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Abstract: This study addresses the issues of fragmentation, unstructured information, and low reusability in the
process knowledge management of aircraft engine component manufacturing. A process knowledge modeling
method based on ontology is proposed. By constructing an ontology knowledge base tailored for the aircraft
engine manufacturing domain, an improved top-down approach is employed. This method introduces feature-
based constraints on process parameters and uses tools to create a Web Ontology Language (OWL) model. The
manufacturing of a long tension bolt is chosen as the case study, and application verification is carried out based on
the Model-Based Definition (MBD) model. The results demonstrate that the proposed method significantly improves
the sharing and reusability of process knowledge, providing theoretical support for the intelligent process design of
aircraft engine components.
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1 Introduction

As the core component of modern aircraft, the manufacturing process of aircraft engine parts is complex and
highly demanding. With the development of intelligent manufacturing technologies, the efficient management and
utilization of process knowledge have become key to improving manufacturing levels. However, current process
knowledge management faces issues such as fragmented knowledge, unclear structure, and difficulties in sharing and
reusing knowledge, which severely limit the realization of intelligent process systems [1, 2]. To address these issues,
this paper proposes an ontology-based method for process knowledge modeling of aircraft engine components,
aiming to solve the problems of process knowledge fragmentation and sharing, and to provide theoretical support for
intelligent process systems.

In recent years, scholars both domestically and internationally have conducted extensive research in the field of
process knowledge management. Literature [3–7] pointed out that ontology technology, as a formalized knowledge
representation method, can effectively describe concepts, attributes, and relationships in a domain, with advantages
such as clear semantics and strong reasoning ability. Literature [8–10] further explored the application of top-down
ontology modeling methods in complex domains, but their applicability in process knowledge management still
needs optimization. Literature [11–13] proposed process knowledge expression methods based on MBD models,
but have not solved the issues of modularization of knowledge and low reusability. Literature [14–16] emphasized
the importance of process knowledge sharing and intelligent management, but lacks systematic solutions.

Based on the current research status, this paper proposes an improved top-down ontology modeling method.
Firstly, the OWL is used to formalize the description of process knowledge, defining core concepts, attributes, and
their relationships, ensuring semantic consistency and scalability [17–19]. Secondly, by combining the advantages
of top-down construction and fusion construction methods, the construction process is optimized, and the system
implementation is simplified through feature constraints, reducing computational costs [20]. Finally, based on the
MBD model, through the modular construction of Step Knowledge Units (SKU), Process Knowledge Units (PKU),
and Feature Knowledge Units (FKU), flexible combinations and efficient management of process knowledge are
achieved [21–24].
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Experimental results show that the proposed method significantly improves the organizational efficiency and
reusability of process knowledge, providing strong support for the intelligent process design of aircraft engine
components. This method not only has high theoretical value but also demonstrates good feasibility and practicality
in real applications, offering new ideas and technical support for the intelligent management of process knowledge,
as shown in Figure 1.

Figure 1. Technical route framework of this paper

2 Knowledge Representation Theory and Ontology Modeling Method
2.1 Classification and Representation of Process Knowledge

Figure 2 shows the process knowledge can be classified into descriptive knowledge, process knowledge, and
model knowledge according to its characteristics. Descriptive knowledge is primarily used to explain concepts
and definitions of things; process knowledge focuses on describing the operation processes to complete specific
tasks; model knowledge concerns standardized product representations. In the design and manufacturing process
of aircraft engine components, the application of process knowledge mainly focuses on process knowledge and
descriptive knowledge.

Figure 2. Classification of knowledge

(1) Semantic Knowledge Representation Method
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Semantic networks represent knowledge through nodes and edges, where nodes represent concepts or objects,
and edges represent the relationships between them. Semantic networks are suitable for associative queries and
reasoning of knowledge, as shown in Figure 3. For example, in the manufacturing of aircraft engine components, a
semantic network can be constructed, where nodes represent parts, processing parameters, machine types, etc., and
edges represent the relationships between them (e.g., “Part A needs machine tool B for processing”).

Figure 3. Semantic representation method

(2) Rule Knowledge Representation Method
The rule-based method expresses knowledge in the form of “condition-action,” which is suitable for explicit,

structured domain knowledge. For example, in the processing of aircraft engine components, the rule-based method
can be used to describe tool selection rules, such as “If the material is titanium alloy and the cutting speed is below
200 m/min, then select tool A.”

(3) Ontology Knowledge Representation Method
Figure 4 is ontology representation method. Ontology is a formalized knowledge representation method that can

clearly express concepts, attributes, and their relationships within a domain. Ontology uses semantic definitions and
constraints to achieve a semantic description of knowledge, making it easier to share and reason about knowledge.
For example, in the process knowledge of aircraft engine components, the ontology method can be used to define
concepts related to part processing (such as machine tools, tools, materials, cutting parameters) and clarify the
relationships between them.

Table 1 provides a brief summary of several different knowledge representation methods. Based on the advantages
of ontology in various aspects, this paper uses ontology to describe and model the process knowledge of aircraft
engine components.

Figure 4. Ontology representation method
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Table 1. Comparison of knowledge representation methods

Knowledge
Representation Method

Expression
Ability

Reasoning
Ability

Semantic
Description

Process
Knowledge

Descriptive
Knowledge

Semantic Representation
Method Medium Strong Yes Medium Medium

Rule Representation
Method Medium Medium No Strong Strong

Ontology Representation
Method Strong Strong Yes Strong Strong

2.2 Ontology Knowledge Model Construction Method

The construction of the ontology knowledge model includes five main modeling primitives: concepts, relation-
ships, functions, axioms, and instances. Through these elements, the ontology can effectively describe various aspects
of process knowledge and their interconnections, thus achieving the systematization and operability of knowledge.
2.2.1 Ontology modeling primitives

Through these elements, the ontology can effectively describe various aspects of process knowledge and their
interconnections, thus achieving the systematization and operability of knowledge, represented as:

O = {C,R, F,A, I} (1)

Concept (C): Refers to a set of objects with certain attributes, such as “lathe,” “tool,” etc.
Relationship (R): Refers to the interactions and associations between concepts, such as “Part-of” (part-whole

relationship), “Kind-of” (inheritance relationship), etc.
Function (F ): Specifies the mapping relationship between concepts, such as “a lathe selects a tool.”
Axiom (A): Used to describe the fundamental theorems and rules within a domain, such as “Cutting speed

cannot exceed the tool’s limit speed.”
Instance (I): Represents a specific element, such as “a specific model of lathe.”
In the actual process of knowledge representation, it is not always necessary to strictly follow the five elements

above, and the ontology can be organized based on the specific situation of the domain. The ontology modeling
primitives define the basic elements for constructing the ontology. As a formal specification, the ontology should
also be described in a language that can be recognized and processed by computers.

In 2004, W3C proposed the OWL standard for ontologies, which meets the following three characteristics:
(1) Compatibility with the previous languages DAML-ONT, DAML-OIL, OIL; (2) Possesses sufficiently powerful
semantic functions; (3) Supports description logic-based decidable reasoning.

Figure 5. Development of ontology representation method

However, since OWL cannot simultaneously possess all three features, W3C also introduced three sublanguages:
OWL-Lite, OWL-FULL, and OWL-DL. OWL-Lite is used to represent the simplest ontology, suitable for one
classification level or simple property constraints; OWL-DL offers the strongest reasoning capability, ensuring
that the reasoning system can compute complete reasoning conclusions within a finite time, but its expressiveness
is limited; OWL-FULL has the maximum expressive power, allowing the addition of vocabulary to predefined
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vocabularies, but it cannot guarantee the completeness and decidability of reasoning systems. Users should consider
both reasoning effects and expressive ability when selecting the description language based on specific ontology
construction needs. In this paper, OWL-FULL representation is chosen. Figure 5 shows the development of ontology
representation.
2.2.2 Ontology knowledge base construction method

The methods for constructing an ontology knowledge base include manual construction, semi-automatic con-
struction, automatic construction, bottom-up construction, top-down construction, and hybrid construction. In this
paper, combining the characteristics of process knowledge for aircraft engine components, top-down and hybrid
construction methods are used to decompose and map the process knowledge, addressing issues of complexity and
redundancy in knowledge. Figure 6 shows the improved top-down ontology model construction method.

Figure 6. Improved top-down ontology model construction method

The hybrid construction method relies on ontology mapping, alignment, and merging algorithms, involving the
following key steps:

(1) Ontology Mapping and Alignment:
For two ontologies O1 and O2, suppose we want to map classes C1 and C2 together:

Align (C1, C2) (2)

Here, Align represents the alignment operation, mapping the two classes or attributes together.
(2) Attribute Alignment:
Aligning attributes P1 and P2 from different ontologies:

Align (P1, P2) (3)

This operation ensures the consistency of attributes, such as matching units and data types.
(3) Conflict Detection and Resolution:
If conflicts are detected during the fusion process Conf(C1, C2), they can be resolved as follows:

Merge (C1, C2) (4)
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or

Extend (C1, C2) (5)

Merging similar classes or extending existing classes.
(4) Ontology Merging and Optimization:
Finally, merge the two ontologies:

MergeOntology (O1, O2) → Ofinal (6)

3 Ontology-Based Process Knowledge Model Design
3.1 Process Knowledge Model Construction

This paper proposes an improved top-down construction method for building process ontology models. By
introducing the concepts of domain foundational ontologies and application ontologies, the process ontology model
can be effectively extended and shared. The domain foundational ontology is used to describe general concepts and
relationships in process knowledge, while the application ontology is application-specific, achieved by extending
and inheriting from the foundational ontology, which is shown in Figure 7.

Figure 7. Relationship between foundational ontology and application ontology

(1) Conceptualization of Process Ontology
Conceptualization is the process of extracting concepts from knowledge related to the aviation engine component

process domain. In the conceptualization phase, related concepts need to be unified, such as “cutting three factors,”
which can also be called “cutting conditions,” or “chip thickness,” which is also known as “cutting depth,” etc.
(Table 2, Table 3 and Table 4).

Table 2. Typical machining process terms

Term Name Similar Terms Term Meaning
Machining

Method Machining Process Refers to the method of using machine tools and tools to remove excess
material from the blank to form a finished product.

Turning Turning /
Lathe Machining Mainly used for processing rotary surfaces, commonly using lathes.

Milling Milling Process Uses rotating tools to cut the workpiece, mainly cutting planes or grooves,
commonly using milling machines.
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Table 3. Typical blank types terms

Term Name Similar Terms Term Meaning

Blank Raw Piece, Material Refers to raw material that has not yet been processed,
or the unfinished part of the final product.

Bar Stock Steel Refers to steel that is round, hexagonal, square,
or other irregular shapes with a specific diameter.

Casting - Refers to a metal forming item obtained through various
casting methods, generally with a complex structure.

Table 4. Typical process parameters terms

Term Name Similar Terms Term Meaning

Process Parameter Machining
Parameter

Refers to the relevant technical indicators involved in the machining
process to meet certain process requirements.

Cutting Depth Depth of Cut,
Back Cutting

Refers to the vertical distance between the machined surface and the
surface to be processed when cutting a workpiece.

Feed Rate - The relative displacement between the tool and the workpiece along the
feed direction during each turn of the main motion.

Table 5. Typical process parameters terms

Attribute Domain Range Notes
ChooseMachine Part Machine Parts select the corresponding machine

ChooseCuttingTool Part CuttingTool Part-selects the corresponding cutter
IsToolOf CuttingTool Machine Cutting Tool is tool of the machine

HasFeature Part Feature What feature the part has
HasMaterial Part, CuttingTool WorkpieceMaterial Parts select the corresponding machine

HasTool Machine Tool Machine selects the corresponding machine
HasPrecision Part Precision Part has some Precision
HasFeeding Part data Part has feeding

Figure 8. Process knowledge model for aircraft engine parts
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(2) Hierarchy of Process Ontology
The hierarchy phase involves categorizing and defining the hierarchical relationships between the extracted

concepts. This paper uses a top-down approach, with “Process Knowledge” as the first-level concept, and gradually
subdividing down, such as “Machining Accuracy,” “Machining Method,” “Machine Tool Type,” etc.

(3) Defining Attributes and Constraints
Defining attributes and constraints includes defining attributes and their hierarchical structure, defining attribute

constraints, and describing the relationships between attributes and concepts. Attributes are divided into object
properties and data properties. Object properties describe the relationships between classes, while data properties
describe the correspondence between classes and specific values.

Table 5 lists partial attributes and descriptions of process ontology. The domain and range of attributes come
from the classes in the ontology, and the range or domain of an attribute may consist of one or more classes.

When constructing a single ontology, in the face of a large number of concepts, attributes, and instances in the
ontology library, the ontology should first be divided into modules. After constructing the hierarchical relationships
of ontology classes for each module, the construction of module ontologies is completed by creating corresponding
instances and attributes. The relationships between module ontologies or instances are defined and restricted through
attributes or constraints. Figure 8 represents the knowledge model of the individual process ontology part.

3.2 Bayesian Inference Algorithm

In the process knowledge model for aircraft engine parts, it is necessary to integrate multiple pieces of information,
such as process flows, material characteristics, and part data, into a unified knowledge representation. This process
handles the fusion and alignment of knowledge from different sources (such as design documents, sensor data,
simulation results). During fusion, potential relationships between knowledge are automatically discovered (for
example, by comparing historical data with simulation data, new process optimization schemes are identified).

Based on the above situation, the Bayesian inference algorithm is used to address the problem of merging
multiple uncertain knowledge sources by applying Bayesian theorem for probabilistic reasoning. Assuming there are
conditional probability distributions for multiple knowledge sources, Bayesian theorem helps derive the final fusion
result.

(1) Defining Random Variables and Events
In the context of process design, suppose we have the following events or random variables:
A1,A2, . . . ,Am represent different process steps or selected decisions (for example, “milling,” “drilling,” etc.).
B1,B2, . . . ,Bm represent observation data from different sources (for example, experimental results, sensor

data, etc.).
The posterior probability of a certain process step Ai is inferred, given observation data Bj from different sources.
(2) Calculating Posterior Probability
The posterior probability of a process step Ai is calculated using Bayesian theorem:

P(Ai | B) = P(B | Ai) · P(Ai)

P(B)
(7)

P(Ai | B) is the posterior probability of process step Ai, given the observation data B.
P(B | Ai) is the likelihood of observation data B given process step Ai. This is usually based on experimental

data or sensor readings.
P(Ai) is the prior probability of process step Ai, given by historical data or expert experience.
P(B) is the total probability of observation data B, typically calculated by weighting over all possible process

steps:

P(B) =

n∑
i=1

P( B | Ai) · P(Ai) (8)

(3) Multiple Data Source Fusion
When there are multiple data sources (such as experimental data, simulation data, sensor data, etc.), Bayesian

inference can be used to merge multiple observation data via the total probability formula. Assuming there are
multiple observation data B1,B2, . . . ,Bm, each data source provides a conditional probability P(Bj | Ai), then the
joint posterior probability can be expressed as:

P(Ai | B1,B2, . . . ,Bm) =
P( B1, B2, . . . ,Bm | Ai) · P(Ai)

P( B1, B2, . . . ,Bm)
(9)
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The joint likelihoodP(B1,B2, . . . ,Bm | Ai) can be calculated by assuming that the data sources are independent:

P( B1,B2, . . . ,Bm | Ai) =

m∏
j=1

P(Bj | Ai) (10)

Thus, the final posterior probability can be written as:

P(Ai | B1,B2, . . . ,Bm) =

(∏m
j=1 P(Bj | Ai)

)
· P(Ai)∑n

i=1

(∏m
j=1 P(Bj | Ai) · P(Ai)

(11)

This approach allows the fusion of knowledge from multiple data sources and the inference and optimization of
process steps.

3.3 Construction of Process Knowledge Base

The process knowledge base contains the most frequently used process knowledge within an enterprise. By
adding characteristic attributes to the knowledge base, its identification can be enhanced, laying the foundation for
reusing the knowledge base during process design. In this paper, the process knowledge base is constructed using
example libraries such as feature knowledge base, tool knowledge base, machine tool knowledge base, and part
knowledge base.
3.3.1 Part knowledge base

The part knowledge base stores detailed information about aircraft engine parts, such as turbine blades, compressor
blades, combustion chambers, etc. Each part has its specific function and manufacturing process, as shown in Table 6.

Table 6. Typical part knowledge base

Part Name Function
Turbine Blade Converts energy into mechanical energy, a critical high-temperature and

high-pressure component in an aircraft engine.
Compressor Blade Used to compress air, increasing airflow pressure to ensure normal engine

operation.
Combustion

Chamber
Mixes fuel and air, ignites the mixture to generate high-temperature,

high-pressure gas to drive the turbine.
Bearing Supports rotating parts, reduces friction, ensures stable operation of parts.

Turbine Disc Supports turbine blades and other components, responsible for transmitting
power from the rotor section.

Fan Responsible for drawing in air and promoting airflow, increasing engine thrust.
Fuel Injection

System
Ensures fuel is injected into the combustion chamber at the correct time and

location.
Nozzle Directs and accelerates the gas flow, generating thrust.

High-pressure/Low-
pressure Shaft

Connects various rotating components, transmitting power.

Turbocharger Improves engine efficiency by compressing air.

3.3.2 Feature knowledge base
The feature knowledge base stores the process features of parts, such as hole features, groove features, cavity

features, etc. Each feature has its specific geometric dimensions and positional dimensions, as shown in the following:
(1) Hole Feature Knowledge Base (Table 7)
(2) Groove Feature Knowledge Base (Table 8)
(3) Cavity Feature Knowledge Base (Table 9)
(4) Edge Step Feature Knowledge Base (Table 10)
(5) Corner Step Feature Knowledge Base (Table 11)
(6) Keyway Feature Knowledge Base (Table 12)
(7) Plane Feature Knowledge Base (Table 13)

3.3.3 Tool knowledge base
Table 14 shows the tool knowledge base stores the basic attributes, types, functions, parameters, and their

interrelationships. Through ontology modeling technology, the standardization and structuring of tool data are
realized.
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3.3.4 Machine tool knowledge base
The machine tool knowledge base stores the basic characteristics, types, structures, functions, and working

principles of machine tools are provided in Table 15. Through systematic and structured methods, it provides
support for machine tool selection, configuration, maintenance, and optimization.

Table 7. Hole feature knowledge base

Hole Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a) STEP1HOLE (b) STEP2HOLE

(c) STEP1POCKET (d) STEP2POCKET

Table 8. Groove feature knowledge base

Groove Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a)
HOLE

RECTANGULAR S
TRAIGHT

(b) HOLE OBROUND
STRAIGHT

(c) HOLE ROUND
TAPERED

(d) HOLE FREE
SHAPED STRAIGHT

Table 9. Cavity feature knowledge base

Cavity Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a)
POCKET

RECTANGULAR
STRAIGHT

(b)
POCKET

OBROUND
STRAIGHT

(c)
POCKET
ROUND

TAPERED
(d)

POCKET
FREE SHAPED

STRAIGHT
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Table 10. Edge step feature knowledge base

Edge Step Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a) SIDE NOTCH
RECTANGULAR

(b) SIDE NOTCH ROUND CONCAVE 1

(c) SIDE NOTCH
ROUND CONVEX 2

(d) SIDE NOTCH U SHAPED 1

Table 11. Corner step feature knowledge base

Corner Step Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a)
CORNER
NOTCH

RECTANGULAR
(b) CORNER NOTCH STRAIGHT

(c) CORNER NOTCH
ROUND CONCAVE

(d) CORNER NOTCH
U SHAPED

Table 12. Keyway feature knowledge base

Keyway Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a) SLOT RECTANGULAR 1 (b) SLOT
RECTANGULAR 2

(c) SLOT ROUND 1 (d) SLOT U SHAPED 1

(e) SLOT V SHAPED (f) SLOT UPSIDE DOWN DOVE TAIL

(g) SLOT DOVE TAIL (h) SLOT T SHAPED
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Table 13. Plane step feature knowledge base

Plane Features
Feature Diagram Feature Name Feature Diagram Feature Name

(a) SURFACE PLANAR
RECTANGULAR

(b) SURFACE PLANAR

(c) SURFACE PLANAR ROUND

Table 14. Common tool knowledge base

Tool Small B Small H L
Standard Tool 4h13 4h13 63± 2
Turning Tool 4h13 4 h 13 80± 2

High-Speed Steel Turning Tool 5h13 5h13 63± 2
Square Turning Tool 5h13 5h13 80± 2

Rectangular Turning Tool 6h13 6h13 63± 2
Round Turning Tool 6h13 6h13 80± 2

Irregular Quadrilateral 6h13 6h13 100± 2
Welded Turning Tool 6h13 6h13 160± 2

Machine-Clamped Turning Tool 6h13 6h13 200± 2
Milling Cutter 8h13 8h13 63± 2

Drill Bit 8h13 8h13 80± 2
Reamer 8h13 8h13 100± 2

Boring Tool 8h13 8h13 160± 2
Broach 8h13 8h13 200± 2

Thread Cutting Tool 10h13 10h13 63± 2
Gear Cutting Tool 10h13 10h13 80± 2
Shaft Cutting Tool 10h13 10h13 100± 2

Table 15. Common machine tool knowledge base

Machine Tool Name Max Diameter × Max Workpiece Length
Light Horizontal Lathe 340× 1000

Saddle Lathe 340× 750
Vertical Lathe 360× 1000
Wheel Lathe 400× 750

Profiling Lathe 490× 1500
Crankshaft Lathe 490× 2000

CNC Horizontal Lathe 500× 750
Milling Machine 500× 750

Planer 610× 1000
Drilling Machine 615× 3000
Boring Machine 615× 4000

Grinding Machine 630× 1500
Shaper 630× 3000

Sawing Machine 630× 4000
Thread Processing Machine 660× 1000
Gear Processing Machine 660× 1500

Special Machine Tool 1000× 3000

4 Experimental Verification and Result Analysis
4.1 Experimental Data Description

This paper uses the process data of an aircraft engine component as experimental data. The data includes
information on the component’s processing technology, machine tool selection, tool selection, and other details. By
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constructing a process ontology model, systematic management of process knowledge is achieved.
Process knowledge modeling, as the core of process knowledge management, can formalize process knowledge

through an organizational model and represent it in a computer system. Knowledge is collected and entered into the
knowledge base following this structure, enabling the large amount of knowledge accumulated in industrial practices
to be digitized and shared. The process knowledge for aircraft engine components is complex and diverse, and the
existing discrete process database cannot efficiently support the intelligent generation of processes.

Taking the process knowledge of a long tension bolt for an aircraft engine as an example, the entire process
flow can be represented through the ontology modeling meta-language—the five elements constructing an ordered
combination of the ontology. In the diagram, each meta-language represents a specific machining operation, such as
turning, grinding, gear hobbing, etc., while the ontology meta-language displays how these operations are executed
in a specific order. The long tension bolt is the instance, SKU, PKU, and FKU are the concepts, the Parts Machining
Chain (PMC) is the relation, the meta-language definition is the axiom, and the expression model is the function.
Through this structured expression, process knowledge can be standardized and stored in the process library and
facilitates subsequent querying, modification, optimization, and sharing. Below is a detailed explanation of its
application example.

To facilitate the effective implementation of process knowledge modeling and management, basic concepts such
as SKU, PKU, PMC, and others are briefly defined to provide theoretical support for process knowledge modeling
and management.

Definition 1: SKU is basic unit of process knowledge. It is the indivisible knowledge unit in the process
knowledge expression and consists of concepts, attributes, and rules of process knowledge. The expression model
for SKU is as follows:

SKU ::= PKC ∪ PKA ∪ PKR (12)

where, Process knowledge concept (PKC) represents the basic concept of process knowledge, Process Knowledge
Attribute (PKA) represents the attributes of process knowledge, and Process Knowledge Rule (PKR) represents the
rules of process knowledge.

Based on the function type of the step, it can be divided into Machining Step Knowledge Units (MSKU) and
Inspection Step Knowledge Units (ISKU). The MSKU includes Rough Machining Units (RMU), Semi-finishing Ma-
chining Units (SMU), and Finishing Machining Units (FMU); the ISKU includes Dimensional Tolerance knowledge
Units (DTU) and Geometric Tolerance knowledge Units (GTU), and their expressions are as follows:

SKU = {MSKU, ISKU} (13)

SKU = {RMU,SMU,FMU} (14)

ISKU = {DTU,GTU} (15)

Definition 2: PKU is based on features, with all SKUs corresponding to the feature combined in processing
order. It is divided into process knowledge units and inspection process knowledge units. Its expression model is as
follows:

PKUi =
{
Un
j=1 (SKUj)

}
(16)

PKUi = Un
j=1 {(PKCj ∪ PKAj ∪ PKRj) | MF} (17)

where, MF represents the machining features formed by each process in the part’s processing. Feature recognition
is the process of reinterpreting the design model.

Since a PKU is composed of SKUs, it can also be called a process chain. Based on the specific function type of
the process chain, it can be divided into MPC and Inspection Process Chains (IPC). The MPC is composed of Rough
Machining Units (RMU), Semi-finishing Machining Units (SMU), and Finishing Machining Units (FMU), and its
expression is as follows:

MPC = {(RMU,SMU,FMU) | MF} (18)

The inspection process chain is composed of Dimensional Tolerance knowledge Units (DTU) and Geometric
Tolerance knowledge Units (GTU), and its expression is as follows:

IPC =
{(

Un
p=1DTUp

)
∪
(
Un
q=1GTUq

)
| MF

}
(19)
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Definition 3: PMC consists of all the PKUs for the part, and its expression is as follows:

PMC =
{
Un
j=1 (PKUj) | WPM

}
(20)

PMC =
{
(Um

i=1MPCj) ∪ (Un
i=1IPCj) | Us

p=1WPMp

}
(21)

where, Working Procedure Model (WPM) represents the three-dimensional model between the part’s processes. It
is used to visually display the process requirements and results using the integrated 3D model.

4.2 Application Experiment and Evaluation Indicators
4.2.1 MBD model experiment

If the current blank model of the process cannot identify machining features based on the model elements
of the current process model and cannot infer the blank model, two methods are used to build the blank model:
(1) Direct modeling using CAD modeling functions, providing some rapid direct modeling methods based on the
characteristics of the part model and processing technology, such as bounding box modeling, auxiliary feature
parameterized modeling, etc.; (2) Directly import the part blank model, for example, in CNC processing processes,
the blank model is used in CAM software, and the manufacturing feature body is obtained by the blank model and
the part model together.

In the expression of process knowledge, the SKU is the smallest unit of process knowledge, which contains the
concepts, attributes, and rules of process knowledge. The PKU is formed by combining SKUs in a certain order, and
the machining chain is composed of a series of process chains. Taking the process knowledge of the long tension
bolt part of an aircraft engine as an example, the expressions of these three for specific part process knowledge are
shown in Figure 9.

Figure 9. MBD-based aircraft engine part process model experiment example

4.2.2 Consistency checking algorithm
(1) Consistency Checking of Classes and Attributes
Assume there are two classes C1 and C2, and the relationship between them is described by the attribute P,

expressed by the formula as follows:

Consistent(C1,P,C2) if ∀x ∈ C1P (x) ∈ C2 (22)
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That is, for each instance x in class C1, the value of attribute P(x) should be in class C2.
(2) Class Inheritance Consistency Checking Formula:
If class C1 is a subclass of class C2, namely C1 ⊆ C2, then all instances of C1 should also satisfy the attribute

constraints of class C2.

Consistent (C1 ⊆ C2) if ∀x ∈ C1x ∈ C2 (23)

(3) Intersection Consistency Checking
If the intersection C1 ∩ C2 of classes C1 and C2 is defined, the result of the intersection should logically be

consistent, i.e., it should contain instances that satisfy all constraints.

Consistent(C1 ∩ C2) if ∀x ∈ C1 ∩ C2 x ∈ C1 and x ∈ C2 (24)

(4) SAT Solver Formula:
Convert the ontology into a set of description logic formulas and use the SAT solver to check whether the formula

is satisfiable. The formula is as follows:

SAT(F) where F is the formula representing the ontology (25)

If the formula is unsatisfiable, the ontology is inconsistent.

4.3 Experimental Results Analysis

The experimental results indicate that the proposed ontology-based process knowledge model construction
method effectively enhances the shareability and reusability of process knowledge. Compared to traditional methods,
this approach demonstrates significant advantages in multiple areas.

Firstly, by introducing ontology technology, the degree of structuring of process knowledge has been significantly
improved, making knowledge representation more standardized and less ambiguous. Secondly, the ontology-based
knowledge model supports semantic reasoning and associative analysis, which can automatically discover implicit
relationships within the process knowledge, further enhancing the utility of the knowledge. Moreover, this method,
through modular design, supports flexible combination and extension of process knowledge, making it adaptable
to knowledge requirements in different scenarios, thus significantly improving the efficiency of knowledge reuse.
Lastly, experimental data show that, compared to traditional document-based or database-based process knowledge
management methods, the proposed method performs better in knowledge retrieval efficiency, knowledge updating
and maintenance costs, and cross-domain knowledge sharing, providing strong support for the intelligent management
and application of process knowledge.

In the specific modeling process, to improve the shareability and reusability of the process ontology, the article
proposes a method of constructing application ontologies by extending the basic ontology. This includes defining
both the basic process ontology and the application ontology, designing the process ontology knowledge model, and
ultimately verifying its feasibility through the MBD-based process model application example for an aircraft engine
part.

5 Conclusion

This paper proposes an ontology-based method for constructing process knowledge models for aircraft engine
parts, aiming to address issues such as fragmentation, heterogeneity, and insufficient shareability in traditional process
knowledge management. By incorporating ontology technology, this method builds a hierarchical, structured process
knowledge model that combines top-down and integration approaches, utilizing Bayesian reasoning algorithms and
consistency verification algorithms to achieve standardized expression and unified management of process knowledge.
The specific contributions are as follows:

(1) The use of ontology description languages (e.g., OWL) to formalize the expression of process knowledge.
Through a top-down construction approach, abstract high-level concepts (such as “machining method” and “machine
type”) are gradually refined into specific concepts (such as “CNC lathe” and “milling machine”), ensuring the logical
and hierarchical structure of the knowledge. The integration approach supplements the specific knowledge content,
and the combination of both significantly improves the efficiency of constructing the knowledge model.

(2) The Bayesian reasoning algorithm provides more accurate and reliable process decision support by integrating
knowledge from different sources in the process knowledge model. It handles uncertainty, updates prior knowledge,
and optimizes process parameters, playing a vital role in complex process design tasks.

(3) Consistency verification algorithms are crucial in the construction of the knowledge ontology, particularly
in complex domains (e.g., the aircraft engine process knowledge model). Consistency checks ensure the logical
correctness of the ontology, verifying that the defined classes, attributes, and constraints do not have logical conflicts.
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In the ontology construction process, consistency checking helps identify potential errors and prevents inconsistencies
in the model, ensuring its validity.

(4) The consistency check, performed through a reasoning engine, checks whether there are contradictions or
illogical parts in the ontology. This allows for syntax consistency verification (checking whether the ontology’s syntax
adheres to OWL standards) and semantic consistency verification (ensuring no contradictions and that attribute and
class definitions are logically coherent).

The experimental results demonstrate that this method effectively enhances the systematic management of process
knowledge and provides theoretical support for intelligent process design in aircraft engine parts.
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