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Abstract: Digital ink Chinese character recognition (DICCR) systems have predominantly been developed
using datasets composed of native language writers. However, the handwriting of foreign students, who
possess distinct writing habits and often make errors or deviations from standard forms, poses a unique
challenge to recognition systems. To address this issue, a robust and adaptable approach is proposed, utilizing
a residual network augmented with multi-scale dilated convolutions. The proposed architecture incorporates
convolutional kernels of varying scales, which facilitate the extraction of contextual information from different
receptive fields. Additionally, the use of dilated convolutions with varying dilation rates allows the model to
capture long-range dependencies and short-range features concurrently. This strategy mitigates the gridding
effect commonly associated with dilated convolutions, thereby enhancing feature extraction. Experiments
conducted on a dataset of digital ink Chinese characters (DICCs) written by foreign students demonstrate the
efficacy of the proposed method in improving recognition accuracy. The results indicate that the network is
capable of more effectively handling the non-standard writing styles often encountered in such datasets. This
approach offers significant potential for the error extraction and automatic evaluation of Chinese character
writing, especially in the context of non-native learners.

Keywords: Digital ink Chinese character recognition (DICCR); Multi-scale context; Residual network; Dilated
convolution

1 Introduction

With the continuous development and maturity of handwriting input devices such as tablets and digital
pens, DICCs are constantly generated in learning, work, and life. There are already datasets stemming from
native Chinese speakers with correct and standardized Chinese character writing, such as the datasets CASIA-
OLHWDB [1] and SCUT-COUCH2009 [2]. Great progress has been made in DICCR for these native-speaker
datasets [3].
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Nowadays, more and more foreign students are using handwriting devices for their studies and daily lives,
and DICCs are generated constantly. The recognition of DICCs by foreign students is of great significance for
Chinese international education. Recognizing handwritten Chinese characters can facilitate the evaluation of
their correctness and provide standardized guidance. This makes it possible for computers to guide students
in writing Chinese characters. However, foreign students often unconsciously apply their native thinking and
writing habits to Chinese character learning, leading to writing errors and various non- standardization, which
pose great challenges to their DICCR:

(1) Stroke errors:
* Extra strokes: Unnecessary additional strokes that do not belong to the standard form.
* Missing strokes: Omissions of required strokes.
* Connected strokes: Strokes that should be separate but are incorrectly joined.
* Broken strokes: Strokes that should be continuous but are interrupted.
* Incomplete strokes: Partially written strokes that do not reach their intended endpoints.
(2) Incorrect stroke relationships:
* Stroke order: The sequence in which strokes are written deviates from the standard.
* Stroke direction: Strokes are drawn in the wrong orientation.
* Geometric errors: Misplacement or misalignment of strokes within the character structure.
(3) Non-standardized DICCs:
* Overall structural imbalance: Characters may appear skewed or improperly proportioned.
* Non-standard strokes: Variations in stroke shapes that do not conform to standard forms.
The complexity and frequency of these errors increase with the number of strokes and the intricacy of

stroke combinations. As a result, the accuracy and standardization of foreign students’ DICCs tend to decline,
particularly for more complex characters. These challenges are illustrated in Figure 1, highlighting the need for
robust and adaptive recognition systems that can accommodate the diverse and nonstandard writing patterns
of foreign students.

Figure 1. Examples of DICCs for foreign students
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There has been some research on DICCR for foreign students, such as the Chinese character recognition
method based on stroke names and whole character structures proposed by Bai and Zhang [4]. Later, they
utilized Hidden Conditional Random Field (HCRF) to enhance model performance [5]. These methods all
belong to structure-based recognition methods, which posit that recognizing Chinese characters should follow
the process of writing them: composed of strokes to form radicals and radicals to form Chinese characters.
However, there are various stroke errors and stroke order errors in the DICCs of foreign students, and many
strokes are not written in a standardized manner, which makes it difficult to stably extract the stroke structure
and its interrelationships of Chinese characters. Although it is possible to obtain certain experimental results
and even some demonstration systems under certain conditions, recognition methods that rely on extracting
stroke structures cannot solve the DICCs recognition problem for foreign students. Xu and Zhang [6] proposed
the 1-D ResNetDC for classifying DICCs writing trajectories. This method is specifically designed for learning
sequential data; therefore, it relies on the writing trajectory of Chinese characters and cannot achieve stroke-
order freedom [7].

There have been many studies on DICCs targeting native Chinese speakers, and good recognition perfor-
mance has been achieved, such as RNN-based recognition methods [8, 9] and Convolutional Neural Network
(CNN)-based recognition methods [3, 10–12]. RNN-based recognition methods process raw sequence data
to better utilize the rich temporal and spatial information contained in the sequence data. However, there are
errors of stroke order and stroke direction in DICCs for foreign students, which will affect the accuracy of
RNN models that use sequence data as input. CNN-based recognition methods convert the sequential data of
DICCs into digital images or extract feature maps. These methods all study the recognition of DICCs from
native language writers, while DICCs for foreign students have their own characteristics, and these methods
are not applicable.

This paper converts the handwriting sequence into a 2D black-and-white image, which can avoid effects
such as stroke direction, stroke order, continuous strokes, and broken strokes. The converted images have no
noise from scanning or taking photos, and the data volume is small, which is beneficial for training the model.
This paper proposes a residual network based on dilated convolution (ResNetDC), which can not only capture
the important features of DICCs in short distances but also ensure the extraction of long-distance correlation.
It has a good recognition rate for foreign students’ DICCs existing writing errors, such as extra, missing,
connected, broken, and incomplete strokes, as well as non-standard writing of DICCs.

2 Related Works

DICCR methods that rely on handcrafted features are limited by these low-capacity features, making it
difficult to improve recognition performance [2, 13]. With the rapid development of GPU parallel computing
support for deep learning, new breakthroughs have been brought to DICCR. The performance of DICCR
has rapidly improved, surpassing traditional methods comprehensively, and the recognition accuracy exceeds
human level. Based on the representation of input data, we classify existing deep learning methods for DICCR
into three categories.

A. Recurrent Neural Network (RNN) method based on sequence data
RNN methods based on sequence data directly process the original sequence data. Zhang et al. [8] used

both LSTM and GRU for RNN modeling and built a deep RNN model by stacking bidirectional RNNs to
achieve end-to-end recognition of DICCs. Zhang et al. [9] proposed a trajectory-based component analysis
network (TRAN). Ren et al. [14] proposed the variance constraint and attention weight vector to improve
the performance of the RNN network. Due to the recurrent computing mechanism of RNN, it is not easy
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to parallelize and has low computational speed; moreover, the recognition effect of these methods relies on
the writing order of DICCs, making it difficult to achieve stroke-order freedom. There are many stroke-order
issues with the Chinese characters written by foreign students, so this type of method is not applicable.

B. Graph Neural Network (GNN) method based on graph-structured data
GNN methods process graph-structured data and explicitly model the geometric semantics of DICCs.

Specifically, Gan et al. [15] proposed SGCN for DICCR. SGCN uses spatial graph convolution to combine
information about nearby neighborhoods and a hierarchical residual structure to use the global shape properties
to make the final classification. Gan et al. [16] proposed PyGT to recognize graph-structured DICCs. This
method requires constructing direct geometric graphs based on coordinate sequences, extracting the features of
vertices in the graph, designing graph convolution kernels, etc., which is more complex to implement. Due to
the confusion between similar characters, GNNs cannot accurately recognize characters with similar structures.

C. CNN method based on grid data
CNN methods process two-dimensional grid data. Cireşan and Meier [17] introduced MCDNN, which is a

set model that classifying Chinese characters images. Gan [18] developed a one-dimensional CNN architecture
for recognizing DICCs. Hu et al. [19] utilized a CNN-based method for IAHCCR. These methods all fall under
the end-to-end approach category, where the system learns to recognize characters directly from raw input data
without the need for manual feature extraction or intermediate processing steps.

Integrating domain-specific knowledge can enhance the recognition performance of traditional CNNs.
For instance, Graham [12] utilized path signature to improve recognition accuracy of DICCs. Zhong et al.
[20] extracted Gabor features, gradient features, and other features using traditional feature extraction methods,
embedding these features into network to improve the recognition rate. Zhang et al. [3] put forward the method
of DirectMap + ConvNet + Adaptation by combining the CNN with the domain knowledge of directional
feature maps. These approaches integrate manually extracted feature images from Chinese characters as prior
knowledge into the CNN architecture. This integration aids CNN in learning auxiliary features of Chinese
characters more effectively, thereby significantly enhancing the network’s recognition performance. However,
this method requires a deep understanding of the complex domain knowledge involved in extracting these
feature images.

These traditional convolutional networks aggregate contextual information through continuous convolu-
tion strides and pooling operations, with relatively fixed kernel sizes, and the convolutions are all common
convolutions. Structures of some DICCs from foreign students are not standard, with excessively dispersed
components, as shown in the fourth line of Figure 1. The traditional convolutional network lacks the ability
to obtain long-distance correlation of DICCs and cannot effectively learn advanced structural knowledge of
Chinese characters.

Dilated convolution, also known as atrous convolution, is an efficient technique for expanding the receptive
field of a neural network without increasing the number of parameters or the computational cost. This method is
particularly valuable in tasks such as semantic segmentation [21–23], depth estimation [24], and object detection
[25], where capturing multi-scale context is crucial. By adjusting the dilation rate, the same convolutional
kernel can capture information at varying scales: smaller dilation rates focus on local, short-range details,
whereas larger dilation rates enable the kernel to encompass broader, long-range contexts.

In our model, in addition to traditional methods, the resolution of feature maps is considered. The
combination of convolution kernel and different dilated rates is used to increase the receptive field and
aggregate multi-scale context information while maintaining the resolution of the feature map. This article
applies dilated convolution to the recognition of DICCs by foreign students. It studies the application of dilated
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convolution in classification tasks, marking a novel and innovative approach in this field.

3 Deep Residual Network Based on Multi-Scale Convolution and Dilated Convolution

This section mainly elaborates on the technical details of the DICCR method proposed in this article for
foreign students, including model design, multi-scale context, and visualization.

A. Design of deep networks based on residual Blocks
The increasing number of layers of CNNs brings about significant improvement in performance. Although

deep architecture is beneficial for feature learning, there are still many problems in training deep neural
networks, including gradient vanishing and gradient explosion. Therefore, we propose network architecture
ResNetDC, which adopts residual connections [26], as shown in Figure 2.

Figure 2. Network architecture ResNetDC

In Figure 2, the notation "Conv-64, k=7×7, s=2" specifies that this convolutional layer produces 64 output
channels, uses a kernel size of 7×7, and applies a stride of 2. The term "Max pooling 2×2, s=2" signifies a max
pooling operation with a 2×2 window and a stride of 2. We have designed a residual module named Block,
which comprises six convolutional layers, as illustrated in Figure 3. These layers are sequentially labeled
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as "1st Conv", "2nd Conv", "3rd Conv", "4th Conv", "5th Conv", and "6th Conv". For instance, "2nd Conv
k=3×3, stride=1, dilate=1" describes the second convolutional layer, characterized by a 3×3 kernel, a stride
of 1, and a dilation rate of 1. The symbol "⊕" represents the element-wise addition operation. Following
each convolution, we apply batch normalization and activate the outputs using the ReLU function. It’s worth
noting that there is variability in the number of channels across the convolutional layers within the four Block
modules. The specific channel counts for each convolutional layer in these four modules are detailed in Table
1.

Figure 3. Residual module Block 1

Table 1. Channel counts of each convolutional layer for the Block modules

Layer Name Block 1 Block 2 Block 3 Block 4
1st Conv 64 128 256 512
2nd Conv 64 128 256 512
3rd Conv 64 128 256 512
4th Conv 64 128 256 512
5th Conv 256 512 1024 2048
6th Conv 256 512 1024 2048

The input Chinese character image is a black-and-white image with a single channel of 64×64 pixels.
The first three layers of the network structure down-sample the image by 8 times, and the input feature map
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size of Block 1 is 8×8. Given that the resolution of the feature maps has already been significantly reduced,
all convolutional layers within the four Block modules employ a stride of 1. This means that no further
down-sampling is applied. As a result, both the input and output feature maps for each of the four Block
modules maintain a spatial dimension of 8×8.

B. Multi-scale convolutional kernel
The ResNetDC network designed in this article employs a multi-scale convolutional kernel strategy.

Specifically, the initial convolutional layer utilizes a larger 7×7 kernel to capture broader spatial features.
This choice is motivated by the fact that larger kernels provide a wider effective receptive field and higher
shape bias, aligning with how humans primarily use shape cues for object recognition [27]. Moreover,
smaller (3×3) kernels facilitate the construction of such deep architectures [28]. To leverage these advantages,
ResNetDC incorporates multiple Block modules, each featuring 3×3 and 1×1 convolutional kernels. The
1×1 convolutional layers are particularly useful for cross-channel information exchange, enhancing feature
integration. By stacking these Block modules, ResNetDC achieves a deep network architecture that effectively
captures both local and global features. This multi-scale kernel design significantly boosts the network’s
expressive power, enabling it to better model the complex patterns present in Chinese character images.

C. Multi-scale dilated convolution
For handwritten Chinese character recognition tasks, low-level visual cues and advanced structural knowl-

edge are both necessary for predicting successfully. Therefore, the convolutional layers in Block employ varying
rates to learn contextual information from deferent spatial ranges.

Traditionally, each convolutional layer is followed by a pooling layer, which helps integrate multi-scale
contextual information through the combination of convolutional strides and pooling operations. Besides the
traditional way, in the design of this model, we also considered the resolution of the feature map, the four Block
modules having a convolution step of 1, removed the pooling layer, and then aggregated multi-scale context
information by combining the convolution kernel and different dilation rates.

For a k × k convolutional kernel with a dilated rate of r, the size of the dilated convolutional kernel is
kd × kd, where kd = k + (k − 1) × (r − 1), so as to realize the purpose of expanding the receptive field.
However, it’s important to note that within the expanded kd × kd region, only the original k× k pixels actually
participate in the computation, and a significant portion of the information is lost, so it is a sparse sampling
method. When multiple dilated convolutions are used continuously, it is easy to cause Grid Effect [29], losing
the continuity and correlation.

To effectively address the issues caused by the grid effect, the 3×3 convolution layers of the each Block
in the ResNetDC use varying dilated rates: 1, 2 and 3 respectively. Correspondingly, the dilated kernel
sizes are 3×3, 5×5 and 7×7 respectively, and the receptive fields on the Block’s input feature map are
3×3, 7×7 and 13×13. This approach ensures that all holes are covered, thereby significantly increasing the
receptive field without sacrificing spatial resolution. By maintaining the 8×8 resolution of the feature maps,
the model can capture both local and global features, aggregating context information from multiple scales.
This multi-scale context learning enhances the model’s ability to understand complex patterns and improves
classification accuracy. Notably, with the input feature image resolution down-sampled to 8×8, the 7×7 dilated
convolution kernels effectively approximate global convolutions, capturing long-range dependencies across
the entire feature map. The detailed configuration of the convolutional layers within the Block module is
summarized in Table 2.

According to ResNetDC shown in Figure 2, the network focuses on the areas shown in the right figures
of Figure 4 and Figure 5, respectively, when predicting the categories of characters “棋” and “和”. If dilated
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convolution is not used, that is to say, the dilated rates of all convolutional layers are set to 1, the areas of
interest for the network are shown in the left figures of Figure 4 and Figure 5, respectively. They illustrate
that ResNetDC we designed can not only capture low-level visual clues of Chinese characters but also acquire
advanced structural knowledge. Both short-distance features and long-range correlations can be learned.

Table 2. Detailed configuration of Block

Layer 1 2 3 4 5
Convolution 1×1 3×3 3×3 3×3 1×1
Dilation rate 1 1 2 3 1

Dilated kernel size 1×1 3×3 5×5 7×7 1×1
Receptive field 1×1 3×3 7×7 13×13 13×13

Figure 4. Comparison of regions concerned by not dilated network and ResNetDC when classifying the
character “棋”

Figure 5. Comparison of regions concerned by not dilated network and ResNetDC when classifying the
character “和”

D. Visualization
Figure 6 shows the visualization effect of the focus areas of each layer in the ResNetDC model, which are

areas of interest for the 7×7 convolutional layer, 3×3 convolutional layers, and Block 1 – Block 4 from left to
right. The input Chinese character is“报”.

Figure 6 illustrates that the low-level convolution operation learns the local and detailed information of
the Chinese character image, and has a small receptive field. With the increase of the network depth, the
receptive field gradually increases, and the scope of attention is also growing, which conforms to the design
intention of the ResNetDC model. That is, the layer-by-layer feature extraction of the image is completed
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through multi-layer convolution. The ResNetDC model can capture not only low-level visual clues but also
advanced structural knowledge of Chinese characters.

Figure 6. Visualization of regions concerned by each layer in ResNetDC

4 Experiment

A. Datasets
The experimental data of this study is based on the DICCs dataset for "zero starting point" foreign

students [30, 31]. The dataset uses Anoto digital paper and pen to collect data, which contains 525 categories
of Chinese characters and 31,734 samples. The sample size of each category varies greatly, and the dataset is
imbalanced. CASIA-OLHWDB1.0 [1] is used to pre-train the ResNetDC, which can effectively alleviate the
challenges brought by imbalanced dataset. CASIA-OLHWDB1.0 is established by the Institute of Automation
of the Chinese Academy of Sciences and produced by 420 authors, involving 3,866 commonly used Chinese
characters, of which 3,740 categories overlap with the GB1 set. Some examples of datasets are shown in Figure
7 and Figure 8.

Figure 7. DICCs for foreign students

B. Data preprocessing
Because the category of Chinese characters is very large, we rasterize the sampled handwriting sequence

into an image, keeping the aspect ratio scaled to 56×56 pixels, and place it on a slightly larger 64×64 image
center to allow for various geometric deformations during the training process. Set the foreground color to 0
and the background color to 255.

The amount of images for DICCs is large. If each image is stored as a file, not only will the number
of files be large, but the loading of data will also be slow. Therefore, we use Lightning Memory Mapped
Database (LMDB) to store images. LMDB puts the entire dataset in one file, avoiding the overhead of file
system addressing. After preprocessing, the images and labels are stored uniformly in the LMDB database.
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Figure 8. CASIA-OLHWDB1.0

Because the number of Chinese character categories in the DICCs training set for foreign students is much
greater than the number of samples for each category of Chinese character, the method of data augmentation
is used to increase the number of samples for each category of character, making the training set much richer
and the model more generalizable. Before feeding samples into the network, data augmentation is carried out
through methods such as cropping, flipping, and rotation.

C. Implementation details
ResNetDC is a CNN built on the PyTorch deep learning framework, designed to achieve efficient and

effective model training through a series of carefully crafted optimization strategies. The detailed parameter
configurations are listed in Table 1. The training process of ResNetDC aims to minimize the cross-entropy
loss. To achieve rapid convergence and adapt to the learning requirements of different parameters, ResNetDC
employs the Adam optimizer. The choice of batch size is a balancing act that needs to be adjusted based on
specific hardware conditions and model complexity. A batch size of 256 provides a good balance in most
cases, accelerating the training process while avoiding excessive memory consumption. Initially, the learning
rate is set to 0.01, which is a relatively high starting value intended to speed up the initial convergence. As
training progresses, when the objective loss no longer decreases significantly, the learning rate is multiplied by
0.35. Training is terminated when the model’s performance on the validation set no longer shows significant
improvement.

D. Experimental results
Figure 9 shows the changes in training loss for networks configured with 2, 3, and 4 Blocks, while Figure

10 presents the corresponding validation accuracy for these three network configurations.
The results show that the ResNetDC configured with four Blocks achieves the lowest training loss and

the highest validation accuracy. This performance is attributed to the increased depth provided by stacking
more Block modules, which, combined with the residual structure within each Block, effectively mitigates
issues of gradient vanishing and explosion. Consequently, this deeper architecture facilitates better feature
learning and enhances classification accuracy. Through experiments, it was found that the area of interest of
the ResNetDC configured with four Blocks has almost covered the entire Chinese character image. Increasing
the number of Block will only increase the size, parameters, and training time of the network, but will not
improve classification accuracy and performance. Therefore, in the ResNetDC model, setting up four Block
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modules is the most reasonable solution.

Figure 9. The changes in training loss for networks configured with 2, 3, and 4 Blocks

Figure 10. Accuracy comparison for the three networks

To evaluate the effectiveness of dilated convolution in the ResNetDC, a comparison of the classification
performance between common convolutional networks and dilated convolutional networks is conducted. In
the ResNetDC shown in Figure 2 and Figure 3, the dilation rates of 3×3 convolutional layers of every Block
module in an common convolutional network are set to 1, and they are set to 1, 2 and 3 respectively in the
dilated convolutional network, Figure 11 shows the training losses of these two networks, and Figure 12 shows
their validation accuracy.

Figure 11 and Figure 12 clearly demonstrate the superior performance of the dilated convolutional network
compared to the common convolutional network. Specifically, the training loss of the dilated convolutional
network is consistently lower, and the validation accuracy stabilizes after approximately 16 epochs, reaching a
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significantly higher level than that of the common convolutional network. Its Top 1 accuracy reaches 94.3%,
and Top 5 accuracy reaches 98.9%. These results highlight the substantial impact of dilated convolutions on
DICCR for foreign students.

Figure 11. Changes in training loss of two networks

Figure 12. Changes in validation accuracy of two networks

The sample size of DICCs for foreign students is small and imbalanced. By pre-training the ResNetDC
on the CASIA-OLHWDB1.0 dataset, we can transfer the knowledge learned from a large dataset to the target
task, thereby improving the model’s generalization ability and performance. Additionally, this approach helps
avoid overfitting, which is a common issue when training models directly on small and imbalanced datasets.
The validation accuracy changes of pre-trained models compared to models without pre-training on the foreign
student DICCs dataset are shown in Figure 13.
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Figure 13. The validation accuracy changes

Our pre-trained model achieves an accuracy of 98.5%, which shows a significant advantage over Hao
Bai’s method, as illustrated in the accuracies comparison in Table 3.

Table 3. Accuracies comparison

Approach Accuracy
Hierarchical model [4] 92.55%

Improved hierarchical models [5] 97.91%
ResNetDC (ours) 98.5%

Table 4. Prediction effect of ResNetDC model on writing errors and non-standard writing samples

Sample
(a) (b) (c) (d) (e)

Problem
Extra
stoke

Missing
stroke

Incomplete
stroke

Structural
imbalance

Structural
imbalance

Actual categories 吃 风 块 棋 在

Top 1 prediction 吃 风 块 棋 在

Top 5 prediction
吃气汽

空还

风见几

贝识

块知步

边球

棋快楼

样糕

在石礼

木本

E. Result analysis
Using the trained ResNetDC model, single-sample prediction and batch prediction are achieved for the

samples in the test set. The single sample prediction interface is shown in Figure 14. Select a sample by
opening a dialog box, and the prediction window displays the sample content, actual category, Top 1 prediction
value, and Top 5 prediction value. Batch prediction saves the file names, actual categories, Top 1 predicted
values, and Top 5 predicted values of all samples in the test set to a file.
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The ResNetDC model can effectively recognize DICCs by foreign students with writing errors and non-
standard problems, as shown in Table 4. The Top 1 prediction value is completely correct for samples with extra,
missing, incomplete strokes, and structural imbalance. Figure 15 shows some samples correctly recognized
by ResNetDC. The ability of ResNetDC to effectively recognize DICCs of foreign students highlights its
adaptability, making it a powerful tool for accurate DICCR, despite the challenges posed by various imperfect
input data.

Figure 14. Single sample prediction interface

Figure 15. Samples correctly recognized by ResNetDC
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5 Conclusion

For the recognition of foreign students’ DICCs, we propose network architecture ResNetDC that learns
multi-scale context information, which has the characteristics of easy optimization of the residual network.
The ResNetDC overcomes the limitation of traditional convolutional networks, which struggle to capture
long-distance correlations in DICCs. By employing varying dilation rates, the model aggregates multi-scale
contextual information, ensuring a comprehensive acquisition of both low-level visual clues and high-level
structural knowledge. This approach enables the model to achieve excellent classification accuracy, even for
DICCs with various errors and non-standard.

The experimental results clearly demonstrate the effectiveness of the proposed ResNetDC model in
DICCR for foreign students. This robust performance provides a solid technical foundation for a wide range of
applications. For example, Assessing the accuracy and legibility of handwritten Chinese characters, enhancing
the learning experience by providing immediate feedback on writing mistakes, assisting foreign students in
practicing and improving their handwriting skills, facilitating the recognition and processing of handwritten
text in various digital systems, ensuring accurate and efficient evaluation of handwritten responses in online
testing environments, and so on.

The ResNetDC model’s ability to handle diverse and imperfect input data makes it particularly valuable
for these applications, offering significant development prospects and paving the way for advancements in
international Chinese language education and technology.
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