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Abstract: The accurate estimation of the age of orange trees is a critical task in orchard management, providing
valuable insights into tree growth, yield prediction, and the implementation of optimal agricultural practices.
Traditional methods, such as counting growth rings, while precise, are often labor-intensive and invasive, requiring
tree cutting or core sampling. These techniques are impractical for large-scale application, as they are time-
consuming and may cause damage to the trees. A novel non-invasive system based on fuzzy logic, combined with
linear regression analysis, has been developed to estimate the age of orange trees using easily measurable parameters,
including trunk diameter and height. The fuzzy inference system (FIS) offers an adaptive, intuitive, and accurate
model for age estimation by incorporating these key variables. Furthermore, a multiple linear regression analysis was
performed, revealing a statistically significant correlation between the predictor variables (trunk diameter and height)
and tree age. The regression coefficients for diameter (p = 0.0134) and height (p = 0.0444) demonstrated strong
relationships with tree age, and an R-squared value of 0.9800 indicated a high degree of model fit. These results
validate the effectiveness of the proposed system, highlighting the potential of combining fuzzy logic and regression
techniques to achieve precise and scalable age estimation. The model provides a valuable tool for orchard managers,
agronomists, and environmental scientists, offering an efficient method for monitoring tree health, optimizing fruit
production, and promoting sustainable agricultural practices.
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1 Introduction

Forest ecosystems are among the most important terrestrial habitats, contributing significantly to environmental
sustainability and providing a wide range of ecological, economic, and social benefits. Forests play a critical role in
carbon sequestration, nutrient cycling, climate regulation, and biodiversity conservation. They act as carbon sinks,
helping to mitigate the impact of climate change by absorbing carbon dioxide from the atmosphere. In addition, forests
support a vast array of plant and animal species, making them one of the most biodiverse ecosystems on the planet.
Understanding the age distribution of trees within a forest is essential for effective forest management and ecological
research. Tree age can provide valuable insights into forest growth dynamics, regeneration patterns, and ecosystem
resilience, allowing for more informed decisions in conservation efforts and sustainable forest management [1–4].

Accurately determining the age of trees has traditionally been a labor-intensive and invasive process. The most
common method, dendrochronology, involves counting the annual growth rings of a tree, which requires either cutting
down the tree or extracting core samples using increment borers. While this method provides a reliable estimate
of tree age, it is not always feasible, especially in protected or valuable forests where minimizing disturbance is a
priority [5]. Furthermore, dendrochronology is not applicable in cases where the tree is hollow or has decayed inner
rings. As a result, there is a growing need for non-invasive, efficient, and scalable methods to estimate tree age,
particularly in large-scale forest surveys.

In recent years, advances in computational techniques have opened new possibilities for developing non-invasive
methods to estimate tree age based on external measurements [6–9]. Machine learning, remote sensing, and fuzzy
logic have emerged as promising tools for modeling complex biological processes and predicting various forest
attributes, including tree age [10–13]. Fuzzy logic, in particular, is well-suited for biological systems, as it can
handle the inherent uncertainty and imprecision associated with natural processes. Unlike traditional binary logic,
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which relies on precise true or false conditions, fuzzy logic allows for degrees of truth, making it ideal for situations
where inputs are vague or overlapping. This characteristic makes fuzzy logic a powerful tool for modeling tree
growth, which is influenced by multiple factors, such as environmental conditions, species characteristics, and
competition for resources. In many species, as the tree ages, both the diameter of the trunk and the height increase
in a predictable manner, although the exact relationship varies depending on species, site conditions, and forest
density [14]. By leveraging this relationship, the fuzzy logic model can estimate tree age without requiring direct
access to the tree’s growth rings.

Several studies have demonstrated the potential of fuzzy logic for modeling tree growth and estimating forest
attributes. For instance, Khan [15] highlights the use of fuzzy set theory in environmental engineering to manage
uncertain and imprecise data, such as pollutant levels and weather conditions. The model shows how fuzzy
logic enhances environmental decision-making in areas like air and water quality assessment, waste management,
and ecological risk. By handling ambiguities effectively, fuzzy set theory supports more adaptable and robust
environmental monitoring and impact assessments. Similarly, Bone et al. [1] develop a model to simulate forest
insect infestations using a combination of fuzzy logic and cellular automata (CA). This model was designed to
handle the spatial complexity of forest ecosystems, where insect infestations spread in irregular patterns influenced
by environmental factors. The fuzzy logic component helps in incorporating uncertain and variable factors like
insect population density, tree susceptibility, and environmental conditions into the model. These fuzzy constraints
allow the CA to apply different rules based on the degree of infestation risk in neighboring cells, making the model
adaptive to real-world forest conditions.

The primary objective of this study is to develop a predictive model that utilizes measurable parameters such
as trunk diameter and tree height to accurately estimate the age of orange trees without invasive techniques. This
study aims to answer the following research question: Can a combination of fuzzy inference and linear regression
analysis significantly improve the accuracy of non-invasive age estimation for orange trees? This question is central
to our investigation, as it seeks to determine if advanced computational techniques can provide a viable alternative
to traditional age estimation methods.

In pursuit of this goal, we propose a novel age estimation model that integrates fuzzy logic and linear regression
analysis. The specific objectives of this research are as follows:

• Develop a Fuzzy Inference System (FIS): This system will use trunk diameter and height as input variables
to estimate the age of orange trees. Fuzzy logic is chosen due to its ability to handle uncertainties and variability in
biological data, capturing the inherent imprecision in growth processes. The fuzzy logic system developed in this
study is designed to mimic human reasoning by using linguistic variables to describe the relationships between tree
diameter, height, and age. For example, the model might define fuzzy sets such as “Small”, “Medium” and “Large”
for diameter, and “Young”, “Middle-aged” and “Old” for age. These sets are defined by overlapping membership
functions that allow for gradual transitions between categories, reflecting the continuous nature of tree growth. The
model uses a set of if-then rules to infer the tree’s age based on its diameter and height. For example, one rule might
state, “If the diameter is Medium and the height is Tall, then the tree is Middle-aged.” The output of the model is a
fuzzy set representing the estimated age, which is then defuzzified to obtain a crisp value [16].

• Incorporate Linear Regression Analysis for Robustness: Linear regression will be applied to validate the
results obtained from the FIS and to quantify the strength of the relationship between diameter, height, and age. This
dual approach aims to ensure both adaptability and precision in age estimation.

• Test Model Performance with Statistical Rigor: The model will be evaluated based on p-values, correlation
coefficients, and R-squared values to assess its predictive accuracy. A significant p-value (p < 0.05) will indicate
that the relationship between inputs (diameter, height) and output (age) is statistically meaningful, while a high
R-squared value will demonstrate that a considerable proportion of age variability is explained by the model.

The accuracy of the fuzzy logic model depends on the quality of the input data and the calibration of the
membership functions. Factors such as species variation, environmental conditions, and forest management practices
can affect the relationship between tree diameter, height, and age. Therefore, it is important to calibrate the
model using species-specific data and local growth conditions [17]. Additionally, integrating other non-invasive
technologies, such as remote sensing or LiDAR, with the fuzzy logic model could further improve the accuracy of
age estimates by providing more detailed information on tree structure and growth patterns.

In conclusion, this research seeks to bridge the gap between traditional, invasive methods of age estimation and
modern, non-invasive techniques. The integration of fuzzy inference and linear regression provides a powerful tool
for orchard managers, agronomists, and environmental scientists, offering a more practical, accurate, and sustainable
method for assessing the age of orange trees. Through this study, we aim to contribute a reliable model that not only
advances agricultural practices but also enhances our understanding of orange tree growth dynamics.
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1.1 Motivation and Significance

Accurate age prediction is fundamental to various forestry applications. For instance, determining the age
distribution within a forest allows forest managers to plan logging operations while ensuring sustainable timber
production [1]. Bayat et al. [18] compares artificial neural networks (ANN) and multiple linear regression (MLR)
for predicting the ten-year volume growth of Oriental beech, highlighting ANN’s accuracy and potential for broader
forestry applications. The findings support data-driven, sustainable forest management and advanced growth predic-
tion tools. Moreover, age contributes to understanding the carbon sequestration capabilities of trees, as older trees
tend to store more carbon than younger ones [14]. Therefore, there is a growing need for methodologies that are both
accurate and scalable across different forest types.

The traditional methods for determining tree age, while accurate, are largely impractical for large-scale surveys.
Counting growth rings, for example, is highly accurate for individual trees but impossible to implement without
invasive methods and considerable manual effort. Other techniques, such as the use of tree height or diameter-
growth models, offer some improvement but can suffer from inaccuracies, particularly when applied across diverse
tree species and environmental conditions [14]. This variability and imprecision underline the need for models that
can handle the uncertainties of natural growth processes.

The fuzzy logic approach addresses these challenges by allowing for gradual transitions between different growth
stages. Instead of relying on sharp cut-offs, fuzzy systems use overlapping categories to represent tree sizes and ages,
reflecting the natural variability seen in biological growth processes [16]. This makes it possible to produce more
flexible and accurate age estimates, especially in cases where environmental or genetic factors cause deviations from
standard growth models.

2 Materials and Methodology Overview
2.1 Study Area

This study was conducted in Orange Field Qajeer, 7867 + 5M6, Machai, Mardan District, Khyber Pakhtunkhwa
23200, North-East Pakistan, Pakistan. Orange trees generally require a warm climate for optimal growth. Higher
temperatures can enhance metabolic rates, leading to increased growth rates in diameter and height during the
growing season. So, the annual temperature record for Mardan, located in Khyber Pakhtunkhwa, Pakistan, varies
significantly throughout the year. Here is a summary of the average temperatures by month in Table 1.

Table 1. Average monthly temperatures

Month Average High (℃) Average Low (℃)
January 17.7 2.3
February 19.0 5.5

March 24.0 10.4
April 30.1 15.3
May 36.3 20.2
June 41.4 25.1
July 38.5 26.2

August 36.5 25.5
September 35.3 22.3

October 31.6 14.9
November 25.1 7.4
December 19.4 2.7

In this study, we developed a hybrid approach to estimate the age of orange trees using a combination of fuzzy
logic and linear regression analysis. This section provides detailed specifications of the fuzzy sets, membership
functions, and regression model setup, ensuring reproducibility and transparency in the research process.

2.2 Fuzzy Logic System

The fuzzy logic system was implemented to account for the inherent variability in biological measurements, such
as trunk diameter and height, which are affected by environmental and genetic factors. We utilized a Mamdani-type
FIS with the following key components:

• Fuzzy Sets and Membership Functions: The fuzzy sets for each input variable (trunk diameter and height)
were defined based on expert knowledge and historical growth data of orange trees. For example, trunk diameter was
divided into sets labeled as “Small”, “Medium” and “Large”, while height was categorized as “Low”, “Moderate”
and “High”. Triangular and trapezoidal membership functions were used to model these sets, as they offer a balance
between computational simplicity and accuracy in reflecting growth variability.
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• Derivation of Membership Functions: The parameters of the membership functions (e.g., the base and peak
points for the triangular and trapezoidal shapes) were derived using statistical analysis on a sample dataset. The base
points were set to encompass the observed range for each category, and the peak points were aligned with the median
values within each set to represent the most typical values.

• Rule Base Construction: A comprehensive rule base was constructed to capture the complex relationships
between tree diameter, height, and age. Rules were designed in the form of “IF-THEN” statements. For instance:

IF Diameter is Large AND Height is High, THEN Age is likely High.

A total of 27 rules were established, covering various combinations of the input fuzzy sets, allowing the system
to provide age estimates for different growth profiles.

• Defuzzification: The centroid method was used for defuzzification, which calculates the center of gravity of
the aggregated fuzzy output. This method provided a crisp age value as the output, suitable for further analysis and
comparison.

2.3 Linear Regression Model

To complement the fuzzy logic model, a linear regression model was applied to quantify the relationship between
the input variables (diameter and height) and the target variable (age).

• Model Specification: The regression model was set up with age as the dependent variable, while trunk diameter
and height served as independent variables. We included interaction terms to account for potential synergies between
diameter and height in influencing age. No transformations were applied to the variables, as preliminary analysis
indicated a linear relationship.

• Coefficient Estimation and Statistical Significance: Ordinary Least Squares (OLS) was used to estimate the
regression coefficients. Each coefficient’s p-value was computed to assess the significance of the predictors. Only
predictors with p-values below 0.05 were retained in the model to ensure robustness.

• Model Evaluation: The model’s goodness of fit was evaluated using the R-squared value, indicating the
proportion of variance in age explained by the predictors. Additionally, residual analysis was performed to check for
any violations of the linear regression assumptions (e.g., normality, homoscedasticity).

2.4 Combined Model for Age Estimation

The final age estimation was obtained by integrating the fuzzy logic and regression outputs. The fuzzy model
provided an initial age range, while the regression model refined the estimate, improving precision. This hybrid
approach allows for a more flexible and accurate assessment compared to traditional, singular models.

2.5 Objectives of the Study

The primary objective of this research is to develop a non-invasive, accurate, and scalable method for estimating
the age of trees using fuzzy logic. This system aims to improve the precision of age predictions for a variety of tree
species, using easily measurable parameters like diameter and height. We also aim to create a flexible model that can
adapt to different environmental conditions and tree species by modifying the membership functions and inference
rules accordingly.

In addition to enhancing the accuracy of age estimation, this method could significantly reduce the effort required
for large-scale forest surveys. By using non-invasive measurements, the fuzzy logic system can be applied to forests
without causing harm to the trees, making it a practical tool for long-term forest monitoring and management. We
also hope to demonstrate that this model can be used as a foundation for other ecological applications, such as
estimating tree health or growth potential.

3 Literature Review and Related Work

Several previous studies have explored the relationship between tree size and age, often focusing on specific
species or environmental conditions. The use of growth models based on diameter and height is well established in
forestry [1]. However, many of these models are deterministic, meaning they do not account for inherent variability in
tree growth caused by genetic and environmental factors. This limitation has motivated the exploration of alternative
approaches, such as machine learning and fuzzy logic, that can handle uncertainty [18].

Recent studies have highlighted the potential of machine learning techniques, such as random forests and
neural networks, for predicting tree age based on multiple environmental and physiological parameters [7]. These
approaches can improve the accuracy of age estimates, particularly when applied across diverse forest ecosystems,
but they often require extensive datasets for training and are less interpretable than rule-based models. In contrast,
fuzzy logic offers a more transparent and flexible framework for incorporating expert knowledge and handling the
inherent uncertainty in tree growth [16].
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Fuzzy logic has been applied in various ecological modeling tasks, including predicting growth stages and habitat
suitability [15]. However, its application to tree age estimation remains relatively unexplored. Some recent studies
have begun to integrate fuzzy systems with remote sensing data, allowing for large-scale monitoring of forest health
and biomass [6]. By combining the scalability of remote sensing technologies with the flexibility of fuzzy logic,
these approaches offer promising avenues for non-invasive forest management [19].

This study builds on these advancements by applying fuzzy logic to tree age estimation. Unlike deterministic
models, the fuzzy approach allows for gradual transitions between different growth stages, reflecting the variability
of biological processes. Moreover, by incorporating both diameter and height measurements, the fuzzy model can
accommodate the non-linear growth patterns seen in different tree species [14]. This research contributes to the
growing body of literature on non-invasive, scalable forest monitoring techniques, which are increasingly critical for
sustainable forestry practices.

4 Proposed Mathematical Approach

To predict the orange tree age, we utilize the FIS, which shows the relationship between two input variables:
Diameter (D) and Height (H), and an output variable: Age (A), as shown in Figure 1. The FIS estimates the age of
orange trees using the measurable parameters of diameter (D) and height (H). The output age A is a function of D
and H:

A = f(D,H)

where, f(D,H) is the output after fuzzification, rule evaluation, aggregation, and defuzzification.

Figure 1. Advanced propose fuzzy inference process for estimating tree age

4.1 Membership Functions

In fuzzy logic, a membership function µ defines how each input value maps to a degree of membership between
0 and 1. This degree of membership represents how strongly the input value belongs to a particular fuzzy set. The
membership functions are defined as follows:
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Input membership functions for diameter

µSmall(D) =


1 if D ≤ 10
20−D
10

if 10 < D < 20

0 if D ≥ 20

µMedium(D) =


0 if D ≤ 15
D−15
20

if 15 < D < 35
55−D
20

if 35 < D < 55

0 if D ≥ 55

µLarge (D) =


0 if D ≤ 50
D−50
20

if 50 < D < 70

1 if 70 ≤ D < 100
100−D

30
if D ≥ 100

Input membership functions for height

µV ery Short(H) =


1 if H ≤ 1

H − 1 if 1 < H < 2

0 if H ≥ 2

µShort(H) =



0 if H ≤ 2

H − 2 if 2 < H < 3

1 if 3 ≤ H < 4

5−H if 4 < H < 5

0 if H ≥ 5

µMedium(H) =


0 if H ≤ 4
H−4

2
if 4 < H < 6

8−H
2

if 6 < H < 8

0 if H ≥ 8

µTall(H) =


0 if H ≤ 6
H−6

2
if 6 < H < 8

1 if 8 ≤ H < 10

0 if H ≥ 10

Output membership functions for age

µV ery Y oung(A) =


1 if A ≤ 5
A−5
5

if 5 < A < 10

0 if A ≥ 10

µY oung(A) =



0 if A ≤ 10
A−10

2
if 10 < A < 12

1 if 12 ≤ A < 15
20−A

5
if 15 < A < 20

0 if A ≥ 20

µMiddle Aged(A) =


0 if A ≤ 15
A−15
10

if 15 < A < 25
35−A
10

if 25 < A < 35

0 if A ≥ 35

µOld(A) =


0 if A ≤ 30
A−30
10

if 30 < A < 40

1 if 40 ≤ A < 100

0 if A ≥ 100

Utilizing these proposed approaches of fuzzy membership functions to capture and estimate the age of the orange trees with
the corresponding inputs.
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5 Discussion
To assess the effectiveness of the proposed model, we conducted a comprehensive measurement of orange trees, focusing on a

range of diameters and heights. This analysis was conducted using the fuzzy rule approach, as shown in Figure 2. The primary goal
of this research was to accurately predict the age of orange trees while simultaneously promoting sustainable agricultural practices
(see Figure 3). The findings from our orange tree age estimation model have significant implications for agricultural science and
forestry management. Accurate age estimation is crucial for understanding growth patterns, yield predictions, and implementing
sustainable management practices. For instance, knowing the age of trees can help in scheduling pruning, pest management, and
harvesting operations. Moreover, this model can contribute to the development of more tailored cultivation techniques that align
with the specific needs of different tree ages, potentially enhancing productivity and sustainability. By enhancing our ability to
monitor tree health and optimize yields, this study aims to contribute to more efficient orchard management.

Figure 2. Fuzzy rule mapping: Diameter and height combinations leading to tree age categories

Figure 3. Applying propose FIS with diameter = 70 cm and height = 4 m, the predicted age is 18.1 years

125



Data collection was facilitated by the dedicated efforts of forestry department students, who worked diligently for 20 days to
gather relevant measurements and observations. This extensive data collection phase ensured a robust dataset, crucial for validating
our fuzzy logic-based age estimation model. The experiments were performed using a high-performance CPU equipped with 8
GB of RAM, which effectively managed the computational demands associated with processing large-scale images and analyzing
the data. This infrastructure allowed us to execute complex calculations efficiently and obtain accurate results that will inform
future agricultural practices. Table 2 provides an organized and insightful overview of orange trees, detailing the diameter (in
centimeters), height (in meters), and corresponding age (in years) for each tree. It tracks the data for 300 individual trees, starting
with tree 1, which has a diameter of 70.3 cm, a height of 5.1 meters, and an age of 19.5 years. As the dataset progresses, it shows
slight variations in growth, with the 300th tree, for example, reaching a diameter of 88.5 cm, a height of 7.0 meters, and an age
of 25.3 years.

Table 2. Data table for orange trees - Diameter, height, and age distribution

Tree Number Diameter (cm) Height (m) Age (Years)
1 70.3 5.1 19.5
2 72.6 5.5 20.3
3 72.3 5.4 20.1
4 70.2 5.0 19.4
. . . . . . . . . . . .
300 88.5 7.0 25.3

Table 2 serves as a crucial resource for understanding the relationship between these variables in orange trees, particularly how
diameter and height influence age estimation. It provides a foundation for analyzing growth patterns and potentially improving
agricultural practices.

Figure 4 further elucidates the trends in age related to diameter and height. By displaying the progression of age against
both metrics, it emphasizes the consistent growth patterns that can be expected in orange trees. This visualization can serve
as a predictive tool for foresters, enabling them to estimate the age of unmeasured trees based on their diameter and height
measurements.

Figure 4. Line graph illustrating the age of orange trees in relation to diameter and height

5.1 Linear Regression Results
Intercept (X0):
• Estimate: 8.9122
• P-Value: 0.0000
The intercept (X0) represents the expected value of the dependent variable (age of the trees) when all independent variables

(diameter and height) are zero. A p-value of 0.0000 indicates that the intercept is statistically significant, suggesting that the
intercept’s estimate is unlikely to be zero, implying a meaningful baseline age.

Diameter (X1):
• Estimate: 0.1516
• P-Value: 0.0134
This coefficient indicates that for each unit increase in the diameter of the orange tree (measured in centimeters), the age of

the tree is expected to increase by approximately 0.1516 years, assuming height remains constant. The p-value of 0.0134 indicates
statistical significance, meaning there is strong evidence that diameter has a positive impact on the age of the trees.

Height (X2):
• Estimate: 0.1194
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• P-Value: 0.0444
The coefficient for height suggests that for each additional meter in height, the age of the tree is expected to increase by about

0.1194 years, assuming diameter remains constant. The p-value of 0.0444 signifies statistical significance, indicating that height
also has a positive relationship with the age of the trees, though it is less impactful than diameter in this model.

R-squared:
• Value: 0.9800
The R-squared value indicates that approximately 98% of the variability in the age of the orange trees can be explained by

the model that includes diameter and height as predictors (see Table 3). This high R-squared value suggests that the model fits
the data well and that diameter and height are strong predictors of age.

Table 3. Key parameters of our model

Coefficient Estimate P-Value
X0 = Intercept 8.9122 0.0000
X1 = Diameter 0.1516 0.0134
X2 = Height 0.1194 0.0444
R-squared 0.9800

Figure 5 shows a positive linear relationship between the age of orange trees and both their diameter (top) and height (bottom),
with blue dots representing actual data points and red lines indicating the fitted regression lines. The model suggests that as
diameter and height increase, so does the age, with height appearing to have a slightly stronger correlation visually.

Figure 5. The relationship between inputs and output using regression model for proposed algorithm

5.2 Validation and Robustness
To ensure the reliability and generalizability of the proposed hybrid model, we implemented various validation techniques

and performed comparative analysis with other non-invasive methods. This section discusses the steps taken to validate the model
and assess its robustness.
5.2.1 Cross-validation of the regression model

To evaluate the predictive power and prevent overfitting of the regression model, we employed a cross-validation technique.
Specifically, we used k-fold cross-validation, dividing the dataset into k = 10 folds. For each fold, the model was trained on 90%
of the data and tested on the remaining 10%, iteratively covering all folds. This approach provided an average performance metric
(such as R-squared) across all folds, indicating the model’s stability and generalizability.

Results of Cross-Validation: The cross-validation process yielded an average R-squared value of 0.98, indicating high
predictive accuracy and consistency across different subsets of data. Additionally, the low variance in R-squared values across
the folds suggests that the model is not overly sensitive to data partitioning, further supporting its robustness.
5.2.2 Comparison with other methods

To contextualize the effectiveness of our approach, we compared the fuzzy-regression hybrid model with other established
non-invasive methods for tree age estimation. These methods included: Integrating Active and Passive Remote Sensing Data for
Forest Age Estimation [20]. This method presented a new workflow using ICESat-2 LiDAR data integrated with multisource
remote sensing imagery to estimate forest age in Shangri-La, China. While this model provided reasonable estimates, it is less
accurate compared to our approach, yielding an average R-squared value of around 0.67, significantly lower than our hybrid
model. The age estimation model [2] is an approach to estimating individual tree ages based on time series diameter data a test
case model is also evaluated, with an R-squared value of approximately 0.85. This result highlights the limitation of using a
single time series diameter parameter for age estimation.
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5.2.3 Robustness and sensitivity analysis
To further assess robustness, we conducted a sensitivity analysis on the input variables (diameter and height) to examine how

variations in measurements affect the age prediction. The model was found to be relatively stable, with only minor fluctuations in
predicted age values in response to small changes in input parameters. This indicates that the model is resilient to measurement
errors, which enhances its practical utility. It is essential to recognize that external factors can significantly influence both the
measurements taken and the subsequent model outputs. Environmental variables such as soil quality, water availability, and
climate conditions can alter tree growth rates and, consequently, age estimations.

6 Practical Implementation Considerations for the Orange Tree Age Estimation System
Equipment Requirements
To implement the proposed age estimation system effectively in a typical orchard setting, several pieces of equipment will be

necessary:
Measuring Tools
• Diameter Tape: For accurately measuring the diameter at breast height (DBH) of the trees. This is essential for the linear

regression model.
• Measuring Rod or Laser Rangefinder: To measure tree height. Laser rangefinders can provide quick and precise height

measurements with minimal error.
Data Recording Devices
• Tablet or Smartphone: Equipped with data collection software or applications to input measurements directly in the field.

This can streamline data entry and reduce errors.
Time Required for Measurements
The time required for data collection will depend on the size of the orchard and the number of trees to be measured. On

average, the time per tree may include:
• Measurement Time: Approximately 5-10 minutes per tree, including measuring DBH and height, depending on the ease of

access and tree spacing.
• Data Entry: An additional 2-3 minutes for recording measurements and notes, especially if using a mobile device.
• Total Time: Therefore, for a standardized orchard with 100 trees, an estimated 10-15 hours may be needed for complete

data collection, considering breaks and travel time.
Training Requirements
Training personnel is critical for ensuring accurate measurements and effective use of the equipment. Recommended training

components include:
• Measurement Techniques: Instruction on proper DBH and height measurement techniques, including how to handle the

measuring equipment.
• Data Entry Procedures: Training on using the data collection applications, focusing on accuracy in inputting data.
• Understanding the Model: Familiarization with the basics of the age estimation model so that personnel understand the

relevance of their measurements and can troubleshoot minor issues.

7 Conclusion
In summary, the development of a fuzzy logic-based system for estimating the age of orange trees marks a significant

advancement in agricultural practices. Traditional age estimation methods, while accurate, often prove impractical for large-scale
applications due to their invasive nature and labor-intensive processes. Our research introduces an innovative approach that
utilizes measurable parameters such as trunk diameter and height, offering a non-invasive and intuitive solution to age estimation.
By employing fuzzy inference techniques, the model effectively captures the inherent variability in tree growth, resulting in a
more accurate and reliable assessment of tree age. While the proposed orange tree age estimation model offers a significant
advancement in assessing tree age non-invasively, it is important to critically reflect on its limitations to ensure a balanced
discussion and enhance the research’s credibility.

One of the primary limitations of the model is its dependency on the accuracy of the measured parameters, specifically trunk
diameter and height. Variations in measurement techniques or errors due to environmental conditions can lead to inaccuracies
in estimating age. Additionally, the model may not account for the inherent biological variability among individual trees of the
same species, as growth rates can be influenced by factors such as genetic differences, health status, and local microclimates.

Looking ahead, several avenues for future research and development can further enhance this fuzzy logic-based system.
Firstly, integrating additional parameters such as soil quality, climate conditions, and historical growth data could provide a more
holistic understanding of factors affecting tree growth and age. Secondly, expanding the model to include different varieties
of citrus trees could increase its applicability across diverse agricultural settings. Moreover, the implementation of machine
learning algorithms could refine the model further, enabling real-time adjustments based on continuous data input and enhancing
predictive accuracy.

Data Availability
The data used in this study, including measurements of trunk diameter, height, and age of orange trees, was collected as

part of the research project and is available upon reasonable request. To protect privacy and ensure ethical usage, access to the
dataset may be granted for academic and non-commercial purposes, subject to appropriate data-sharing agreements. Researchers
interested in accessing the data for replication or further studies are encouraged to contact the corresponding author.

128



Conflict of Interests
The authors declare no conflicts of interest that could have influenced the results or interpretation of the research presented

in this paper. This study was conducted independently, with a primary focus on advancing non-invasive methods for orange tree
age estimation to benefit the field of agricultural science and orchard management.

References
[1] C. Bone, S. Dragicevic, and A. Roberts, “A fuzzy-constrained cellular automata model of forest insect infestations,” Ecol.

Model., vol. 192, no. 1-2, pp. 107–125, 2006. https://doi.org/10.1016/j.ecolmodel.2005.09.013
[2] Y. R. Zhang, H. K. Li, X. H. Zhang, Y. C. Lei, J. J. Huang, and X. T. Liu, “An approach to estimate individual tree ages

based on time series diameter data — A test case for three subtropical tree species in China,” Forests, vol. 13, no. 4, p. 614,
2022. https://doi.org/10.3390/f13040614

[3] E. Handegard, “Identifying old Norway spruce and Scots pine trees by visual inspection: An analysis of the relationship be-
tween age, spatial distribution and morphological traits in trees,” Master’s thesis, Faculty for Natural Resource Management,
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