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Abstract: To facilitate early intervention and control efforts, this study proposes a soybean leaf disease detection
method based on an improved Yolov5 model. Initially, image preprocessing is applied to two datasets of diseased
soybean leaf images. Subsequently, the original Yolov5s network model is modified by replacing the Spatial
Pyramid Pooling (SPP) module with a simplified SimSPPF for more efficient and precise feature extraction. The
backbone Convolutional Neural Network (CNN) is enhanced with the Bottleneck transformer (BotNet) self-attention
mechanism to accelerate detection speed. The Complete Intersection over Union (CIoU) loss function is replaced by
EIoU-Loss to increase the model’s inference speed, and Enhanced Intersection over Union (EIoU)-Non-Maximum
Suppression (NMS) is used instead of traditional NMS to optimize the handling of prediction boxes. Experimental
results demonstrate that the modified Yolov5s model increases the mean Average Precision (mAP) value by 4.5%
compared to the original Yolov5 network model for the detection and identification of soybean leaf diseases.
Therefore, the proposed method effectively detects and identifies soybean leaf diseases and can be validated for
practicality in actual production environments.
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1 Introduction

Soybean is one of the important grain crops in China. During the growth of soybeans, the occurrence of diseases
can cause the plants to weaken and become infected, affecting the yield and quality of soybeans. Therefore, it is
extremely important to quickly detect and carry out early prevention and control tasks to avoid the economic losses
caused by diseases in soybean cultivation each year [1].

Traditional detection methods mainly fall into two categories. One is manual detection and identification, which
requires a large amount of manpower, material resources, and time costs, and the detection results are susceptible
to human subjective consciousness, leading to misjudgments. The other is based on image-based machine learning
methods. Shrivastava and Hoodal [2] proposed a method based on digital image processing technology to detect
and classify soybean leaf blight and gray spot disease, with identification accuracies of 70% and 80%, respectively.
This method extracts the shape feature vectors of leaf images and uses the K-Nearest Neighbors (KNN) classifier
for detection and classification. However, the recognition accuracy of this method is not enough, and the extraction
of image shape feature vectors is relatively simple, which cannot distinguish leaves with complex backgrounds
and deformation features. Araujo and Peixoto [3] proposed a digital image processing technique combining color
moments, Local Binary Patterns (LBP), and Bag of Visual Words (BoVW) models, using the extracted image features
as inputs for a Support Vector Machine (SVM) to achieve disease classification. However, the recognition rate of
this method only reached 75.8%, which is not sufficient for application in real environments. Traditional machine
learning requires a series of complex data processing steps, and generally uses simpler function forms, lacking the
expressive power of complex models, leading to overfitting and low recognition accuracy in real environment disease
detection.

Currently, researchers both domestic and international mainly focus on deep learning for the detection and
identification of soybean diseases. For example, Li et al. [4] proposed combining the feature pyramid model with the
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Faster R-CNN model, which achieved an average precision mean of 82.48% for the detection of five types of apple
leaf diseases. However, this method is not accurate enough for disease detection and the model detection has certain
biases. He et al. [5] used an improved Yolov5 model based on weighted bidirectional feature fusion technology to
detect pests in economic forests, with an average precision mean reaching 92.3%. However, the complex background
of the dataset limits the extraction of feature targets in this method.

This paper focuses on whether soybean disease detection can achieve high accuracy and be applied to actual
agricultural production environments. It proposes to improve the SPP structure based on the original Yolov5s
network model, enhance the model’s data feature extraction capabilities, make the model training more efficient,
improve the CNN architecture in the backbone network to further enhance the model’s detection accuracy, replace
the CIoU loss function, improve NMS, and improve the detection of occluded targets. This study investigates the
improved Yolov5 model’s detection and identification rates for two types of soybean leaf diseases, aiming to improve
the accuracy of soybean disease detection and various identification schemes.

2 Yolov5 Network Model and Improvements
2.1 Yolov5 Network Structure

Yolov5 is a one-stage object detection network, which can be further subdivided into several different versions
based on the size of the algorithm model and computational complexity: Yolov5s, Yolov5m, Yolov5l, Yolov5x, and
Yolov5n. As the depth and width of the network model increase, the model’s detection accuracy further improves,
but at the cost of slower detection speeds. Therefore, this paper chooses the Yolov5s model, which has lower model
complexity. It better meets the real-time requirements of this study, consuming less computing power to maximize
recognition speed [5–9].

The Yolov5s model structure primarily consists of the Input, Backbone, Neck, and Prediction segments. The
Input part uses the Mosaic data augmentation method, which randomly scales, crops, redistributes, and stitches
the input data, adding many small targets and enhancing the robustness of the trained model. The Backbone is
the feature extraction part of the Yolov5 network, where the feature extraction capability directly affects the entire
network’s performance, it includes the Focus, Conv, C3, and SPP modules. The Focus module slices the image,
transferring the image’s width (W) and height (H) information to the channel space, allowing for 2x downsampling
without losing any information. The Conv module performs convolution, batch normalization (BN), and activation
function operations on the input feature map. The C3 module is used for part of the feature map extraction, where
one part goes through block calculations, and another part through a convolutional shortcut, both parts are then
combined using concat. The SPP module is designed to fuse feature maps of different resolutions by reducing the
input channels by half with a standard convolutional module, followed by pooling operations with kernel sizes of 5,
9, and 13, and then concatenating the three max pooling results with the unpooled data, finally doubling the channel
number [10–15]. The Neck is composed of FPN+PAN; the FPN structure downsamples feature maps of different
resolutions to obtain a set of feature maps with high semantic content, then the PAN upsamples these feature maps,
enlarging their dimensions to detect small targets with large-sized feature maps and large targets with small-sized
ones, merging high and low-level feature information to output prediction feature maps. The Prediction part mainly
uses the loss function (CIoU) Loss and NMS for post-processing and target prediction box handling [16–18].

2.2 Improvements to the Yolov5s Model
2.2.1 SimSPPF structure

Figure 1. SimSPPF structure
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The Yolov5 model uses a SPP structure, and subsequently introduced the SPPF, which replaces the parallel
Maxpool of the original SPP with a more efficient, faster serial Maxpool. The SimSPPF further builds on this by
replacing the SiLU activation function with ReLU, and uses different sized pooling kernels across various scales to
enhance detector performance. In the feature parsing process, the nodes in SimSPPF are divided into different layers
by scale, with each layer’s node scale being twice that of the previous layer. In each layer, pooling technology is
used to reuse already allocated nodes, thus reducing memory usage. This method decreases spatial occupancy and
improves parsing performance [19, 20]. The structure of SimSPPF is shown in Figure 1.
2.2.2 BotNet structure

In Yolov5, the backbone feature extraction network is a CNN network, which has translational invariance and
locality but lacks the capability for global and long-distance modeling. BotNet is a simple yet powerful backbone
that, unlike ResNet50, uses Multi-Head Self-Attention (MHSA) to replace the 3×3 spatial convolution in the
Bottleneck [21–24]. The BotNet structure is shown in Figure 2.

Figure 2. BotNet structure diagram

Similar to traditional attention mechanisms, MHSA can focus more on key information in the input. It runs
multiple Self-Attention layers in parallel and synthesizes the learning outcomes of each “head”, capturing information
from the input sequence across different subspaces, thereby enhancing the model’s expressive capacity. The structure
of MHSA is shown in Figure 3.

Figure 3. MHSA structure
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MHSA splits the input’s query, key, and value matrices into H heads, computes attention independently within
each head, then concatenates these heads’ outputs and applies a linear transformation. This enables simultaneous
capture and integration of multiple interaction information across different representational subspaces. The specific
formulas are as follows [25, 26]:

Headi = Attention (Qi,Ki, Vi) = softmax

(
QiK

T
i√

dk

)
∗ V, i ∈ [1, H]

MHSA(Q,K, V ) = Concat (head1, head2, . . . , headn)W
o

In Self-Attention, Q, K, and V are matrices obtained from the same input through three different linear transfor-
mations, where QKT is a s similarity matrix. Applying softmax to this matrix row-wise yields the Attention matrix.
The output matrices Headi - are concatenated along the feature dimension (dim) to form a new matrix, which is then
multiplied by the matrix W o to produce the output MHSA(Q,K, V ) [27, 28].
2.2.3 EIoU loss function

This paper proposes an improved loss function to enhance the model’s recognition accuracy. The original Yolov5
model uses the CIoU loss function during training, which should include coverage area, distance between centers,
and aspect ratio of the detection data. The CIoU loss, building on the Distance Intersection over Union (DIoU) loss,
adds a measure of the aspect ratio v between the predicted box and the ground truth (GT) box, which can accelerate
the regression speed of the prediction box to some extent. However, there are still significant issues, as the model
detection can sometimes be blurry. Based on the gradient formulas for predicted box width (w) and height (h), it
is evident that when one value increases, the other must decrease; they cannot increase or decrease simultaneously.
To address this, EIoU proposes direct penalties on the predictions of w and h, where C2

ω and C2
h are the width and

height of the smallest enclosing rectangle around the prediction box and GT box. The calculation formula for EIoU
is as follows [29]:

LEIoU = 1− IoU +
ρ2 (b, bgt)

c2
+

ρ2 (ω, ωgt)

C2
ω

+
ρ2 (h, hgt)

C2
h

Considering the issue of sample imbalance in bounding box regression tasks, EIoU is combined with Focal Loss.
From the perspective of gradients, this approach separates high-quality anchor boxes from low-quality ones, i.e.,
reducing the optimization contribution of numerous anchor boxes that overlap less with the target box, focusing the
regression process on high-quality anchor boxes. The calculation formula for EIoU Loss is as follows [30]:

LEIoULoss = IoUγ ∗ LEIoU

2.2.4 NMS
In recent years, common object detection algorithms (such as RCNN, SPPNet, Faster-RCNN, etc.) typically

identify many potential object bounding boxes from a single image, assigning each a probability of belonging to a
certain category [31, 32]. NMS filters out the boxes within a certain area that have the highest score for the same
category. Through iterative processing, it continually uses the highest scoring box to perform IoU operations with
other boxes, filtering out those with high IoU values to retain the best result. In Yolov5, NMS only considers the
overlap between the predicted boxes and true boxes and does not account for distances between centers or aspect
ratios. Therefore, this paper proposes EIoU-NMS, which considers the distance between the centers of two boxes,
resulting in a model that performs better with EIoU-NMS. The calculation formula for EIoU-NMS is as follows [33]:

Si =

{
Si, IoU −REIoU (M,Bi) < ε
0, IoU −REIoU (M,Bi) ≥ ε

2.3 Improved Network Model

This study proposes four improvements based on the Yolov5s model. First, the SPP part of the backbone network
is improved by introducing SimSPPF to replace the original SPP layer, which increases the efficiency of model
training. Next, the BotNet self-attention mechanism is introduced, enabling the model to locate and identify disease
target features more accurately [34]. Lastly, the EIoU Loss function and the NMS (EIoU-NMS) are improved,
enhancing the model’s prediction accuracy for similar categories. These improvements have enhanced the overall
recognition rate of the model. The structure of the improved Yolov5s network model is shown in Figure 4.
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Figure 4. Improved Yolov5s network model structure

3 Experiment
3.1 Dataset Construction

This study focuses on two soybean diseases: Bacterial Spot disease and Brown Spot disease. The dataset was
constructed using two methods: First, by collecting images of soybean leaf diseases in different environments in
the field using a smartphone; second, through web scraping, Google searches, and various open-source websites
to gather images of soybean leaf diseases. The images collected have complex backgrounds, matching real-world
application conditions. The characteristics of the disease images are shown in Figure 5.

(a) (b)

Figure 5. Soybean disease characteristics: (a) Brown spot disease; (b) Bacterial spot disease

For this experiment, over 600 images of soybean leaf diseases were collected. To avoid image redundancy, 600
images were manually selected. Due to the limited number of original disease images, which could not effectively
train the network model, the dataset was augmented to five times the number of original images to enhance model
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stability and reduce overfitting. The augmentation techniques used included adding Gaussian noise, rotating (at 90°
and 180°), mirroring, and adjusting brightness. A total of 3000 effective dataset images were selected, and examples
of the augmented images are shown in Figure 6.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Augmented images: (a) Original image; (b) Rotated 90°; (c) Rotated 180°; (d) Mirrored; (e) Adjusted
brightness; (f) Gaussian noise

The dataset was randomly split into a training set of 2100 images, a test set of 600 images, and a validation set of
300 images, following a 7:2:1 ratio. The Labelimg software was used to manually annotate the two types of soybean
leaf diseases in the dataset to obtain the coordinates and dimensions of the disease spots on each image, with the
annotation information saved into TXT files. An example of image annotation using Labelimg is shown in Figure 7.

50



Figure 7. Labelimg annotation

3.2 Experimental Setup
3.2.1 Experimental environment

All experiments were conducted under the Yolov5s deep learning framework for training and testing the network
model. The hardware configuration of the experimental server included: an Intel(R) Core(TM) i5-10400F CPU @
2.90GHz, NVIDIA GeForce RTX 2060 SUPER graphics card, and a computer with 16GB of memory running on a
Windows 10 system. The software environment included Pycharm + Python 3.8, Conda 23.1.0. Images were input
at 640×640 pixels, with a batch size of 32, undergoing 300 Epochs, and the best model was saved in the logs.
3.2.2 Evaluation metrics

To evaluate the performance of the target detection algorithm of the model, two metrics are commonly used:
recall and precision. Both metrics, precision (p) and recall (r), simply judge the model’s quality from one aspect and
range between 0 and 1, where closer to 1 indicates better performance and closer to 0 indicates poorer performance.
To comprehensively evaluate the target detection performance, mAP is generally used to further assess the model’s
quality. By setting different confidence threshold levels, p and r values calculated at different thresholds can be
obtained. Generally, p and r values are inversely related. Each target in the target detection model can have an AP
value calculated, and averaging all AP values yields the mAP value of the model. The training mAP of the improved
Yolov5 model is shown in Figure 8.

Figure 8. mAP curve
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3.3 Comparative Experiments of the Improved Model
3.3.1 Comparison of adding BotNet to the backbone network

To improve the model’s accuracy in detecting disease characteristics, this study explored adding the BotNet
self-attention mechanism to the backbone network of the Yolov5s. The experiment involved replacing the last C3
module in the backbone network with the self-attention mechanism BotNet (BOT3 module), which yielded the best
model recognition performance. Four comparative experiments were designed, adding currently popular attention
mechanisms such as CA, SE, and CBAM under the same basic network and experimental data conditions. The
comparative results are shown in Table 1.

Table 1. Comparison of different attention mechanisms

Model Scheme r(%) p(%) mAP (%)

Yolov5s + CA 88.5 90.2 91
Yolov5s + SE 88.2 90 90.9

Yolov5s + CBAM 86.7 88.6 89.8
Yolov5s + BOT3 88.4 90.3 91.9

Analysis from Table 1 indicates that adding BOT3 to the original Yolov5s network provides the best improvement
in recall, precision, and mAP. Compared to adding the CA attention mechanism, mAP improved by 0.9%; compared
to SE, it improved by 1.9%; and compared to CBAM, it improved by 2.1%. This demonstrates that adding the BotNet
self-attention mechanism can better identify disease characteristics, achieving a higher disease detection rate.
3.3.2 Ablation study

To further verify the effectiveness of the proposed improvements, an ablation study was conducted by adding
only one improvement at a time to the model while keeping training parameters and the dataset the same. The results
are shown in Table 2.

Table 2. Comparison of ablation study results for the improved model

Model Scheme r(%) p(%) mAP (%)

Yolov5s 84.5 87.7 88.3
Yolov5s+SimSPPF 85.8 88.9 89.8

Yolov5s+ SimSPPF+ BOT3 87 90.3 91.9
Yolov5s+ SimSPPF+ BOT3+ EIoU-Loss 87.2 90.5 92.4

Yolov5s+ SimSPPF+ BOT3+ EIoU-Loss +EIoU-NMS 87.9 90.9 92.8

Analysis from Table 2 shows that compared to the original Yolov5s algorithm, the improved Yolov5s model has
a 3.4% increase in recall (r), a 3.2% increase in precision (p), and a 4.5% increase in mAP. The experimental results
indicate that replacing the SimSPPF module, adding the BotNet attention mechanism, improving the EIoU-Loss
function, and the EIoU-NMS have made the improved Yolov5s network model perform better in detecting and
identifying the two types of soybean leaf diseases.
3.3.3 Comparison of different network models

To evaluate the superiority of the improved Yolov5s network model proposed in this study, popular target detection
networks such as Faster R-CNN, Yolov4, and MobileNetV2 were selected for comparative experiments. The results
are shown in Table 3.

Table 3. Comparison of different network models

Model Scheme r(%) p(%) mAP (%)

The Proposed Improved Model 87.9 90.9 92.8
Faster R-CNN 77 80.3 82.5

Yolov4 82.3 85.8 87.2
MobileNetV2 85.1 88.5 90.6

As can be seen from Table 3, in terms of the mAP evaluation metric, the improved model shows a 10.3% increase
compared to the two-stage target detection algorithm Faster R-CNN, a 5.6% increase compared to the Yolov4 network,
and a 2.2% increase compared to the lightweight network MobileNetV2. In terms of recall (r) and average precision
(p), it also shows good improvement compared to other network models, indicating that the improved model has
superior detection performance.
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3.4 Model Visualization and Analysis

In this study, the expanded dataset was imported into the improved Yolov5s model for training, with the training
labels set as Bacterial Spot disease and Bean Rust. The model first identifies the type of disease, and each identification
result provides a confidence score for the category. The best weight results generated during the training process are
shown in Figure 9.

Figure 9. Best weight results during model training

The system interface detects and identifies images from the validation set. First, an image is selected for
recognition, and after recognition, the type of disease and confidence score are displayed. The average recognition
speed for a single image is 0.09 seconds. The system’s recognition results are shown in Figure 10.

Figure 10. Soybean disease detection system recognition results
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4 Conclusion and Future Work

This paper proposes an improved Yolov5s model for the detection and identification of soybean leaf diseases.
The dataset was expanded through data augmentation, and the Yolov5s model was enhanced by using a superior
SimSPPF structure, reducing the loss of dataset feature information. The addition of the BotNet structure allows the
network to better learn the features of leaf diseases, enhancing the network model’s precision in extracting target
features. Improvements to the loss function and NMS further optimize the model’s detection and identification
rates. Final experimental results show that the improved network model has generally increased recall, precision,
and mAP by 3.4%, 3.2%, and 4.5%, respectively, compared to the original Yolov5s model. Therefore, the model
effectively accomplishes the task of detecting soybean leaf diseases, and the disease detection system studied in this
paper has practical reference value for actual agricultural applications. Future research will focus on developing
lightweight models and expanding the types of soybean leaf diseases to achieve faster model detection rates and
more comprehensive disease system detection.
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