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Abstract: This paper aims to introduce the concepts of complex Polytopic fuzzy sets (CPoFSs) and complex
Polytopic fuzzy numbers (CPoFNs), advancing the field of fuzzy logic. Three innovative aggregation operators based
on CPoFNs are presented: The complex Polytopic fuzzy weighted averaging aggregation (CPoFWAA) operator,
the complex Polytopic fuzzy ordered weighted averaging aggregation (CPoFOWAA) operator, and the complex
Polytopic fuzzy hybrid averaging aggregation (CPoFHAA) operator. A significant application of these complex
Polytopic fuzzy sets is their integration into decision-making processes, particularly in identifying the most suitable
COVID-19 vaccines for patients. This application highlights the practical relevance and the innovative nature of
the proposed methods. The paper further demonstrates the efficacy and efficiency of these methods through a
comprehensive example provided towards the end, underscoring their potential in real-world scenarios.
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1 Introduction

Historically, the foundation of decision-making problems was predicated on the assumption that alternatives,
crucial for rendering informed decisions, were comprised of definitive numerical values. However, it has been
recognized that the majority of decision-making occurs under conditions of ambiguity and poorly delineated ob-
jectives. In response to these real-world complexities, a spectrum of theoretical frameworks has been developed to
address the uncertainty inherent in various scenarios. Soft set (SS) theory, introduced by Molodtsov [1], represents
an evolution of classical set theory, providing a versatile framework for the resolution of ambiguities encountered
in decision-making and information processing. This theory has been instrumental in introducing flexibility and
intuition into the handling of indeterminate data. In parallel, the fuzzy set (FS) theory, formulated by Zadeh [2], has
offered a robust mathematical infrastructure for grappling with indeterminacy and imprecision. It has established
itself as a fundamental approach for the manipulation, management, and depiction of information that may not be
precisely defined, a common occurrence in practical situations. Complementing these, the rough set (RS) theory,
developed by Pawlak [3], addresses the challenges of uncertainty, vagueness, and incomplete knowledge within data
analysis and decision-making processes. Through the application of discernibility and equivalence relations, rough
sets provide a formal apparatus for delineating sets in the presence of imprecise information.

Each theoretical model presented in above mentioned literatures has been distinguished by its unique, significant
applications. It is important to acknowledge that the inception of FS theory by Zadeh [2] introduced a paradigm
where the concept of a membership function was employed to quantify an object’s level of satisfaction. However, it
was soon identified that FS theory exhibited limitations, particularly its inability to concurrently handle information
pertaining to both satisfaction and dissatisfaction. In order to report this weakness, Atanassov [4] generalized FSs
to intuitionistic fuzzy (IF) sets where each element mathematically presented as: (µ, ν) , with 0 ≤ µ + ν ≤ 1.
Intuitionistic fuzzy sets aim to capture and represent uncertainty, vagueness, and hesitation in a more comprehensive
manner compared to traditional fuzzy sets. Later on, Yager [5] presented Pythagorean fuzzy (PyF) sets which relaxes
the limitation of IFSs, such as 0 ≤ µ+ν ≤ 1 to 0 ≤ µ2+ν2 ≤ 1. After that Sanapati and Yagar [6] presented the idea
of Fermatean fuzzy (FeF) sets, which reduces the limitation of PyFSs, such as 0 ≤ µ2+ ν2 ≤ 1 to 0 ≤ µ3+ ν3 ≤ 1.
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Similarly, Yager [7] developed q-rung orthopair fuzzy sets (q-ROF) sets, which reduces the limitations some previous
model, such as PyF-sets and FeF-sets and 0 ≤ µ3 + ν3 ≤ 1 to 0 ≤ µq + νq ≤ 1 respectively.

There are several cases, where the above models failed, due to the neutral membership degree. Therefore, Cuong
et al. [8] presented a new model known as picture fuzzy sets (PcFSs) to deal with the occurring problems. In PcFSs
each element mathematically may be presented as: (µ, ℓ, ν) with 0 ≤ µ + ℓ + ν ≤ 1. Ashraf et al. [9] introduced
spherical fuzzy sets (SpFSs), which reduces the limitation of PcFSs to 0 ≤ µ2+ℓ2+ν2 ≤ 1. Later on, Beg et al. [10]
presented Polytopic fuzzy sets (PoFSs), which reduces the limitation of PcFSs and SpFSs to 0 ≤ µq + ℓq + νq ≤ 1.
Later on, some scholars [11–16] using IF numbers and presented many operators and their applications in real life.
Rahman et al. [17–20] presented various operators using PyF numbers. Garg [21, 22] are presented Einstein t-norm
and t-conorm based on PyF numbers. Liu and Wang [23] developed q-ROFWA method and the q-ROFWG method.
Peng and Liu [24] introduced inclusion, entropy, measures and distance measures. Garg [25], Beg et al. [26] and
introduced several techniques and their applications on in real life problems.

The above models are unable to depict the data’s partial ignorance and how it changes over a certain time
period. Therefore, Ramot et al. [27] introduced complex fuzzy (CF) sets, which is an extension of traditional fuzzy
set theory that introduces complex-valued membership function to handle complex. Complex fuzzy sets provide
a more expressive representation of uncertainty and ambiguity in complex systems or data domains. Later on,
Alkouri and Salleh [28] presented complex intuitionistic fuzzy (CIF) sets, in which each element mathematically
presented as:

(
µei2πm, νei2πn

)
, where µ ∈ [0, 1] , ν ∈ [0, 1], m ∈ [0, 2π] and n ∈ [0, 2π] with 0 ≤ µ + ν ≤ 1

and 0 < m
2π + n

2π ≤ 1. Ma et al. [29], Dick et al. [30], Liu and Zhang [31], Rani and Garg [32], Garg and
Reni [33], Kumer and Bajej [34] presented some related work and techniques in CIF environments. Greenfield
et al. [35] presented complex interval-valued fuzzy (CIVF) sets. Ullah et al. [36] presented complex Pythagorean
fuzzy (CPyF) sets, which reduces the limitation of CIF-sets. Liu et al. [37] introduced complex q-rung orthopair
fuzzy (Cq-ROF) sets. Rahman et al. [38] and Hezam et al. [39] presented several operational laws under CPyF
environment. Thus keeping the advantages of the above mentioned models, in this paper we introduce CPoF sets
and their corresponding aggregation along with their structure properties.

Next, the Paper is ordered in the following form: Section 2 presents existing models, namely CF sets, CIF sets,
CPyF sets. Section 3 presents the CPoF sets and CPoF numbers. Section 4 presents some novel techniques based on
CPoFNs. Section 5 presents emergency decision-making model. Section 6 presents an example. Section 7 present
conclusions of the new research.

2 Preliminaries

Definition 1: [27] Let X be a universal set, then complex fuzzy set C on X can be defined as follows:
C =

{
x, µC(x)e

imC(x)|x ∈ X
}

, where µC(x) : X → [0, 1] and µC(x) is called the membership function of x in
the complex plane.

Definition 2: [28] Let X be a universal set, then complex intuitionistic fuzzy set D on X can be defined as: D ={
⟨x, µD(x)eimD(x), νD(x)einD(x)⟩|x ∈ X

}
, where µD(x) : X → [0, 1], νD(x) : X → [0, 1], mD(x) ∈ [0, 2π]

and nD(x) ∈ [0, 2π] under the conditions: 0 < µD(x) + νD(x) ≤ 1 and 0 < mD(x)
2π + nD(x)

2π ≤ 1.
Definition 3: [36] Let X be a universal set, then complex Pythagorean fuzzy set V can be defined as: V ={

⟨x, µV (x)e
imV (x), νV (x)e

inV (x)⟩|x ∈ X
}

, where µV (x) : X → [0, 1], νV (x) : X → [0, 1], mV (x) ∈ [0, 2π] and

nV (x) ∈ [0, 2π] under the conditions: 0 < (µV (x))
2 + (νV (x))

2 ≤ 1 and 0 <
(

mV (x)
2π

)2
+
(

nV (x)
2π

)2
≤ 1.

3 Complex Polytopic Fuzzy Sets

Definition 4: Let X be a universal set, then complex Polytopic fuzzy set S can be defined on X as follows:
V =

{
⟨x, µS(x)e

imS(x), ℓS(x)e
irS(x), νS(x)e

inS(x)⟩|x ∈ X
}

where µS(x) : X → [0, 1], ℓS(x) : X → [0, 1],
νS(x) : X → [0, 1], mS(x) ∈ [0, 2π], rS(x) ∈ [0, 2π] and nS(x) ∈ [0, 2π] under the conditions:0 < (µS(o))

q
+

(ℓS(o))
q
+ (vS(o))

q ≤ 1(1 ≤ q) and 0 <
(

mS(o)
2π

)2
+
(

rS(o)
2π

)2
+
(

nS(o)
2π

)2
≤ 1.

Definition 5: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(j = 1, 2) be a family of CPoFNs and p > 0 , then

i) R1 ⊕R2 =

(
(µq

1 + µq
2 − µq

1µ
q
2)

1
q ei2π((

m1
2π )

q
+(m2

2π )
q−(m1

2π )
q
(m2

2π )
q
)

1
q
,

(ℓ1ℓ2)e
i2π( r1

2π )(
r2
2π ), (ν1ν2)e

i2π(n1
2π )(

n2
2π )

)

ii) p(R) =

(
(1− (1− µq)

p
)

1
q ei2π(1−(1−(

m
2π )

q
)
p
)

1
q
, (ℓ)pei2π(

r
2π )

p

, (ν)pei2π(
n
2π )

p
)

Definition 6: Let R =
(
µeim, ℓeir, νein

)
be a CPoFN, then its score S(R) and accuracy A(R) can be

defined as: S(R) = 1
3 [(1 + µq + ℓq − νq) + (1 +mq + rq − nq)] with condition: S(R) ∈ [2, 2] and A(R) =

1
2 [(1 +max(µq, ℓq)− νq) + (1 +max(mq, rq)− nq)] with condition: A(R) ∈ [0, 2] respectively.
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Definition 7: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)

be a family of CPoFNs, then

1) If, S(R1) > S(R2), this means that R1 > R2

2) If, S(R1) < S(R2), this means that R1 < R2

3) If, S(R1) = S(R2), then we have three conditions as given below:

i) If, A(R1) > S(R2), this means that R1 > R2

ii) If, A(R1) > S(R2), this means that R1 > R2

iii) If, A(R1) = S(R2), this means that R1 = R2

Theorem 1: Symmetry property: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ 2) be a group of CPoFNs and

(Rj)
c =

(
νje

inj , ℓje
irj , µje

imj
)
(1 ≤ j ≤ 2) be their corresponding complement respectively, then S(R1) ≤

S(R2) ⇔ S(R1)
c ≥ S(R2)

c.
Proof. By Definition 6, we have

S(R1) =
1
3 [(1 + µq

1 + ℓq1 − νq1) + (1 +mq
1 + rq1 − nq

1)]

and

S(R2) =
1
3 [(1 + µq

2 + ℓq2 − νq2) + (1 +mq
2 + rq2 − nq

2)].

Since S(R1) ≤ S(R2), then we have

⇔ S(R1) =
1

3
[(1 + µq

1 + ℓq1 − νq1) + (1 +mq
1 + rq1 − nq

1)]

≤ S(R2) =
1

3
[(1 + µq

2 + ℓq2 − νq2) + (1 +mq
2 + rq2 − nq

2)]

⇔ S(R1) =
1

3
[(1− µq

1 + ℓq1 + νq1) + (1−mq
1 + rq1 + nq

1)]

≥ S(R2) =
1

3
[(1− µq

2 + ℓq2 + νq2) + (1−mq
2 + rq2 + nq

2)]

⇔ S(R1) =
1

3
[(1 + νq1 + ℓq1 − µq

1) + (1 + nq
1 + rq1 −mq

1)]

≥ S(R2) =
1

3
[(1 + νq2 + ℓq2 − µq

2) + (1 + nq
2 + rq2 −mq

2)]

⇔ S(R1)
c ≥ S(R2)

c

Theorem 2: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ 3) be a family of CPoFNs, then

1) Commutative laws:

i) R1 ⊕R2 = R2 ⊕R1

ii) R1 ⊗R2 = R2 ⊗R1

2) Associative laws:

i) (R1 ⊕R2)⊕R3 = R1 ⊕ (R2 ⊕R3)

ii) (R1 ⊗R2)⊗R3 = R1 ⊗ (R2 ⊗R3)

3) Distributive laws:

i) R1 ⊗ (R2 ⊕R3) = (R1 ⊗R2)⊕ (R1 ⊗R3)
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ii) (R1 ⊕R2)⊗R3 = (R1 ⊗R3)⊕ (R2 ⊗R3)

Proof. i) Since R1 =
(
µ1e

im1 , ℓ1e
ir1 , ν1e

in1
)

and R2 =
(
µ2e

im2 , ℓ2e
ir2 , ν2e

in2
)

are two CPoFNs, then
by Definition 5, we can prove it and the other parts can be proved by applying the same process. Rj =(
µje

imj , ℓje
irj , νje

inj
)
(j = 1, 2) be a family of CPoFNs and p > 0 , then

i) R1 ⊕R2 =

(
(µq

1 + µq
2 − µq

1µ
q
2)

1
q ei2π((

m1
2π )

q
+(m2

2π )
q−(m1

2π )
q
(m2

2π )
q
)

1
q
,

(ℓ1ℓ2)e
i2π( r1

2π )(
r2
2π ), (ν1ν2)e

i2π(n1
2π )(

n2
2π )

)

=

(
(µq

2 + µq
1 − µq

2µ
q
1)

1
q ei2π((

m2
2π )

q
+(m1

2π )
q−(m2

2π )
q
(m1

2π )
q
)

1
q
,

(ℓ2ℓ1)e
i2π( r2

2π )(
r1
2π ), (ν2ν1)e

i2π(n2
2π )(

n1
2π )

)
= R2 ⊕R1

Theorem 3: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ 2) be a family of CPoFNs, and p > 0, then the

resulting values of: i) R1 ⊗R2, ii) R1 ⊕R2, iii) (R)p, iv) p(R) are also CPoFNs.

Proof. The proof is straight forward and can easily be obtained by using the above stated Definitions. Therefore,
it is omitted here.

Theorem 4: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ 3) be a family of CPoFNs, p, p1, p2 > 0, then

i) p(R1 ⊕R2) = p(R1)⊕ p(R2)

ii) (R1 ⊕R2)
p = (R1)

p ⊕ (R2)
p

iii) p1(R1)⊕ p2(R1) = (p1 ⊕ p2)R1

iv) (R1)
p1 ⊗ (R1)

p2 = (R1)
p1⊕p2

Proof. We prove only (i) and the reaming parts can be easily proved by the same process

p(R1 ⊕R2) =

 (
1−

∏2
j=1(1− µq

j)
p
) 1

q

ei2π(1−
∏2

j=1(1−(
mj
2π )q)p)

1
q
,∏2

j=1 ℓ
p
je

i2π(
∏2

j=1(
rj
2π )p)

1
q
,
∏2

j=1 ν
p
j e

i2π(
∏2

j=1(
nj
2π )p)

1
q


=
(

(1− (1− µq
1)

p)
1
q ei2π(1−(1−(

m1
2π )q)p)

1
q
, ℓp1e

1
q ei2π((

r1
2π )p), νp1e

1
q ei2π((

n1
2π )p)

)

+

(
(1− (1− µq

2)
p)

1
q ei2π(1−(1−(

m2
2π )q)p)

1
q
, ℓp2e

1
q ei2π((

r2
2π )p), νp2e

1
q ei2π((

n2
2π )p)

)
= p(R1)⊕ p(R2)

Theorem 5: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ 3) be a family of CPoFNs, then

i) (R1 ∪R2) ∩R1 = R1

ii) (R1 ∩R2) ∪R1 = R1

i) (R1 ∪R2)⊕ (R1 ∩R2) = R1 ⊕R2

Proof. We prove part (i), the remaining part can be prove by the same process.

(R1 ∪R2) ∩R1 =

(
max{µ1, µ2}ei(max{m1,m2}),max{ℓ1, ℓ2}ei(max{r1,r2}),
min{ν1, ν2}ei(min{n1,n2}) ∩

(
µ1e

im1 , ℓ1e
ir1 , ν1e

in1
) )

=

 min{max{µ1, µ2}, µ1}ei(min{(max{m1,m2},m1}),
min{max{ℓ1, ℓ2}, ℓ1}ei(min{(max{r1,r2},m1}),
min{max{ν1, ν2}, ν1}ei(min{(max{n1,n2},n1})


=
(
µ1e

im1 , ℓ1e
ir1 , ν1e

in1
)
= R1
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4 Aggregation Operators under Complex Polytopic Fuzzy Information

Definition 8: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ n) be a family of CPoFNs, with their weighted vector

υ = (υ1, υ2, ..., υn)
T with (1 ≤ υj ≤ n) and

∑n
j=1 υj = 1. Then CPoFWAA operator can be defined as:

CPoFWAAυ (R1, R2, R3, ..., Rn)

=

 (
1−

∏n
j=1(1− µq

j)
υj

) 1
q

ei2π(1−
∏n

j=1(1−(
mj
2π )q)υj )

1
q
,∏n

j=1(ℓj)
υjei2π(

∏n
j=1(

rj
2π )υj ),

∏n
j=1(νj)

υjei2π(
∏n

j=1(
nj
2π )υj )

 (1)

Example 1: We consider the following four CPoFNs, with weights υ = (0.10, 0.20, 0.30, 0.40) and q = 3.

R1 =
(
0.50ei2π(0.70), 0.80ei2π(0.50), 0.70ei2π(0.60)

)
R2 =

(
0.50ei2π(0.70), 0.80ei2π(0.50), 0.70ei2π(0.60)

)
R3 =

(
0.70ei2π(0.60), 0.50ei2π(0.40), 0.40ei2π(0.80)

)
R4 =

(
0.90ei2π(0.60), 0.40ei2π(0.50), 0.50ei2π(0.70)

)
First, we calculate the required values as below:

1−
4∏

j=1

(1− µq
j)

υj

 1
q

=

(
1−

(
1− (0.50)3

)0.10 (
1− (0.80)3

)0.20 (
1− (0.70)3

)0.30
(
1− (0.90)3

)0.40) 1
3

= 0.82

1−
4∏

j=1

(1− (
mj

2π
)q)υj

 1
q

=

(
1−

(
1− (0.70)3

)0.10 (
1− (0.60)3

)0.20 (
1− (0.60)3

)0.30
(
1− (0.60)3

)0.40) 1
3

= 0.82

4∏
j=1

(ℓj)
υj = (0.80)0.10(0.50)0.20(0.50)0.30(0.40)0.40 = 0.47

4∏
j=1

(
rj
2π

)υj = (0.50)0.10(0.70)0.20(0.40)0.30(0.50)0.40 = 0.50

4∏
j=1

(νj)
υj = (0.70)0.10(0.60)0.20(0.40)0.30(0.50)0.40 = 0.50

4∏
j=1

(
nj

2π
)υj = (0.60)0.10(0.60)0.20(0.80)0.30(0.70)0.40 = 0.69

Now applying the CPoFWAA operator, we have

CPoFWAAυ (R1, R2, R3, R4)

=

 (
1−

∏4
j=1(1− µq

j)
υj

) 1
q

ei2π(1−
∏4

j=1(1−(
mj
2π )q)υj )

1
q
,∏4

j=1(ℓj)
υjei2π(

∏4
j=1(

rj
2π )υj ),

∏4
j=1(νj)

υjei2π(
∏4

j=1(
nj
2π )υj )


=
(
0.82e2π(0.61), 0.47e2π(0.50), 0.50e2π(0.69)

)
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Property I (Idempotency): Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ n) be a family of CPoFNs, with their

weighted vector υ = (υ1, υ2, ..., υn)
T with the conditions (1 ≤ υj ≤ n) and

∑n
j=1 υj = 1 and Rj = R, then

CPoFWAAυ (R1, R2, ..., Rn) = υ1R1 ⊕ υ2R2 ⊕ ...⊕ υnRn = R (2)

Property II (Boundedness): Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ n) be a family of CPoFNs and

let Rmax =
(
µmaxe

immax , ℓmaxe
irmax , νmaxe

inmax
)

with conditions, such as: µmax = maxj{µj}, mmax =
maxj{mj}, ℓmax = maxj{ℓj}, rmax = maxj{rj}, νmax = maxj{νj}, nmax = maxj{nj}. Similarly on the
same way, we can process for minimum values with we have Rmin =

(
µmine

immin , ℓmine
irmin , νmine

inmin
)

with µmin = minj{µj}, mmin = minj{mj}, ℓmin = minj{ℓj}, rmin = minj{rj}, νmin = minj{νj},
nmin = minj{nj}, then , we have

Rmin ≤ CPoFWAAυ (R1, R2, ..., Rn) ≤ Rmax (3)

Property III (Monotonicity): Let there are two any families of CPoFNs, such thatRj =
(
µje

imj , ℓje
irj , νje

inj
)

(1 ≤ j ≤ n) and R◦
j =

(
µ◦
je

im◦
j , ℓ◦je

ir◦j , ν◦j e
in◦

j

)
(1 ≤ j ≤ n) satisfying the conditions: µJ ≤ µ◦

j , mj ≤ m◦
j ,

ℓj ≤ ℓ◦j , rj ≤ r◦j , νj ≥ ν◦j , nj ≥ n◦
j , then

CPoFWAAυ (R1, R2, R3, ..., Rn) ≤ CPoFWAAυ (R
◦
1, R

◦
2, R

◦
3, ..., R

◦
n) (4)

Definition 9: Let Rj =
(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ n) be a family of CPoFNs, with their weighted vector

υ = (υ1, υ2, ..., υn)
T with (1 ≤ υj ≤ n) and

∑n
j=1 υj = 1, where (∝ (1),∝ (2), ...,∝ (n)) , is any reordered of

(1, 2, ..., n) with R∝(j) ≤ R∝(j−1). Then the CPoFOWAA operator can be presented as follows:

CPoFWAAυ (R1, R2, R3, ..., Rn)

=

 (
1−

∏n
j=1(1− µq

∝(j))
υj

) 1
q

e
i2π

(
1−

∏n
j=1(1−(

m∝(j)
2π )q)υj

) 1
q

,∏n
j=1(ℓ∝(j))

υje
i2π

(∏n
j=1(

r∝(j)
2π )υj

)
,
∏n

j=1(ν∝(j))
υje

i2π
(∏n

j=1(
n∝(j)

2π )υj
)
 (5)

Example 2: To develop the above aggregation operators, we consider an example. For this, we consider the
following four CPoFNs, along with their weighted vector υ = (0.10, 0.20, 0.30, 0.40) and q = 4.

R1 =
(
0.90ei2π(0.60), 0.40ei2π(0.50), 0.50ei2π(0.70)

)
R2 =

(
0.80ei2π(0.60), 0.50ei2π(0.70), 0.60ei2π(0.60)

)
R3 =

(
0.70ei2π(0.60), 0.50ei2π(0.40), 0.40ei2π(0.80)

)
R4 =

(
0.50ei2π(0.70), 0.80ei2π(0.50), 0.70ei2π(0.60)

)
First, by calculating the scores, and get the results bellow:

S(R1) =
1

3

[(
1 + (0.90)4 + (0.40)4 − (0.50)4

)
+
(
1 + (0.60)4 + (0.50)4 − (0.70)4

)]
S(R2) =

1

3

[(
1 + (0.80)4 + (0.50)4 − (0.60)4

)
+
(
1 + (0.60)4 + (0.70)4 − (0.60)4

)]
S(R3) =

1

3

[(
1 + (0.70)4 + (0.50)4 − (0.40)4

)
+
(
1 + (0.60)4 + (0.40)4 − (0.80)4

)]
S(R4) =

1

3

[(
1 + (0.50)4 + (0.80)4 − (0.70)4

)
+
(
1 + (0.70)4 + (0.50)4 − (0.60)4

)]
Thus, we have the following values
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R∝(1) =
(
0.80ei2π(0.60), 0.50ei2π(0.70), 0.60ei2π(0.60)

)
R∝(2) =

(
0.90ei2π(0.60), 0.40ei2π(0.50), 0.50ei2π(0.70)

)
R∝(3) =

(
0.50ei2π(0.70), 0.80ei2π(0.50), 0.70ei2π(0.60)

)
R∝(4) =

(
0.70ei2π(0.60), 0.50ei2π(0.40), 0.40ei2π(0.80)

)
1−

4∏
j=1

(1− µq
j)

υj

 1
q

=

(
1−

(
1− (0.80)4

)0.10 (
1− (0.90)4

)0.20 (
1− (0.50)4

)0.30(
1− (0.70)4

)0.40
) 1

4

= 0.96

1−
4∏

j=1

(1− (
mj

2π
)q)υj

 1
q

=

(
1−

(
1− (0.60)4

)0.10 (
1− (0.60)4

)0.20 (
1− (0.70)4

)0.30(
1− (0.60)4

)0.40
) 1

4

= 0.84

4∏
j=1

(ℓj)
υj = (0.50)0.10(0.40)0.20(0.80)0.30(0.50)0.40 = 0.55

4∏
j=1

(
rj
2π

)υj = (0.70)0.10(0.50)0.20(0.50)0.30(0.40)0.40 = 0.47

4∏
j=1

(νj)
υj = (0.60)0.10(0.50)0.20(0.70)0.30(0.40)0.40 = 0.51

4∏
j=1

(
nj

2π
)υj = (0.60)0.10(0.70)0.20(0.60)0.30(0.80)0.40 = 0.69

By using CPoFOWAA operator, we have

CPoFWAAυ (R1, R2, R3, R4)

=

 (
1−

∏4
j=1(1− µq

∝(j))
υj

) 1
q

e
i2π

(
1−

∏4
j=1(1−(

m∝(j)
2π )q)υj

) 1
q

,∏4
j=1(ℓ∝(j))

υje
i2π

(∏4
j=1(

r∝(j)
2π )υj

)
,
∏4

j=1(ν∝(j))
υje

i2π
(∏4

j=1(
n∝(j)

2π )υj
)


=
(
0.96e2π(0.84), 0.55e2π(0.47), 0.51e2π(0.69)

)
Definition 10: Let Rj =

(
µje

imj , ℓje
irj , νje

inj
)
(1 ≤ j ≤ n) be a family of CPoFNs, be a family of CPoFNs,

along with their associated vector, such as ϖ = (ϖ1, ϖ2, ..., ϖn)
T under conditions (0 ≤ ϖ ≤ 1),

∑n
j=1 ϖj = 1.

Similarly, their weighted vector υ = (υ1, υ2, ..., υn)
T under conditions, such as (1 ≤ υj ≤ n),

∑n
j=1 υj = 1.

And R∝(j) = nϖ(Rj), where R∝(j) be the maximum value, and n is known as the balancing coefficient, which
show a vigorous role to balance the equation. If ϖ = (ϖ1, ϖ2, ..., ϖn)

T approaches to
(
1
n ,

1
n , ....,

1
n

)
then

(nϖ1R1, nϖ2R2, ..., nϖnRn) approaches to (R1, R2, ..., Rn). Then the CPoFHAA operator mathematically can
be presented as follows:

CPoFHAAϖ,υ (R1, R2, R3, ..., Rn)

=


(
1−

∏n
j=1

(
1−

(
µṘ∝(j)

)q)υj
) 1

q

e
i2π

(
1−

∏n
j=1

(
1−

(m
Ṙ∝(j)
2π

)q)υj
) 1

q

,∏n
j=1(ℓṘ∝(j))

υje
i2π

(∏n
j=1

( r
Ṙ∝(j)
2π

)υj
)
,
∏n

j=1(νṘ∝(j))
υje

i2π
(∏n

j=1

(n
Ṙ∝(j)
2π

)υj
)
 (6)

66



5 An Application of the Proposed Approaches

Algorithm: Let A = {A1,A2, ...,An} be a fixed set of m alternative and C = {C1,C2, ...,Cn} be a fixed set of
n criteria, whose weighted vector is υ = (υ1, υ2, ..., υn) under conditions, such as (1 ≤ υj ≤ n) and

∑n
j=1 υj = 1.

Let E = {E1,E2, ...,En} group of k experts, whose weighted vector is ω = (ω1, ω2, ..., ωn) with (1 ≤ ωj ≤ n) and∑n
j=1 ωj = 1.

Step 1: collect all data in matrices form.

Step 2: Aggregate all individuals’ matrices into a single collective decision matrix.

Step 3: Again utilize all the proposed techniques to computing the preference values.

Step 4: Calculate the score function.

Step 5: Sort out according to the score and choose the one with the highest score value.

6 Illustrative Example

The outbreak of a novel coronavirus, subsequently named COVID-19, originated in China in late December
2019. The first incidence in Pakistan was reported in March 2020. The nation has since been grappling with the
ramifications of the pandemic. To mitigate the rapid propagation of the virus across the country, the Pakistani
government sought to identify the most efficacious vaccine for its populace. The government of Pakistan assigned
this task to a committee of four experts/ decision-makers to select the more suitable vaccine for COVID-19 patients
in Pakistan whose weighted vector is ω = (0.2, 0.1, 0.4, 0.3). Many vaccines can be used for COVID-19 patients,
but hare the experts considered only the four vaccines to control the spreading rate COVID-19 such as: A1 Pfizer-
BioNTech, A2 Johnson and Johnson’s Janssen vaccine, A3 AstraZeneca, A4 Moderna: The decision makers take
decision about the above four short listed vaccine according to the following four criteria, whose weighted vector
is υ = (0.3, 0.3, 0.2, 0.2) and q = 4. C1 : Availability of the vaccine, C2 : Age and Health Status, C3 : Travel
Considerations, C4 : Efficacy of the vaccine. All information of about COVID-19 IN Pakistan are in the following:
(Figure 1, Figure 2, Figure 3).

Figure 1. Ranking of all methods

Step 1: All information pertaining to the decision-makers are systematically organized into matrix form, as
depicted in Tables 1- 4.

Step 2: Combine all the individual matrices into a single matrix using the CPoFWAA operator, with ω =
(0.2, 0.1, 0.4, 0.3) and q = 4 (Table 5).
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Figure 2. Confirmed cases distribution in Pakistan

Figure 3. Province wise confirmed deaths cases in Pakistan

Step 3: Next, by using CPoFWAA operator, with υ = (0.3, 0.3, 0.2, 0.2), the preference values are attained:

r1 =
(
0.86ei2π(0.66), 0.69ei2π(0.58), 0.64ei2π(0.70)

)
r2 =

(
0.82ei2π(0.64), 0.74ei2π(0.62), 0.70ei2π(0.61)

)
r3 =

(
0.78ei2π(0.66), 0.74ei2π(0.51), 0.81ei2π(0.58)

)
r4 =

(
0.79ei2π(0.77), 0.75ei2π(0.66), 0.78ei2π(0.71)

)
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Table 1. Decision of the 1st expert

C1 C2 C3 C4

A1

0.48ei2π(0.54),
0.77ei2π(0.57),
0.38ei2π(0.49)

 0.48ei2π(0.54),
0.77ei2π(0.57),
0.38ei2π(0.49)

 0.62ei2π(0.63),
0.65ei2π(0.81),
0.71ei2π(0.56)

 0.48ei2π(0.54),
0.77ei2π(0.57),
0.38ei2π(0.49)


A2

0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.90ei2π(0.70),
0.60ei2π(0.50),
0.50ei2π(0.90)

 0.80ei2π(0.60),
0.50ei2π(0.70),
0.60ei2π(0.70)


A3

0.75ei2π(0.62),
0.38ei2π(0.67),
0.72ei2π(0.45)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A4

0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


Table 2. Decision of the 2nd expert

C1 C2 C3 C4

A1

0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A2

0.54ei2π(0.68),
0.55ei2π(0.63),
0.57ei2π(0.64)

 0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.54ei2π(0.68),
0.55ei2π(0.63),
0.57ei2π(0.64)


A3

0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A4

0.75ei2π(0.62),
0.38ei2π(0.67),
0.72ei2π(0.45)

 0.72ei2π(0.63),
0.65ei2π(0.81),
0.51ei2π(0.56)

 0.54ei2π(0.68),
0.55ei2π(0.63),
0.57ei2π(0.64)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


Table 3. Decision of the 3rd expert

C1 C2 C3 C4

A1

0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.54ei2π(0.68),
0.55ei2π(0.63),
0.57ei2π(0.64)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.70ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A2

0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A3

0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A4

0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


Step 4: Computing the score functions as:

S(r1) =
1

3

[(
1 + (0.86)4 + (0.69)4 − (0.64)4

)
+
(
1 + (0.66)4 + (0.58)4 − (0.70)4

)]
S(r2) =

1

3

[(
1 + (0.82)4 + (0.74)4 − (0.70)4

)
+
(
1 + (0.64)4 + (0.62)4 − (0.61)4

)]
S(r3) =

1

3

[(
1 + (0.78)4 + (0.74)4 − (0.81)4

)
+
(
1 + (0.65)4 + (0.51)4 − (0.58)4

)]
S(r4) =

1

3

[(
1 + (0.70)4 + (0.75)4 − (0.78)4

)
+
(
1 + (0.77)4 + (0.66)4 − (0.71)4

)]
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Table 4. Decision of the 4th expert

C1 C2 C3 C4

A1

0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.80ei2π(0.60),
0.40ei2π(0.40),
0.70ei2π(0.50)

 0.51ei2π(0.46),
0.57ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A2

0.51ei2π(0.46),
0.57ei2π(0.45),
0.56ei2π(0.72)

 0.51ei2π(0.46),
0.57ei2π(0.45),
0.46ei2π(0.72)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)


A3

0.80ei2π(0.60),
0.40ei2π(0.40),
0.70ei2π(0.50)

 0.51ei2π(0.46),
0.57ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


A4

0.73ei2π(0.51),
0.58ei2π(0.46),
0.56ei2π(0.68)

 0.68ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)

 0.51ei2π(0.46),
0.57ei2π(0.45),
0.56ei2π(0.72)

 0.58ei2π(0.46),
0.47ei2π(0.45),
0.56ei2π(0.72)


Table 5. Combined decision of all decision-makers

C1 C2 C3 C4

A1

0.72ei2π(0.58),
0.73ei2π(0.61),
0.84ei2π(0.67)

 0.70ei2π(0.68),
0.67ei2π(0.42),
0.69ei2π(0.54)

 0.67ei2π(0.62),
0.79ei2π(0.46),
0.78ei2π(0.70)

 0.81ei2π(0.53),
0.67ei2π(0.75),
0.85ei2π(0.71)


A2

0.71ei2π(0.65),
0.56ei2π(0.55),
0.80ei2π(0.62)

 0.57ei2π(0.55),
0.68ei2π(0.61),
0.81ei2π(0.70)

 0.68ei2π(0.68),
0.55ei2π(0.49),
0.90ei2π(0.59)

 0.83ei2π(0.44),
0.65ei2π(0.56),
0.78ei2π(0.62)


A3

0.94ei2π(0.63),
0.72ei2π(0.34),
0.86ei2π(0.60)

 0.96ei2π(0.58),
0.72ei2π(0.67),
0.68ei2π(0.45)

 0.68ei2π(0.75),
0.59ei2π(0.64),
0.86ei2π(0.48)

 0.65ei2π(0.74),
0.75ei2π(0.53),
0.86ei2π(0.92)


A4

0.89ei2π(0.74),
0.77ei2π(0.47),
0.94ei2π(0.64)

 0.89ei2π(0.77),
0.75ei2π(0.55),
0.96ei2π(0.68)

 0.89ei2π(0.54),
0.75ei2π(0.68),
0.96ei2π(0.45)

 0.68ei2π(0.43),
0.95ei2π(0.72),
0.73ei2π(0.56)



Step 5: Thus, the best option is A2.

Score functions of the all novel methods are presented (Table 6, Table 7)

Table 6. Scores of the novel approaches

Operators A1 A2 A3 A4

CPoFWAA 0.88 0.89 0.79 0.86
CPoFOWAA 0.87 0.90 0.82 0.85
CPoFHAA 0.78 0.83 0.74 0.76

Table 7. Ranking of various approaches

Operators Score Functions Ranking
CPoFWAA S (r2) ≻ S (r1) ≻ S (r4) ≻ S (r3) A3 ≺ A4 ≺ A1 ≺ A2

CPoFOWAA S (r2) ≻ S (r1) ≻ S (r4) ≻ S (r3) A3 ≺ A4 ≺ A1 ≺ A2

CPoFHAA S (r2) ≻ S (r1) ≻ S (r4) ≻ S (r3) A3 ≺ A4 ≺ A1 ≺ A2

7 Conclusions

Complex Polytopic fuzzy sets are a generalization of complex fuzzy sets where the membership grade is defined by
a collection of fuzzy membership grades associated with different subregions or regions in the universe of discourse.
In this paper, we have presented a novel model, such as complex Polytopic fuzzy set, complex Polytopic fuzzy
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numbers and some of their basic operational laws. We have also introduced several averaging novel techniques with
examples, namely CPoFWAA operator, CPoFOWAA operator, and CPoFHAA operator. We have also developed
some of their structure properties, such as idempotency, monotonicity and boundedness. This new model is explained
with an illustrative example associated to the assortment of the more suitable option among the existing options.
Finally, comparison and sensitivity analysis are presented to show their effectiveness and proficiency.

The potential applications of this research are expansive, offering avenues for further exploration into related
domains such as complex Fermatean fuzzy sets, complex Hamacher techniques, and various complex interval-valued
and logarithmic techniques. It is projected that theprinciples established within this framework will pave the way
for significant advancements in multiple fields requiring intricate decision-making models. In this conclusion, a
synthesis of the research findings is presented, illustrating the robustness and versatility of the proposed models
and techniques. The practical applications and theoretical implications underscore the contributions to the body of
knowledge in complex fuzzy logic systems.
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