds of the previous 15 moments, and the output variable is the wind speed of the
next forecast moment. Through the FKC algorithm, the data was divided into 4 categories, thereby determining the
structure of the fuzzy neural network. The number of nodes in each layer of the fuzzy neural network is shown in
Table 1.

Table 1. Number of nodes in each layer of the FNN

No. FNN Layer Associated Network Number of Nodes
1 Input Layer Antecedent network 15
2 Membership Function Layer Antecedent network 60
3 Rule Layer Antecedent network 4
4 Normalization Layer Antecedent network 4
5 Rule Layer Consequent network 16
6 Conclusion Rule Layer Consequent network 4
7 Fuzzy Decision Layer Consequent network 4
8 Conclusion Output Layer Consequent network 1

To verify the effectiveness of the proposed method, the particle swarm optimization (PSO) algorithm, FNN
algorithm, the neural network algorithm based on FCM, and the proposed method were adopted to predict the data
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of 30 time points on a certain day. The prediction results are shown in Figure 6, and the values of the three evaluation
indicators are shown in Table 2.

Figure 6. Prediction effect

Table 2. Comparison of prediction results

Method EMAE EMAPE EMAX

PSO 1.1597 0.1002 2.0268
FNN 0.9207 0.0811 1.6837

Neural network algorithm based on FCM 0.6677 0.0592 1.1606
The proposed method 0.2764 0.0233 0.6035

Table 2 shows that compared to the first method, the other three methods have significantly improved across all
indicators, indicating that the FNN algorithm outperforms the particle swarm optimization in terms of forecasting
performance. The neural network algorithm based on FCM, compared to the FNN algorithm, has seen reductions in
EMAE and EMAPE by 27.48% and 27% respectively, with EMAX decreasing from 1.6837 to 1.1606. This suggests
that the fuzzy clustering method can provide the model with training samples of higher similarity, effectively
enhancing the accuracy of predictions. This paper introduces a new fuzzy clustering algorithm, FKC, which,
compared to the neural network algorithm based on FCM, shows decreases in EMAPE by 58.6% and 60.64%, with
EMAX falling from 1.1606 to 0.6035. Therefore, the method proposed in this study significantly improves the
performance of the forecast.

5 Conclusion

In the realm of meteorological prediction, advancements have been achieved through the introduction of a novel
model employing the FKC algorithm in tandem with FNN. Validation of this model has been performed utilizing data
pertaining to the average wind speed, recorded at two-minute intervals from terrestrial meteorological observations
across China. Findings from this research have demonstrated a substantial enhancement in predictive accuracy over
four comparative methods, as evidenced by improvements across three critical evaluative measures: mean absolute
error, mean absolute percentage error, and maximum error.
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It has been observed that the predictive capability of the proposed model excels, suggesting a considerable step
forward in the predictive modelling domain. Such an enhancement in performance underscores the robustness
and potential applicability of the model for real-world scenarios, where precision in meteorological forecasting is
paramount.

Looking ahead, the focus will be directed towards the fortification of the theoretical underpinnings of the utilized
methodologies. Concurrently, the development of an intuitive system interface is anticipated, with the aim of
broadening the reach and operational application of the model. This initiative is expected to yield a more user-
centered tool, facilitating the model’s integration into service-oriented sectors, thereby augmenting the quality and
efficiency of meteorological services provided to society.
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