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Abstract: Twitter, a predominant platform for instantaneous communication and idea dissemination, is often
exploited by cybercriminals for victim harassment through sexism, racism, hate speech, and trolling using pseudony-
mous accounts. The propagation of racially charged online discourse poses significant threats to the social, political,
and cultural fabric of many societies. Monitoring and prompt eradication of such content from social media, a
breeding ground for racist ideologies, are imperative. This study introduces an advanced hybrid forecasting model,
utilizing convolutional neural networks (CNNs) and long-short-term memory (LSTM) neural networks, for the
efficient and accurate detection of racist and hate speech in English on Twitter. Unlabelled tweets, collated via the
Twitter API, formed the basis of the initial investigation. Feature vectors were extracted from these tweets using
the TF-IDF (Term Frequency-Inverse Document Frequency) feature extraction technique. This research contrasts
the proposed model with existing intelligent classification algorithms in supervised learning. The HateMotiv
corpus, a publicly available dataset annotated with types of hate crimes and ideological motivations, was employed,
emphasizing Twitter as the primary social media context. A novel aspect of this study is the introduction of a revised
artificial hummingbird algorithm (AHA), supplemented by quantum-based optimization (QBO). This quantum-based
artificial hummingbird algorithm (QAHA) aims to augment exploration capabilities and reveal potential solution
spaces. Employing QAHA resulted in a detection accuracy of approximately 98%, compared to 95.97% without its
application. The study’s principal contribution lies in the significant advancements achieved in the field of racism
and hate speech detection in English through the application of hybrid deep learning methodologies.

Keywords: Cyberstalkers; Artificial hummingbird algorithm; Quantum-based optimization; Long short-term
memory; Racism detection

1 Introduction

In the digital age, the prevalence of social media has revolutionized the way individuals communicate and
express themselves. A notable trend observed is the uninhibited expression of thoughts and opinions by users, often
leading to the oversharing of personal information [1]. The anonymity provided by social networks emboldens many
users to post their emotions and thoughts without filters, sometimes disregarding the potential harm to others [2].
Particularly, individuals with racist ideologies exploit social media to disseminate their beliefs, asserting their right
to free expression [3]. This unfettered expression is not confined to fanatical religious, racial, or political views; it
extends to extreme bigotry, including sexist behavior that transgresses the bounds of hate speech [4]. The voluminous
nature of interactions on social media platforms renders manual monitoring and response to the myriad of comments,
messages, and data virtually unfeasible [5]. Furthermore, the scarcity of official data on hate crimes underscores
the prevailing issues in accurately addressing such content on these platforms [6]. Despite these challenges, the rich
data available on social media are pivotal for user data processing. Data mining plays a critical role in this context,
uncovering hitherto unknown patterns within datasets and enabling rapid, informed research and decision-making
processes [7]. In the realm of Natural Language Processing (NLP), LSTM and CNN are prominent neural network
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architectures. LSTM excels in handling sequential data, while CNN is adept at detecting patterns and features in text
data. The amalgamation of these two architectures suggests a hybrid model that capitalizes on the strengths of both
LSTM and CNN for effective hate speech detection.

Social media platforms, notably Facebook and Twitter, have raised significant concerns regarding the prevalence
of inappropriate language in user posts [8]. The manifestation of racism on these platforms is multifaceted,
encompassing both overt and covert forms [9]. Instances include the utilization of counterfeit profiles for disseminating
racist remarks. Historically linked to ethnicity, racism now proliferates based on skin tone, country of origin,
language, cultural background, and predominantly religious beliefs. Online remarks and posts inciting racial tensions
have threatened the social, political, and cultural equilibrium of various nations [10]. The rapid dissemination of
racist ideologies via social media underscores the urgency of identifying and eliminating such content [11].

Exposure to racist comments and tweets on social media has been associated with various mental and physical
health conditions, leading to adverse health outcomes [12]. Three distinct forms of racism identified in online
interactions include institutional racism, personally mediated racism, and internalized racism [13]. Personally
mediated racism occurs when an individual experiences or witnesses prejudice based on race [14]. Consequently,
racism in society inflicts psychological stress on individuals, heightening the risk of chronic diseases [15]. Racist
groups and individuals are increasingly employing sophisticated methods to promote cyber racism [16]. Sentiment
analysis has gained prominence for its application in analyzing social media content for purposes like hate speech
detection and racism identification [17]. Recent advancements in automatic detection methods aim to address the
issue of abusive content [18]. Machine and deep learning approaches have proven their efficacy in various domains,
including sentiment analysis [19, 20].

This study, therefore, employs a hybrid deep learning model to analyze racist tweets, with the following
contributions: first, implementation of pre-processing techniques, such as TF-IDF and Bag of Words, for enhanced
classification accuracy; second, utilization of the LSTM model within CNN-LSTM for effective detection of racist
and offensive language; third, application of the QAHA to refine AHA performance, thereby optimizing the hyper-
parameters of CNN-LSTM; finally, deployment of multiple methods for the detection of racist and offensive speech
on a publicly available dataset. The subsequent sections of this study are structured as follows: Section 2 reviews
related works on Twitter data analysis. Section 3 elucidates the proposed model, while Section 4 presents the
experimental analysis. Section 5 concludes the study and outlines future research directions.

2 Related Works

The pervasive nature of hate speech on social media has catalyzed significant research efforts. Lee et al. [4]
explored sentiment analysis to detect tweets laden with racist content, employing Gated Convolutional Recurrent
Neural Networks (GCR-NNs). This stacked ensemble model, integrating Gated Recurrent Units (GRUs), CNNs,
and Recurrent Neural Networks (RNNs), demonstrates a synergistic improvement over individual components. In
GCR-NNs, GRUs serve to extract salient features from raw text, which are then processed by CNNs to assist RNNs
in making accurate predictions. Comparative analyses with existing models underscored the GCR-NN’s efficacy,
achieving an accuracy of 98% and a 97% detection rate for racist tweets.

Peng et al. [21] employed a sophisticated Bidirectional Encoder Representations from Transformers (BERT)
model, specifically optimized for Twitter sentiment classification, to analyze the tone of approximately one million
tweets related to the Black Lives Matter (BLM) movement from July 2013 to March 2021. This model, tested on
the Sentiment 140 dataset, achieved unparalleled results among machine learning models, registering an accuracy of
0.94 in the testing phase. The study utilized metrics such as retweet counts and word counts in tweets to visualize
key concepts and milestones of the BLM movement. Public opinion analysis revealed varied degrees of support for
issues like social justice and police brutality. The implications of this research extend to the promotion and analysis
of social and political movements.

Ghosal and Jain [22] introduced the first unsupervised detection system, which encompasses the HateCircle
algorithm, hate tweet classification, and code-switch data preparation techniques. The HateCircle method, employing
word co-occurrence analysis, determines the hate orientation of each phrase. A multi-class system for hate tweet
categorization was developed using part-of-speech tagging, Euclidean distance, and Geometric median methods.
The system proved more effective in identifying hate content in local scripts compared to Roman script, advocating
its use in code-switch data preparation. Utilizing an enhanced hate lexicon in conjunction with various dictionaries,
the system achieved a maximum F1-score of 0.74 in the Hindi dataset and 0.88 in the Bengali dataset. Comparative
evaluation of the proposed parts of speech tagging and Geometric detection strategies with the HateCircle method
and hate tweet identification framework showed that HateCircle attained maximum accuracies of 0.73 and 0.78 on
the Hindi and Bengali datasets, respectively. This study demonstrates the efficacy of contextual detection research
incorporating a language-independent component in combating the spread of subtly harmful content on social media.

Ali et al. [23] proposed novel graph-based algorithms for identifying hate material on social media. Utilizing
Twitter, a dataset was created for testing and validation purposes, involving the extraction and annotation of tweets
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by language experts. The authors introduced a custom LSTM-GRU model to categorize hate speech into distinct
classes. Applied to the compiled dataset, the model achieved an accuracy of 98.14 percent. The Girvan-Newman
method was employed to identify key individuals and intraclass communities on Twitter. This approach is significant
for monitoring social media to detect potential disruptions, including the identification of hate tweets and groups.

In a separate study, Agarwal et al. [24] explored enhancing the efficiency of automatic hate speech detection on
Social Media Platforms (SMPs) by parallelizing traditional ensemble learning techniques. The research involved
parallelizing three popular hate speech detection algorithms—bagging, A-stacking, and random sub-space—and
their performance was compared with their serial counterparts across various high-dimensional datasets. These
datasets encompassed diverse topics such as the COVID-19 pandemic and the 2020 US farmers’ agitation in India
(2021). The parallel models demonstrated a considerable increase in speed and efficiency, validating their suitability
for the intended applications. This study underscored the importance of generalization by testing the models in a
cross-dataset environment, finding that the parallelized algorithms maintained accuracy comparable to their serial
versions.

Joloudari et al. [25] proposed future research directions for the development of a BERT-based model tailored
for sentiment analysis. In this approach, a deep CNN architecture captures the hierarchical structure of tweet
embeddings, while the BERT model accumulates contextual representations of words, efficiently delineating the
intricate semantics of tweets related to COVID-19. Comparative analysis with existing sentiment analysis techniques
demonstrated that the BERT-deep CNN models excel in real-time classification of sentiments in COVID-19-related
tweets. The study’s findings contribute significantly to understanding public sentiment, offering insights that are
crucial for policymakers in discerning public opinion, identifying misinformation, and formulating emergency
response strategies. This research sets a new benchmark for future studies in sentiment analysis of social media data
in crisis contexts and furthers the development of sentiment analysis methodologies.

Saleh et al. [26] explored the effectiveness of using domain-specific word embedding for the automatic identification
of hate speech. This method assigns negative connotations to specific terms to detect coded words effectively.
Additionally, the application of the transfer learning language model (BERT), known for its proficiency in various
NLP tasks, was examined for hate speech classification. Experimental results revealed that a bidirectional LSTM-
based model, employing domain-specific word embedding, achieved an F1-score of 93% on a balanced dataset
comprising existing hate speech datasets. In contrast, the BERT model attained a 96% F1-score. The performance
of pre-trained models was found to be influenced by the volume of training data. Despite the disparity in corpus
size, the first method, focusing on domain-specific data during training, outperformed the BERT model, trained on
a larger corpus. The study highlighted the advantage of creating large pre-trained models from rich domain-specific
content for contemporary social media platforms.

Nagar et al. [27] introduced a novel methodology for the detection of hate dialogue on Twitter. This method
integrates the author’s content, social context, and linguistic characteristics to enhance the accuracy of hate speech
detection. Incorporating textual content and the surrounding social environment, the approach employs an encoder to
assimilate the unified features of the authors. The adaptability of this framework allows the use of various text encoders
to capture the textual properties of the material, rendering it suitable for a broad spectrum of existing and future
language models. The efficacy of this method was validated on two distinct Twitter datasets, demonstrating significant
improvements over current state-of-the-art approaches. The results highlighted the importance of considering social
context in enhancing the identification of hate speech on Twitter.

Liu et al. [28] proposed BotMoE, a system designed to detect fraudulent bots on Twitter by using multiple
modalities of user information, including metadata, textual content, and network structure. The system incorporates
a Mixture-of-Experts (MoE) layer, which considers the Twitter communities to augment domain generalization and
adaptability. BotMoE constructs modal-specific encoders for metadata attributes and textual structure, subsequently
employing a MoE layer that categorizes users into appropriate groups based on community expertise. The final stage
involves an expert fusion layer that amalgamates user representations from metadata, text, and graph perspectives,
ensuring consistency across all modalities. Extensive trials indicated that BotMoE significantly surpassed existing
methods in identifying sophisticated and stealthy bots, demonstrating reduced reliance on training data and enhanced
generalization capabilities for new and unknown user populations.

Mnassri et al. [29] addressed the challenge of unbalanced and sparsely labeled datasets by introducing a learning
strategy that incorporates external emotional variables from diverse corpora. This study utilized BERT and mBERT,
the latter focusing on cross-lingual identification of abusive material. Leveraging the shared encoder of transformers,
the model concurrently recognizes abusive content and incorporates emotional aspects. This approach facilitates
rapid learning through the use of auxiliary information and enhances data efficiency by minimizing overfitting through
shared representations. The research indicated that incorporating emotional intelligence significantly improved the
accuracy of databases in recognizing hate speech and abusive language. Notably, multi-task models exhibited fewer
errors than single-task models in both hate speech identification and aggressive language detection tasks, presenting
an intriguing development in this field.
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Almaliki et al. [30] introduced a method for the precise identification of Arabic anti-Semitism on Twitter. This
study implemented the Arabic BERT-Mini Model (ABMM) for detecting online bigotry. Twitter data were analyzed
using bidirectional encoder representations from the model, categorizing the findings into typical, abusive, and hateful
classes. Comparative tests were conducted against current state-of-the-art methods, and the results demonstrated
that the ABMM model excelled in detecting Arabic hate speech, achieving a highly encouraging score of 0.986.

Gite et al. [31] explored the application of Ant Colony Optimization (ACO) as an optimization strategy, integrating
it with four machine learning models utilizing various feature selection and extraction methods on K-Nearest
Neighbour (KNN) and Logistic Regression (LR). The objective was to demonstrate the differences between findings
using comparative analysis. The proposed feature selection and extraction methods facilitated the improvement of
the machine learning models’ efficiency. This study considered both numerical datasets for stroke prediction and
textual datasets for hate speech detection. The text dataset, compiled from Twitter API data encompassing tweets
with positive, negative, and neutral emotions, utilized the TF-IDF method in conjunction with ACO. The application
of ACO to the Random Forest model resulted in a significant accuracy enhancement, reaching up to 10.07 percent.

Fazil et al. [32] presented a Bidirectional LSTM (BiLSTM) network for identifying xenophobic content. The
model employed a multi-channel setup using contemporary word representation techniques to capture semantic
relationships across various time frames using multiple filters of different kernel widths. The network processed
encoded representations from several channels, with the output of a stacked 2-layer BiLSTM being combined and
transmitted through a dense layer, subsequently weighted by an attention layer. The classification was conducted
using a sigmoid function in the output layer. The performance of this model was evaluated on three Twitter datasets
using four assessment metrics. Comparative analysis with five state-of-the-art models and an aggregate of baseline
models indicated superior performance of the proposed model. The ablation study revealed that the removal of
channels and the attention mechanism significantly impacted the model’s performance. An empirical study was
conducted to determine the optimal settings for the model’s word representation methods, optimization algorithms,
activation functions, and batch size.

3 Material and Methods

For the automatic detection of online hate crimes, access to annotated corpora is indispensable. In the absence of a
standardized benchmark, researchers have been compelled to collect and categorize data on hate crimes independently.
This research aims to fill the gap in literature focusing specifically on the identification and motivations of hate crimes,
which has been previously unexplored, thus hampering the understanding of prevalent hate crime causes and their
mitigation.

3.1 Corpus Construction

The HateMotiv corpus was developed through the collection of Twitter posts spanning nine years (1 January
2010–30 December 2019), using the TweetScraper too [6]. It is important to note that the presence of terms such
as “hate crime” or “hate crimes” in a tweet does not necessarily imply the endorsement or incitement of violence
against a specific group. Twitter users commonly employ hashtags to associate their posts with specific events
or topics [33]. Consequently, prevalent hashtags related to hate crimes were identified using the “Hashtagify”
application (https://hashtagify.me/) [34]. Hashtags including “hate crime,” “racist,” “racism,” and “Islamophobia”
were among those selected for compiling relevant tweets. These hashtags, found to align closely with the FBI’s
categorization of hate crimes, were employed as keywords to extract suitable tweets. An English instructor with
extensive annotation experience selected these keywords, resulting in a query that returned 23,179 tweets containing
the specified hashtags. To optimize the resources for manual annotation, a subset of 5,000 tweets was randomly
selected for further analysis.

3.2 Annotation Process

Each tweet was annotated by two native English-speaking annotators [35]. Uniform standards were applied in
the annotation process, focusing on identifying the type of hate crime and the motivation behind it. The corpus
was annotated for four categories and causes of hate crimes, as outlined in Table 1. Regular discussions were held
between the annotators and the judge overseeing the annotation process to address any arising inconsistencies or
challenges.

The HateMotiv corpus analysis revealed that physical assault constitutes the most common type of hate crime,
while verbal abuse is the least frequently recorded category on Twitter. A notable observation from the data is the
primary role played by the inability to accept diversity in terms of skin color and nationality in the perpetration of
various forms of hate crimes. Conversely, hate crimes attributed to disability and negative attitudes towards disabled
individuals constituted a minor percentage of the overall causes.

92



Table 1. Glossed entity classes for HateMotiv corpus

Class Category Explanation

Hate crime type Hate crime type refers to categories identified by the FBI, including physical assault,
verbal abuse, and incitement to hatred

Motivation Motivation refers to the underlying motive for hate crimes, such as bias related to racism,
religion, disability, and unknown

Furthermore, sexism or gender-based discrimination emerged as the second most prevalent justification for hate
crimes, following racial prejudice. Notably, a proportion of hate crimes were committed with no apparent motive,
reflecting the perpetrators’ inherent biases or mental health issues. This is captured in the corpus under the term
“unknown motive”. The data indicated that assaults were the most frequent type of hate crime committed for reasons
classified as unknown. However, the incidence of crimes committed for indeterminate reasons remains relatively
low, accounting for approximately 0.011% of all categorized hate crimes.

3.3 Cleaning and Visualizing Data

The analysis of emojis within tweets was employed as a preliminary method to gauge the tone of the message.
However, the primary focus was on textual data, which required extensive cleaning and preprocessing. This process
involved the following four steps:

Step 1: Filtering. The first step involved the removal of hypertext links (e.g., http://google.com) and user handles
typically starting with the “@” symbol on Twitter. This was crucial to eliminate irrelevant data and focus on the
content of the tweets.

Step 2: Tokenization. In the second step, a Bag of Words representation was created. This involved the exclusion
of punctuation and question marks to facilitate the appropriate representation of large datasets.

Step 3: Stop-word removal. Commonly occurring words such as “a,” “an,” and “the”, which do not contribute
to the analysis, were eliminated in the third step.

Step 4: N-gram creation. This step involved generating n-grams, defined as sequences of ‘n’ words or characters
extracted from the text. While unigrams and bigrams have distinct utilities, this study utilized unigram tokens for
tweet preparation. The decision to focus on unigrams was based on their comprehensive data coverage.

The selection between constructing unigrams or bigrams should be guided by the specific objectives of the study.
Bigrams, such as “not good,” are effective in conveying emotions succinctly, making them particularly suitable for
sentiment analysis and product reviews. Conversely, unigrams offer comprehensive data coverage. In this research,
the focus was on unigram tokens for tweet preparation, to evaluate the efficacy of various stemmers and lemmatizers.
It was found that while lemmatizers could deconstruct compound words into their elements, this process did not
significantly enhance accuracy compared to the categorization models applied. Post-cleanup of text documents,
tokenization was employed for more detailed analysis, necessitating the transformation of these tokens into feature
vectors. Feature vectors serve as a crucial representation in the training of classification algorithms.

Two transformation techniques were compared: the Bag of Words method and the TF-IDF method. The Bag of
Words approach, a straightforward transformation strategy, utilizes the corpus’s diverse words as features, with each
column indicating the frequency of a specific term’s occurrence. Despite its computational simplicity, this method
provides limited insights beyond word frequency. The TF-IDF method, on the other hand, combines the frequency
of a term’s occurrence in the text with its distribution across different document types to assign a weight to each
word. This implies that commonly occurring words across various text types are assigned a lower weight. The
feature vectors generated using these methods were successfully prepared for use in training classification models.

3.4 Classification Using the Proposed Architectures

This study introduced three distinct deep learning models for hate speech classification: a LSTM network, a
CNN, and a hybrid model combining both. The performance of each model in executing classification tasks was
evaluated comprehensively. The CNN model, characterized by higher efficiency and a manageable number of
trainable parameters, was ultimately selected for deployment on System-on-Chip Field Programmable Gate Arrays
(SoC-FPGAs). The choice was influenced by hardware limitations, as SoC-FPGAs, known for their high performance
and low power consumption, are suitable for edge computing applications, but only the CNN model was compatible
with this hardware.
3.4.1 LSTM architecture

As depicted in Figure 1, the employed LSTM architecture incorporates two LSTM layers, each consisting of 100
LSTM cells. These layers are designed to accurately represent the sequential relationships between the features and
the labels of hate speech data. The LSTM layers process the incoming data, discerning complex connections between

93



characteristics and labels. Subsequently, two fully connected layers receive the output from the LSTM layers and
generate a final prediction based on the processed data.

Figure 1. Proposed LSTM architecture

3.4.2 CNN architecture
Figure 2 presents the CNN model structure, comprising several CNN layers followed by pooling layers, originally

developed for image classification tasks. For the purpose of hate speech classification, data arrays, represented as
images, were input into the model. The CNN was then trained to identify pertinent features and make predictions
about the input data concerning the classification of racist content.

Figure 2. Proposed CNN architecture

3.4.3 CNN-LSTM architecture
The hybrid architecture, depicted in Figure 3, amalgamates the strengths of CNN and LSTM networks to enhance

outcomes for complex deep learning tasks. This model harnesses the LSTM’s ability to model temporal correlations
among features in conjunction with the CNN’s capacity to extract pivotal information from the data. The CNN
simplifies the feature extraction process by identifying key elements, while the LSTM maintains the temporal
relationships within the data.

The CNN model was ultimately chosen for hardware implementation due to its superior performance and
efficiency compared to the LSTM and CNN-LSTM models. The selection was also influenced by the model’s
simplicity in terms of understanding and implementation on Field Programmable Gate Arrays (FPGAs). Hardware
limitations were a contributing factor, as the FPGA was compatible only with the CNN architecture.

In summary, the study presented three distinct deep learning models - CNN, LSTM, and their hybrid - for the
classification of racist content. Extensive testing led to the selection of the CNN model for implementation on
SoC-FPGAs due to its high performance and computational efficiency. The CNN model demonstrated superiority
over LSTM models in terms of accuracy and processing efficiency, with all models capable of analyzing temporal
aspects of data.
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Figure 3. Proposed CNN-LSTM architecture

3.4.4 CNN-LSTM architecture
Three models were implemented for comparative analysis: an LSTM model, a CNN, and a CNN-LSTM hybrid.

The LSTM model consists of two layers, each with 100 units, following an input layer that processes 1200 features
sequentially. The initial LSTM layer receives data in the format of (1, 1200) and outputs in the form of (1, 100), which
is then fed into the subsequent LSTM layer. A series of fully connected layers compute the probability distribution
for each class after the network learns the association between features and labels.

The proposed CNN architecture comprises six CNN blocks, each containing a CNN layer followed by a max
pooling layer. After the CNN blocks, a flatten layer converts the aggregated features into a one-dimensional array. A
dropout layer with a 50% rate is introduced to prevent overfitting, randomly eliminating neurons to reduce dependency
on training data. The output from the CNN layers is passed to fully connected layers, which produce the probability
distribution for each class.

In the CNN-LSTM hybrid:
Each of the four CNN processing units includes a CNN layer for feature extraction and a max pooling layer to

capture the most salient features.
A reshape layer then transforms the output from the CNN blocks, converting 3D CNN output into 2D LSTM

input.
The CNN block’s output is fed into an LSTM layer to learn features that evolve over time.
Finally, a flatten layer followed by two fully connected layers generates a probability distribution for the classes.

3.4.5 Parameter tuning
The performance of the implemented deep learning models can be significantly influenced by the tuning of

hyperparameters. These models necessitate meticulous adjustment of several hyperparameters, which affect memory
and compute complexity. This section outlines the additional hyperparameters that facilitate the selection of a
specific approach for given scenarios. It is observed that superior outcomes often require extensive tuning of these
hyperparameters.

Hyperparameter optimization can be mathematically defined as:

x∗ = argmx∈X f(x) (1)

where, f(x) represents the objective function to minimize the error measured on the validation set, and x∗ is the
set of hyperparameters within the domain X that yields the lowest error. The goal is to identify the hyperparameter
values that result in optimal performance on the validation set metric. The selection between manual and automatic
hyperparameter tuning establishes a balance between the maximal computational cost of automated models and
the in-depth knowledge required for manual selection. In this study, a QBO model was utilized to fine-tune the
CNN-LSTM model’s hyperparameters.

QBO
This section delineates the principles of QBO, an approach utilized for feature selection in this study. In QBO,

binary representation is used, where ‘1s’ indicate features to be retained and ‘0s’ denote features to be discarded.
The quantum bit (Q-bit) operations in QBO involve each feature being represented as a superposition, characterized
by a complex integer. This is mathematically expressed as:

q = α+ iβ = eiθ, |a|2 + |β|2 = 1 (2)

where, α and β correspond to the two potential states of the Q-bit, namely ‘0’ and ‘1’. The angle of q is adjusted
using the arctan function.

The primary objective of QBO is to determine the change in the value of q. This process is conducted using a
calculation method ∆θ.
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q(t+ 1) = q(t)×R(∆θ) = [a(t)β(t)]×R(∆θ) (3)

where, R(∆θ) stands for the rotation matrix associated with a change of ∆θ in the angle, defined as:

R(∆θ) =

[
cos(∆θ)− sin(∆θ)
sin(∆θ)− cos(∆θ)

]
(4)

The optimal solution, denoted as Xb, is predetermined to set the value of the parameters influencing q. The
binary representation of a solution Xi is represented by its j-th bit Xij , while the j-th bit of Xb at time t is denoted
as Xbj . As reported in the study [36], the angle vector in QBO is capable of assuming one of eight distinct values,
allowing for varied adjustments in the Q-bit representation.

The primary objective of QBO is to balance the exploration and exploitation potential. Initially, the data is split
into a 70% training set and a 30% testing set. Random numbers are then used to determine the fitness of each agent.
The agent with the lowest fitness score is selected as the best agent. The AHA [37] is employed for exploitation, and
the solution is updated iteratively until the termination criteria are met. Following this, the implemented QAHA is
evaluated on the reduced dimensionality of the test set based on the optimal solution. The QAHA will be expounded
in the subsequent sections.

A. First stage
Initial agents representing the population are generated, with each solution comprising D Q-bits. Consequently,

each solution Xi can be expressed as:

Xi = [qi1 |qi2| . . . |qiD|] = [θi1 |θi2| . . . | θiD] , i = 1, 2, . . . N (5)

where, Xi refers to the superposition of probabilities of selecting or not selecting features.
B. Second stage
The process of updating agents until a specified criterion is met constitutes a critical phase in the application of

the QAHA. Initially, the binary representation of each solution, denoted as Xi, is determined through an equation.
This representation involves a random charge rand ∈ [0, 1] and a parameter β as defined in Eq. (2).

BXij =

{
1 if |β|2 > rand
0 otherwise (6)

Subsequently, the fitness value for each agent is computed. This computation is achieved by training a CNN-
LSTM classifier, with the features derived from BXij serving as the model’s hyperparameters. The fitness value is
formulated as:

Fit i = ρ× γ + (1− ρ)×
(
|BXij |

D

)
(7)

where, |BXij | represents the error rate in classifying features using the CNN-LSTM classifier, and denotes the total
number of features employed. A normalization factor within the range [0, 1] ensures parity in fitness levels across
different agents. The LSTM model is preferred due to its simplicity, efficiency, and reliance on a singular tuning
parameter. Its ability to retain information from the training set contributes to its effectiveness, particularly when
other classifiers might not yield desired results.

The subsequent stage involves identifying the most optimal agent Xb, characterized by the minimum fitness value
Fitb. This step is pivotal in the QAHA process as it determines the most suitable set of features for the classification
task at hand.

C. Third stage
The test set is narrowed down to features equivalent to those in the binary representation of Xb. The

reduceddimension test set is then used to apply the trained classifier for predictions. Subsequently, the output
quality is thoroughly evaluated. The computational cost of QAHA is determined by the initial population size,
population size N , fitness evaluation NFit, and maximum iteration count.

O(QAHA) = O(T × C ×N + T ×N ×D + T ×D/2) +O(N ×D) (8)

In summary, the complexity of QAHA is given by:

O(QAHA) = O (T ×NFit ×N + T ×N ×D + T ×D/2) (9)
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4 Results and Discussion
4.1 Hardware and Software Used for the Experiments

For preprocessing the tweets and applying deep learning methodologies, a Jupyter notebook, scripted in Python
3.6, was employed. The computational tasks were executed on a workstation equipped with the following hardware
specifications: an Intel Core i7-9700K processor operating at 3.60GHz, 32.0GB of RAM, and a 6GB NVIDIA
GeForce graphics card. For text preprocessing, the spaCy and nltk libraries were utilized, facilitating the efficient
processing of the datasets.

4.2 Performances Metrics

The performance of the model was evaluated using the confusion matrix, a tool that provides four distinct
outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The effectiveness of
the model was determined through the calculation of various metrics derived from the confusion matrix.

Accuracy = (TN + TP )/(TN + TP + FN + FP ) (10)

Sensitivity =

(
TP

TP + FN

)
(11)

Specificity =

(
TN

TN + FP

)
(12)

Precision =
TP

TP + FP
(13)

F − Measure =
2TP

2TP + FP + FN
(14)

4.3 Analysis of the Proposed Classifier

The efficacy of the proposed model was compared with that of generic deep learning models. The uniqueness
of the dataset used in this study, which had not been previously employed for validation analysis, necessitated this
comparison. The results of the analysis are presented in Table 2 and Table 3.

The analysis of the hybrid model’s performance is detailed in Table 2. The Autoencoder (AE) model demonstrated
an Area Under the Curve (AUC) of 0.758 and achieved an accuracy of 87.72%. Precision was recorded at 78.14%,
recall at 89.92%, and the F-measure at 88.67%. Subsequently, the Deep Belief Network (DBN) model exhibited
an AUC of 0.854, accuracy of 89.17%, precision of 70.91%, recall of 85.69%, and an F-measure of 82.33%. The
RNN model registered an AUC of 0.687, with an accuracy of 90.28%. The precision was noted at 64.17%, recall
at 86.66%, and F-measure at 80.24%. Following this, the CNN model showed an AUC of 0.947, an accuracy of
92.78%, precision of 91.94%, recall of 90.61%, and an F-measure of 86.86%. The LSTM model recorded an AUC
of 0.957 and an accuracy of 94.34%. Its precision was 92.45%, recall 93.78%, and F-measure 91.36%. Finally,
the combined CNN-LSTM model achieved the highest performance with an AUC of 0.967, accuracy of 95.97%,
precision of 96.84%, recall of 97.24%, and an F-measure of 94.13%.

Table 2. Analysis of the proposed hybrid model without QAHA

Classification AUC Accuracy (%) Precision (%) Recall (%) F-Measure (%)
AE 0.758 87.72 78.14 89.92 88.67

DBN 0.854 89.17 70.91 85.69 82.33
RNN 0.687 90.28 64.17 86.66 80.24
CNN 0.947 92.78 91.94 90.61 86.86

LSTM 0.957 94.34 92.45 93.78 91.36
CNN-LSTM 0.967 95.97 96.84 97.24 94.13
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Table 3. Analysis of the proposed hybrid model with QAHA

Classification AUC Accuracy (%) Precision (%) Recall (%) F-Measure (%)
AE 0.9343 91.56 84.56 90.66 90.67

DBN 0.8923 90.12 85.2 92.57 86.54
RNN 0.9082 93.22 78.7 90.67 88.67
CNN 0.9135 94.43 93.6 94.01 91.54

LSTM 0.9544 93.23 94.7 96.62 95.09
CNN-LSTM 0.9829 98.45 98.8 99.56 97.70

Table 3 presents the outcomes from the assessment of the hybrid model integrated with QAHA. The AE model
exhibited an AUC of 0.9343, achieving an accuracy of 91.56%. Precision was recorded at 84.56%, recall at 90.66%,
and the F-measure at 90.67%. The DBN model attained an AUC of 0.8923, accuracy of 90.12%, precision of 85.2%,
recall of 92.57%, and an F-measure of 86.54%. The RNN model demonstrated an AUC of 0.9082 and achieved
an accuracy of 93.22%. Its precision was noted at 78.7%, recall at 90.67%, and F-measure at 88.67%. The CNN
model showed an AUC of 0.9135, an accuracy of 94.43%, precision of 93.6%, recall of 94.01%, and an F-measure of
91.54%. Further, the LSTM model registered an AUC of 0.9544, with an accuracy of 93.23%, precision of 94.7%,
recall of 96.62%, and an F-measure of 95.09%. Lastly, the CNN-LSTM model, representing the pinnacle of this
research, achieved an AUC of 0.9829, an exceptional accuracy of 98.45%, precision of 98.8%, recall of 99.56%, and
an F-measure of 97.70%.

Figure 4. AUC comparison

Figure 5. Accuracy analysis with and without the optimization model
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Figure 6. Graphical representation of various deep learning models

Figure 7. Recall analysis

Figure 8. Validation analysis of QAHA

Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8 provide graphical representations of these results, including
AUC comparison (Figure 4), accuracy analysis with and without the optimization model (Figure 5), and recall
analysis (Figure 7), among others. The validation analysis of QAHA is depicted in Figure 8. The analysis revealed
that the implementation of QAHA significantly enhanced the performance of the deep learning models. The CNN-
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LSTM model with QAHA outperformed the other models, demonstrating the effectiveness of the proposed hybrid
approach in the context of hate speech classification.

5 Conclusions and Future Work

The emergence of racist content on social media platforms, particularly Twitter, has necessitated the development
of automated detection and removal mechanisms. This study has adopted a sentiment analysis approach to identify
racist tweets, focusing on specific phrases and words. Following data preprocessing, neural network classification
was conducted using LSTM, CNN, and a hybrid CNN-LSTM model. The experimental results demonstrated that
the CNN and hybrid models significantly outperformed the LSTM model in both phases of the analysis. It was found
that, despite its lower execution time, LSTM’s complexity rendered it less suitable for SoC-FPGAs compared to the
CNN model. The CNN’s simpler architecture and high accuracy underscored its appropriateness for SoC-FPGA
implementation. Furthermore, the QAHA was employed to optimize hyperparameters, enhancing the classification
accuracy of the proposed model.

The dataset used in this study is publicly available, offering a valuable resource for future research into the
automatic detection and prediction of hate crimes and their underlying motivations, including racism. This
accessibility to the scientific community could spur further investigations into this domain. The experimental
study revealed that the proposed model achieved superior performance compared to baseline models, with accuracy
and recall rates exceeding 95% and 96%, respectively. Understanding the factors contributing to online hate crimes
through advanced deep-learning techniques can be instrumental in curbing detrimental biases and reducing the
incidence of crimes driven by such biases. Future work in this area aims to refine and employ sophisticated
deep-learning methods to train models in recognizing the root causes of hate crimes shared online.
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