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Abstract: The challenge of executing iterative big data analysis algorithms within the Google Cloud MapReduce
environment has been addressed by developing a parallel K-means algorithm capable of leveraging the distributed
computing power of the platform. Traditional K-means, which requires iterative steps, is adapted into a parallel
version using MapReduce to enhance computational efficiency. This parallel algorithm is structured into multiple
super-steps, each of which executes in parallel but is processed sequentially across super-steps. Each super-step
corresponds to one iteration of the serial K-means algorithm, with parallel computation carried out at each node to
determine the mean of each cluster center. Experimental evaluations have demonstrated that the parallel K-means
algorithm performs effectively and accurately. Notably, for a dataset of 450 water samples, a parallel speedup factor of
20.8 was achieved, significantly reducing the time required for data analysis. This substantial reduction in processing
time is critical in time-sensitive applications, such as coal mine rescue operations, where quick decision-making is
essential. The results indicate that the proposed parallel K-means algorithm is both a feasible and efficient solution
for handling large-scale datasets within cloud environments, providing substantial benefits in both computational
speed and practical application.
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1 Introduction

The primary characteristic of big data is its enormous volume. The scale of data that needs to be processed in
a timely manner to extract useful information has escalated from the TB level to the PB and even EB levels [1–3].
Secondly, big data holds significant commercial value, but its value density is low—individual data points have little
value on their own. It is only when large volumes of data are aggregated and processed that the value of big data
analysis becomes evident, as it can help predict future trends based on historical data [4]. This requires appropriate
hardware platforms and software algorithms for processing big data. Many algorithms used in big data analysis
are complex and consist of multiple iterative steps [5–7]. Although Google Cloud’s MapReduce environment is a
widely used hardware platform for big data analysis, it cannot directly run data analysis algorithms with iterative
steps [8–13]. To solve this problem, this paper uses the K-means algorithm as an example, upgrading the serial
K-means algorithm to a parallel K-means algorithm that can run in Google Cloud’s MapReduce environment.

MapReduce abstracts the parallel computing process running on large-scale clusters into two functions, Map
and Reduce, adopting a “divide and conquer” strategy to enable parallel computation [14–17]. A large-scale dataset
stored in a distributed file system is split into many independent chunks (splits), which can be processed in parallel
by multiple Map tasks [18]. There is no communication between different Map tasks, and no information exchange
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occurs between different Reduce tasks. Users cannot explicitly send messages from one machine to another; all data
exchanges are handled by the MapReduce framework itself. Due to this performance, MapReduce is only suitable
for relatively simple parallel computations, and it struggles with more complex algorithms, such as the K-means
algorithm, which requires multiple iterations [19, 20]. To address this issue, this paper proposes a new explicit
parallel K-means algorithm that can run in the MapReduce environment and produce correct results. This parallel
algorithm is composed of multiple super-steps, each involving parallel computation and completed by a single Map
and Reduce function. However, the super-steps are executed sequentially. One super-step corresponds to one iteration
of the serial K-means algorithm. Within each super-step, each computational node (processor, worker) concurrently
computes the average value of a cluster center.

In Google’s MapReduce environment, this paper processes the initial 47,000 coal mine water sample test data [21–
24]. After extraction, cleaning, and integration, high-quality data consisting of 450 water samples and 3,600 data
points were obtained. Subsequently, the parallel K-means algorithm developed in this paper was applied to mine
and analyze this data. Both theoretical and experimental results demonstrate that the parallel K-means algorithm
yields the same results as the serial algorithm, with a parallel speedup ratio of 20.8. This significantly increases the
processing speed of water sample analysis, thus saving valuable time for coal mine rescue operations. The following
sections will introduce this new parallel algorithm.

2 Serial K-means Algorithm

Clustering is a method of grouping two observation data points based on the similarity calculated from their
distance (without labeled samples). The K-means algorithm, also known as the K-average algorithm or K-means
algorithm, is one of the most widely used clustering algorithms [25]. The K-means algorithm uses K as a parameter
to divide N samples (objects) into K classes (clusters), such that the similarity within each class is high, while the
similarity between classes is low. The similarity is calculated based on the average value of the objects (samples)
within a class. First, K samples are randomly selected, each of which initially represents the average value or center
of a class. For each remaining sample, based on the distance to each class (cluster) center, it is assigned to the nearest
class. Then, the average value of each class is recalculated. This process is repeated until the criterion function E
converges, that is, until the generated result classes are as compact and independent as possible [26]. The criterion
is as follows:

E =

k∑
i=1

∑
x∈Ci

∣∣X − X̄i

∣∣2
where, E is the total sum of squared errors for all samples to be classified, x is a point in the space representing a
given data sample, and X̄ is the average (center) of class Ci. The number of input classes k and the dataset with n
samples are given, and the output consists of k classes that minimize the squared error criterion.

In summary, the K-means algorithm process is as follows:
K-means Algorithm Process
Step 1: Randomly select k objects from the n data objects as the initial cluster centers.
Step 2: Calculate the distance between each object and these center objects (mean of the cluster), and reassign

each object to the corresponding cluster based on the smallest distance.
Step 3: Recalculate the mean (center object) for each cluster (if there is any change).
Step 4: Repeat steps 2 and 3 until no further changes occur in the clusters, i.e., until the squared error criterion

is minimized.

3 Google Cloud MapReduce

The computing model of cloud computing is a programmable parallel computing framework that requires high
scalability and fault tolerance support. MapReduce is a parallel programming model proposed by Google, which
runs on top of the Google File System (GFS) [1, 2]. The design philosophy behind MapReduce is to divide and
conquer the problem. The original data source of the user is first split into chunks, which are then assigned to
different Map tasks for processing. The MapReduce framework adopts a Master/Slave architecture, consisting of
one Master and several Slaves. The JobTracker runs on the Master, and the TaskTracker runs on the Slaves.

As shown in Figure 1, MapReduce follows a “divide and conquer” strategy [27]. A large-scale dataset stored in
a distributed file system is split into many independent splits, which can be processed in parallel by multiple Map
tasks. The specific steps are as follows:

(1) Data segmentation;
(2) Master assigns Map tasks;
(3) Workers assigned with Map tasks read and process the relevant splits;
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(4) The Master coordinates the assignment of Reducers to fetch data from the appropriate Mappers, during which
the shuffle process occurs, including a sorting step by key;

(5) The Reducer reads and processes the Value list corresponding to each key;
(6) The Reducer writes the processed data into the HDFS output file.
The shortcomings of Google’s MapReduce are as follows:
(1) Programmers must manually and explicitly specify the parallelism of the computation tasks before the Map

tasks can be assigned;
(2) It cannot automatically perform iterative computations;
(3) There is no communication between different Map tasks;
(4) There is no information exchange between different Reduce tasks;
(5) Users cannot explicitly send messages from one machine to another; all data exchanges are handled by the

MapReduce framework itself.
In summary, the parallel MapReduce computing platform provided by Google Cloud is a basic and simple parallel

computing platform. To perform more advanced parallel computing tasks on this platform, further work is required.

Figure 1. Google cloud MapReduce parallel computing platform working principle

4 Development Process and Pseudocode of Parallel K-means Algorithm in MapReduce Framework
4.1 Parallel K-means Algorithm Steps

To address the issue where the widely used K-means algorithm in big data analysis fails to yield correct results
when executed in the Google MapReduce environment, a new explicit parallel K-means algorithm has been proposed
that can run correctly in the MapReduce environment. The parallel algorithm is composed of multiple super-steps.
Each super-step involves parallel computation, but the super-steps themselves are executed sequentially. A super-
step corresponds to one iteration of the serial K-means algorithm. Within each super-step, each computational
node (processor, worker) concurrently computes the mean value of a cluster center. Initially, the K cluster centers
are selected randomly. Each computational node then calculates the distance between each sample point and the
current new cluster centers, and assigns each sample to the nearest cluster based on the distance. During the
synchronization phase, the computational nodes communicate with each other by exchanging the newly computed
cluster center averages and the classification information of each sample, ensuring that each node has the same
updated classification data and information. The super-step computation is repeated multiple times until the cluster
centers no longer exhibit significant changes. The Map function is used to allocate parallel tasks, and the Reduce
function is used to aggregate the computation results.

In summary, the steps of the parallel K-means algorithm are as follows:
Step 1: Randomly select k samples from n data samples as the initial cluster centers.
Step 2: Parallel classification. Each computational node (processor, worker) concurrently computes the mean

value for one cluster center. It calculates the distance between each sample and these center samples and reassigns the
samples to the nearest center based on the smallest distance. This step is executed in parallel on each computational
node (processor, worker).

Step 3: Parallel computation of class means. Recalculate the mean (center sample) for each (changed) cluster.
This step is executed in parallel on each computational node (processor, worker).

Step 4: During the synchronization phase, the computational nodes communicate with each other by exchanging
the newly computed cluster center averages and the classification information of each sample, ensuring that each
computational node has the same updated classification data and information.
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Step 5: After completing one super-step of parallel computation, repeat steps 2, 3, and 4 until the clusters no
longer change, that is, until the squared error criterion is minimized.

4.2 Graphical Representation of Parallel K-means Algorithm Steps

The process of the parallel K-means algorithm can be graphically represented as shown in Figure 2.

Figure 2. One “super-step” of the parallel K-means algorithm

The operation of the parallel K-means algorithm introduces the concept of “super-step”. Its execution is based
on super-steps, which are the fundamental units of parallel computation in the algorithm. The parallel K-means
algorithm consists of several super-steps, and each super-step is further divided into the following three steps:

(1) Local Computation by Processing Nodes: Each processing node concurrently computes the mean value of
one cluster center. There are k cluster centers, so k processing nodes are required to participate in the parallel
computation.

(2) Local Computation with Remote Memory Access: The processing nodes perform their local computations
using the information in their local memory. During this phase, the nodes may asynchronously issue remote
memory access and message-passing operations. However, these operations will not be executed immediately. The
communication network will handle the operations issued in the previous step.

(3) Global Synchronization (Barrier Synchronization): Finally, all processing nodes perform global barrier syn-
chronization. The communication operations of the current super-step become effective after barrier synchronization.

4.3 Pseudocode for Parallel K-means Algorithm in MapReduce Framework

The pseudocode for the parallel K-means algorithm is as follows:

S1 assign initial value for means; /* Randomly select k samples as the initial cluster centers */
S2 REPEAT /* Repeat parallel computation within each super-step */
forall

(i = 1; i ≤ k; i++)

/* Start parallel computation within each super-step */
{
S3 FOR j=1 to n DO assign each to the cluster which has the closest mean;
/* Assign each sample to the most similar cluster based on the mean of the cluster */
S4 FOR i=1 to k DO

Xi = |Ci|
∑
x∈Ci

X

/* Update the mean of each cluster by computing the average of the samples in that cluster */
S5 Compute ∑

x∈Ci

∣∣X − X̄i

∣∣
/* Compute the criterion function E */
} /* End parallel computation within each super-step */
S6 UNTIL no significant changes occur in E.
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4.4 More Detailed Pseudocode for Parallel K-means Algorithm in MapReduce Framework

In each super-step, one iteration of the K-means algorithm is implemented using MapReduce. The Map and
Reduce functions are as follows:

(1) Map Process
Each worker compute node loads the sample data set, where the input to the Map is <key, value>, with the key

being the sample row number (i.e., the sample ID), and the value being the sample’s attributes and label (i.e., the
class it belongs to out of the k classes). The output of the Map is <key, list(value)>, where the key is the sample
row number (i.e., the sample ID), and the value is the sample’s label (i.e., the class it belongs to out of the k classes)
and the distance (the distance from the sample to each of the k class centers). The pseudocode for the Map function
is as follows:

for i in test\_data /* For each sample to be classified */

for j in cluster\_center\_data /* For each cluster center */

Extract label L from sample i

Compute the distance D between sample i and cluster center j

context.write(sample row number (ID), vector (L, D))

end for

end for

where, L represents the cluster label, namely the cluster ID; and D represents the distance between the sample and
the cluster center L.

(2) Reduce Process
For the input key-value pairs with the same key, sort the (L, D) pairs by D, take all k label-L (i.e., the distances

of a sample to the k cluster centers), and calculate the minimum distance. The result for this key is the sample’s
assigned cluster center ID, which is the cluster to which the sample belongs.

5 Experimental Results
5.1 Size, Characteristics, and Applicability of Experimental Data

The initial dataset to be analyzed consisted of 47,000 data points. The most prominent feature of these data
was incompleteness, meaning the data contained some missing information and erroneous data, i.e., dirty data.
After extraction, cleaning, and integration, a high-quality dataset of 3,600 data points was obtained. This dataset
was then mined and analyzed using the parallel K-means algorithm developed in this paper within the MapReduce
environment.

The size of the high-quality experimental dataset used for mining and analysis was 3,600 data points, i.e., 450
water samples ×8 analytical indicators = 3,600 data points.

Applicability of the Experimental Data: To ensure the dataset’s representativeness and broad applicability,
data from 35 representative and widely applicable coal mines, owned by the Lu’an Group, were selected [19–27].
These data represented water quality chemical analysis indicators from various mine source waters. The dataset
consists of four types of water sources, which are: water in ground spring, wate in sandstone aquifers, water in
limestone aquifers of the Taiyuan series, and water in limestone aquifers of the ordovician system. These four water
types are typical sources of water-related hazards encountered in coal mining operations in China, making them both
representative and widely applicable.

The characteristics of the experimental data: incompleteness (dirty data), timeliness (quick analysis results are
required), reliability (high practical value), complexity (the knowledge contained is difficult to discover), authenticity
(the data reflects reality), and large data volume, approximately 36,000 raw data points [20–27].

The experimental data was collected from various sources of water samples, and the chemical indicators of water
quality were analyzed to establish a representative water sample database. The indicators include: K+, M2+

g , C2+
a ,

Cl−, SO2−
4 , HCO−

3 , Total hardness, and pH value [19].

5.2 Experimental Results

In the Google MapReduce environment, the initial 47,000 experimental data points were processed through
extraction, cleaning, and integration to produce a high-quality dataset of 3,600 data points. This dataset was then
mined and analyzed using the parallel K-means algorithm developed in this paper, with the task of classifying the
450 water samples. Each water sample’s class was known. During the experiment, it was assumed that the class of
each water sample was unknown in order to test whether the parallel algorithm could correctly classify the 450 water
samples. The accuracy of the classification results was 99% (i.e., the classification accuracy of the parallel K-means
algorithm), thus proving that the parallel K-means algorithm developed in this paper is correct.
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Table 1. Analysis results and data processing for sample water samples (Partial listing due to space constraints)

Sampling Point Correctness of Analysis M2+
g C2+

a Cl− SO2−
4 pH

Water 1 in ground spring Correct 74.8 60.0 145.0 719.5 7.9
Water 2 in ground spring Correct 90.9 206.8 384.8 530.6 7.6

Water 1 in sandstone aquifers Correct 72.4 80.0 124.5 540.0 8.2
Water 2 in sandstone aquifers Correct 74.9 186.8 301.3 212.3 8.0

Water 1 in limestone aquifers of the
Taiyuan series Correct 5.1 17.2 126.5 1,779.8 7.9

Water 2 in limestone aquifers of the
Taiyuan series Correct 62.7 117.2 195.9 1,843.6 7.6

Water 1 in limestone aquifers of the
ordovician system Correct 13.9 34.3 978.3 105.2 7.9

Water 2 in limestone aquifers of the
ordovician system Correct 7.6 14.7 821.5 101.3 8.4

Table 1 shows part of the experimental data and analysis results (due to space limitations, only a selection of
typical representative data is listed in Table 1).

Figure 3 is the visualization of the classification result for these 450 water samples. Since this experiment used
8 water quality test indicators, it corresponds to an 8-dimensional space. Plotting the classification result in an
8-dimensional space is difficult, so principal component analysis (PCA) was used in this paper to take the first two
principal components and plot the classification result in a 2-dimensional space, as shown in Figure 3. These two
principal components explain 76.4% of the information of the original 8 water quality test indicators (also referred to
as variables or features). From Figure 3, it can be seen that the parallel K-means algorithm developed in this paper,
under the Google MapReduce environment, divides the 450 water samples into four categories. This classification
result is consistent with the actual situation, which also proves that the parallel K-means algorithm developed in this
paper is correct.

Figure 3. 2D space classification results for 450 experimental water samples
Note: These two principal components explain (that is, represent) 76.4% of the information of the original 8 indicators.

As shown in Table 2, the parallel K-means algorithm developed in this paper achieved a speedup ratio of 20.8
when analyzing 3,600 data points from 450 water samples. This significantly improved the speed of water sample
analysis, saving analysis time and providing more time for coal mine emergency rescue operations.
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Table 2. Performance comparison between parallel K-means and serial K-means

Sampling Point Analysis Correctness Rate Computation
Time

Speedup
Ratio

K-means
Parallel K-means 99% 13 minutes 20.8

Serial K-means
(single machine, Lenovo) 99% 270 minutes

6 Conclusion

Many algorithms used in big data analysis are quite complex and consist of multiple iterative steps [17–19].
Although the Google Cloud MapReduce environment is a widely used big data analysis platform, it cannot directly
run algorithms with iterative steps. To address this issue, this paper takes the K-means algorithm as an example and
upgrades the serial K-means algorithm to a parallel K-means algorithm that can run in the Google Cloud MapReduce
environment.

This paper proposes an explicit parallel K-means algorithm that can produce correct results within the MapRe-
duce environment. The parallel algorithm is composed of multiple super-steps. Within each super-step, parallel
computation is performed, but the super-steps themselves are executed serially. A super-step corresponds to one
iteration of the serial K-means algorithm. During each super-step, each compute node (processor, worker) parallelly
computes the mean value for a cluster center. The parallel computation within each super-step is achieved through
Map and Reduce functions. Both theoretical analysis and experimental results show that the parallel K-means
algorithm developed in this paper can run correctly within the Google MapReduce environment. Furthermore, the
results of the parallel K-means algorithm are consistent with those of the serial K-means algorithm. The speedup
ratio achieved for analyzing 3,600 data points from 450 water samples is 20.8, significantly improving the analysis
speed and saving time for coal mine rescue operations.

The method proposed in this paper is not only suitable for the parallel K-means algorithm but also applicable
to many other big data analysis algorithms that consist of multiple iterative steps. The parallel K-means algorithm
presented here has broad application value in fields such as facial recognition, fingerprint recognition, language
models, speech recognition, artificial intelligence, and public safety identification for criminal detection.
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