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Abstract: Transformer-based language models have demonstrated remarkable success in few-shot text classification;
however, their effectiveness is often constrained by challenges such as high intraclass diversity and interclass similarity,
which hinder the extraction of discriminative features. To address these limitations, a novel framework, Adaptive
Masking Bidirectional Encoder Representations from Transformers with Dynamic Weighted Prototype Module
(AMBERT-DWPM), is introduced, incorporating adaptive masking and dynamic weighted prototypical learning
to enhance feature representation and classification performance. The standard BERT architecture is refined by
integrating an adaptive masking mechanism based on Layered Integrated Gradients (LIG), enabling the model
to dynamically emphasize salient text segments and improve feature discrimination. Additionally, a DWPM is
designed to assign adaptive weights to support samples, mitigating inaccuracies in prototype construction caused by
intraclass variability. Extensive evaluations conducted on six publicly available benchmark datasets demonstrate the
superiority of AMBERT-DWPM over existing few-shot classification approaches. Notably, under the 5-shot setting
on the DBpedia14 dataset, an accuracy of 0.978±0.004 is achieved, highlighting significant advancements in feature
discrimination and generalization capabilities. These findings suggest that AMBERT-DWPM provides an efficient
and robust solution for few-shot text classification, particularly in scenarios characterized by limited and complex
textual data.

Keywords: Few-shot text classification; Dynamic Weighted Prototype Module (DWPM); Adaptive Masking
Bidirectional Encoder Representations from Transformers (AMBERT); Contrastive learning; Feature discrimination

1 Introduction
In the field of Natural Language Processing (NLP) and others, models based on the Transformer architecture [1]

have become mainstream and have achieved significant performance in various tasks. However, their dependence on
large amounts of labeled data [2–4] limits their effectiveness in few-shot learning (FSL) environments where resources
are scarce. This has given rise to the research need for few-shot text classification. Few-shot text classification requires
models to learn new categories from a limited number of labeled instances, which poses challenges to the models’
generalization ability and feature discrimination capabilities.

Few-shot text classification [5, 6] has experienced several significant developmental stages. Early research primarily
depended on transfer learning and meta-learning strategies [7, 8], acquiring general knowledge representations by
pretraining models on large-scale datasets. Subsequently, the introduction of prototypical networks and other metric
learning methods enabled models to better capture the similarities between categories. Prototypical networks mainly
construct decision boundaries by calculating the mean vectors of categories. However, when there are variations in
the expressions of the same category, such as the “logistics service” category containing expressions with different
semantic focuses like “fast delivery speed” and “beautiful packaging” the mean prototype can be diluted by diverse
features, leading to insufficient intra-class consistency.

The emergence of pre-trained language models has further propelled the development of this field [9]. Models such
as BERT [10] have acquired robust language comprehension capabilities through self-supervised learning, providing a
better foundation for feature representation in few-shot scenarios. Recent studies have shown that although pre-trained
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language models can offer rich semantic representations, they still have limitations when dealing with complex
scenarios. Some studies have attempted to enhance the few-shot ability of models through prompt learning [11–13]
and prompt tuning. However, their performance heavily relies on the domain adaptability of manually designed
prompts. For instance, in medical text classification, if the prompt template does not cover professional terms such
as “diagnosis results” and instead uses general expressions like “medical conclusions”, the model may completely
overlook key semantic clues. Other studies have explored contrastive learning and adaptive feature extraction to
improve the discriminability of features. However, these methods are limited in scenarios with high inter-class
similarity. For example, in legal text classification tasks, the semantic boundary between “breach of contract” and
“negligence in contract formation” is so blurred that it leads to significant increases in negative sampling errors in
contrastive learning, further confusing the feature space.

Traditional FSL methods, despite their successes across various scenarios, often struggle to extract discriminative
features from limited samples when confronted with the aforementioned challenges. The inherent complexity of
natural language, compounded by the scarcity of labeled samples, makes it particularly difficult to establish clear
inter-class decision boundaries while preserving intra-class expression diversity. For instance, distinguishing between
“anxiety” and “depression” in psychological state classification tasks requires capturing subtle differences in semantic
intensity, which traditional methods fail to model due to their over-reliance on surface-level lexical statistical features.

To address these challenges, this paper proposes a novel framework called AMBERT-DWPM, which integrates
an adaptive masking strategy [14] and DWPM [15]. The adaptive masking strategy is used to fine-tune the BERT
model [8, 16] by selectively masking irrelevant information, guiding the model to focus on discriminative text
segments in the classification task, thereby enhancing feature extraction. The DWPM module dynamically weights
sample features through cross-attention, effectively addressing the issue of inaccurate category distribution caused by
high intraclass diversity and high interclass similarity [17].

The AMBERT-DWPM framework integrates an adaptive masking strategy and a DWPM to enhance feature
extraction and discrimination in few-shot text classification. This study not only improves the feature extraction
capabilities but also optimizes the model’s generalization performance through a hybrid loss function combining
contrastive learning and prototypical learning. Experimental results demonstrate that the AMBERT-DWPM framework
achieves excellent performance across multiple datasets [18]. Specifically, on the DBpedia14 dataset, the accuracy
reaches 0.978±0.004 under the 5-shot setting, approaching the performance levels of fully supervised learning.
Additionally, the framework exhibits strong robustness and generalization on other challenging datasets, such as
AG News and Symptoms. These findings validate the effectiveness of the adaptive masking strategy and DWPM in
addressing high intraclass diversity and high interclass similarity [17]. The proposed framework offers an efficient and
reliable solution for few-shot text classification tasks [19], showcasing significant potential for practical applications.

2 Related Work
2.1 Few-shot Text Classification

Few-shot text classification methods can generally be categorized into five types: non-parametric methods, data
augmentation methods, prompt-based methods, meta-learning methods, and fine-tuning-based methods. The model
we propose belongs to the fine-tuning-based methods [11].

Among non-parametric methods, compressor-based text classification has achieved considerable success. This
approach leverages compressor techniques to estimate entropy or approximate Kolmogorov complexity and information
distance for text classification. Jiang et al. [20] proposed a method for few-shot text classification that combines
lossless compressors with compressor-based distance metrics and employs the k-nearest neighbors (KNN) classifier
for text classification [11]. However, these non-parametric methods rely on information-theoretic distances (such as
compression rates or entropy) to measure the similarity between texts. The semantic similarity of texts cannot be fully
characterized by compression rates, which severely limits their application value in complex classification scenarios.

Data augmentation methods address the few-shot problem by expanding existing datasets to generate additional
data. For example, Aug GPT [21] uses ChatGPT to rewrite texts, thereby enhancing the performance of few-shot
classification tasks. Piedboeuf and Langlais [22] proposed that directly leveraging large language models to generate
texts aligned with corresponding categories can effectively improve the performance of few-shot classification.
However, data augmentation methods face challenges in ensuring that the synthesized data maintains the same
distribution as the original dataset [11]. If the distribution of the generated data does not match that of the real task
data, it may lead to model bias and even affect classification performance.

Prompt-based methods have made significant progress in FSL in recent years. These methods construct task-
specific prompts that enable models to better leverage the knowledge of pre-trained language models [23]. For
example, token-level prompting relies on masked language models (MLMs), with PET [24] being a method of this
type; sentence-level prompting relies on the next sentence prediction task (NSP), such as the NSP-BERT sentence-level
prompting method proposed by Sun et al. [25]. Although prompt-based methods can fully utilize pre-trained language
models, they are highly dependent on prompt templates, which need to be adjusted specifically for different tasks.
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Moreover, models are highly sensitive to prompts, and different prompts can lead to significantly different classification
results, affecting the stability of the model.

The core idea of meta-learning methods is to enhance a model’s adaptability to new tasks by learning from multiple
few-shot tasks. The main strategies include metric-based meta-learning and optimization-based meta-learning.
Metric-based meta-learning methods, such as Siamese neural networks [26], prototypical networks [27], and matching
networks [28], construct a metric space across tasks to enhance class separability, enabling models to classify by
computing similarities between samples without large-scale parameter updates. In contrast, optimization-based
meta-learning [9] (such as MAML) learns an optimal model initialization that allows the model to quickly adapt
to new tasks under few-shot conditions, thereby improving training efficiency and generalization ability. Müller et
al. [29] proposed a model that combines Siamese networks with label fine-tuning, which achieved good results in
few-shot text classification tasks. However, meta-learning methods typically rely on a large number of auxiliary tasks
for training, and their generalization ability may significantly decrease if the target task distribution differs greatly
from the training tasks. Moreover, metric-based meta-learning has limited discriminability in scenarios with high
inter-class similarity, leading to potential misclassification issues when dealing with complex semantic categories.
Therefore, despite the advantages of meta-learning in FSL, its requirement for consistency in task distribution is high,
making it less applicable to real-world scenarios with significant task differences.

Fine-tuning-based methods achieve efficient few-shot classification by replacing the output layer on the basis of
pre-trained language models and fine-tuning on a small number of samples. Compared with data augmentation and
prompt-based methods, this approach is more concise and efficient, as it does not require additional data generation
or complex prompt design, and it inherits the powerful feature representation capabilities of pre-trained language
models [9], which gives it better adaptability in few-shot tasks. However, traditional fine-tuning methods struggle to
learn discriminative features from limited samples when confronted with tasks that have high intra-class diversity and
high inter-class similarity, thus restricting their classification performance.

To address this issue, we propose adding an adaptive masking operation to BERT and combining it with a DWPM
for fine-tuning. Since BERT is pre-trained on open-domain datasets, which have different data distributions compared
to the target domain of specific tasks, further pre-training BERT on target-domain data can also help with domain
adaptation. However, in the FSL setting with extremely limited samples, it is challenging to train the BERT parameters.
In contrast, our proposed model only adds an adaptive masking operation to BERT and combines it with the DWPM
for further fine-tuning. It directly inherits the parameters of the pre-trained model without the need for additional
expensive pre-training.

2.2 Prototype Learning
Prototype learning, as an important method of metric learning, is based on the idea of representing the overall

feature distribution of each category by calculating class prototypes and classifying samples based on the distance
between samples and prototypes. In FSL scenarios, prototype learning has attracted widespread attention due to its
simplicity and effectiveness.

Basic prototypical networks construct class prototypes by simply averaging the features of support set samples and
perform classification predictions by calculating the Euclidean distance between query samples and class prototypes.
They also introduce cosine similarity to improve the distance metric. These methods are characterized by their
simple structural design, ease of implementation and extension, and low computational overhead. However, since the
prototypes are constructed using simple averaging, they fail to fully account for the heterogeneity of sample features.
As a result, they perform poorly when dealing with data that have uneven intraclass distributions. This is especially
true when the number of samples is extremely small, as the constructed prototypes tend to lack representativeness.

In recent years, researchers have proposed various methods to enhance the performance of prototype learning.
Ragno et al. [30] explored prototype learning based on Graph Neural Networks (GNNs). By modeling the relationships
between samples, these methods optimize prototype representations, enabling class prototypes to better capture the
structural information between samples. These approaches significantly enhance feature-representation capabilities
by deeply exploring the structural information between samples. However, they also bring higher computational
complexity, which notably reduces training efficiency on large-scale datasets. Moreover, when the number of
samples is extremely limited, the stability of graph structure construction is poor, which can easily affect the overall
performance of the model.

Gogoi et al. [31] proposed the Adaptive Prototypical Network, which introduces an attention mechanism to
dynamically adjust the contributions of different support samples in the prototype construction process. This effectively
enhances the model’s ability to adapt to sample heterogeneity. TPN [32] alleviates the problem of distribution
differences of NOTA in cross-domain tasks by dynamically adjusting the representation of NOTA prototypes. However,
it still has shortcomings in dealing with sample heterogeneity. Especially when the number of samples is small,
it is difficult to fully capture the complex relationships between samples, which limits the representativeness of
prototypes. RAPL [33] further optimizes the prototype learning method. It improves the model’s performance in
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cross-domain tasks through instance-level prototype construction and relation-weighted contrastive learning. But its
computational complexity is still high, and the sensitivity to differences in data distribution across domains has not
been fundamentally solved. Additionally, Wu et al. [15] introduced a dynamic prototype update mechanism, which
adaptively adjusts the prototype update strategy based on the distribution characteristics of samples during training,
thereby improving the representation capability of prototypes. However, the integration with triplet loss is relatively
loose, and it fails to effectively utilize the relationship information between other sample pairs within the batch [9].

To address the above issues, we propose the AMBERT-DWPM architecture, a prototype learning method centered
on the DWPM. By combining adaptive feature weighting and an improved contrastive learning strategy, it effectively
enhances the model’s ability to model complex text distributions while maintaining computational efficiency. This
approach optimizes the feature space structure by mining multi-granular relationship information between sample
pairs within a batch. On the basis of retaining the original advantages of triplet loss, it introduces intra-class and
inter-class contrastive constraints, thereby significantly enhancing the model’s discriminative power.

3 Methods
We propose the overall architecture of AMBERT-DWPM for few-shot classification, as shown in Figure 1, which

consists of two main components: the mask-guided BERT model and the DWPM.
Figure 1 illustrates the proposed AMBERT-DWPM framework. The BERT model extracts features from both

support and query data. When computing classification prototypes, the DWPM module dynamically assigns weights
to the limited support samples. The model is optimized using a hybrid loss function.

Figure 1. Overall architecture

3.1 Feature Extraction Based on Mask Guidance
Traditional Mask-BERT enhances the model’s focus on key features and improves feature extraction by applying

predefined masking operations to the input text. However, its masking strategy lacks dynamic adjustment capabilities,
as mask generation often relies on fixed rules and cannot adaptively adjust according to the specific characteristics of
each input sample. Therefore, when dealing with few-shot tasks that have high intraclass diversity or high interclass
similarity, the model’s feature discrimination is often insufficient, making it difficult to fully leverage the advantages
of its masking mechanism.

The adaptive masking strategy is based on the LIG method, which calculates the importance of each token
to the final classification output, thereby determining whether to mask the token. Let the input text sequence
be X = {x1, x2, . . . , xn}, with the corresponding token embedding representation E(X) = {e1, e2, . . . , en}. A
reference input X’ is selected, with the token embedding representation E (X′) = {e′, e′2, . . . , e′′}, where the reference
input can be chosen as a zero vector to measure the contribution of each token. The contribution of tokens at different
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levels is calculated using the integrated gradients method:

IG (X,X′) = (E(X)− E (X′))× ∂f (E (X′)) + α (E(X)− E (X′))

∂E(X)
dα

where, f denotes the output of BERT after passing through the classification layer, and α represents the integration
step size [34]. To calculate the contribution of tokens at different levels, the cumulative sum of LIG is introduced:

S (χi) =

L∑
l=1

IGl (χi, χ
′
i)

where, L denotes the number of Transformer layers, and S(xi) represents the comprehensive importance score of
token xi across different layers. A higher S(xi) ultimately indicates that the token plays a more significant role in
the classification task. The computation of LIG involves calculating the integrated gradients for each token, with a
computational complexity of:

O(n · L · F )

where, n represents the length of the token sequence, L represents the number of Transformer layers, and F represents
the integration step size.

Based on the calculated token importance scores S(xi) the adaptive masking strategy dynamically selects the mask
positions as follows: First, set a mask proportion threshold τ , calculate the importance scores S(xi) for all tokens, and
then sort the tokens. Select the tokens in the bottom τ proportion of the ranking for masking to filter out redundant or
low-discriminative tokens. Finally, replace the selected tokens with [MASK] using a hard masking method to ensure
that the model focuses on more discriminative features. The mask selection involves token importance ranking, and
its computational complexity is:

O(n · log ·n)

After the adaptive masking process is completed, a new input sequence Xmasked is obtained. This sequence is
processed by BERT and then fed into the classification layer for training:

P (y | Xmasked ) = softmax (WhBERT (Xmasked ))

where, W denotes the classification weight matrix, and hBERT (Xmasked ) represents the feature vector after BERT
processing. During training, the loss function employs the cross-entropy loss:

L = −
N∑

i=1

yi log P (yi | xmasked )

where, N represents the number of training samples, and yi denotes the true class label. BERT training involves the
forward and backward propagation of the Transformer, with its computational complexity mainly determined by the
self-attention mechanism:

O
(
n2d

)
where, d is the dimension of the hidden layer. The overall computational complexity of the adaptive masking strategy
can be expressed as:

O
(
T
(
n · L · F + nlogn+ n2d

))
where, T represents the number of training epochs.

3.2 Structure of the DWPM Module
Prototypical networks have demonstrated remarkable capabilities in few-shot classification tasks, thanks to their

simple model structure and computational efficiency. However, they have limitations when dealing with high intraclass
diversity and high interclass similarity [17]. They struggle to fully capture the varying contributions of different
samples to prototype generation, which affects the accuracy of the class prototypes.

To address this issue, this study proposes a DWPM. This module aims to dynamically assign weights to each
support sample to accurately construct class prototypes. Combined with a contrastive learning module to further
optimize query samples, the DWPM enhances intraclass consistency and interclass discriminability through a hybrid
loss function that integrates contrastive and prototypical losses. This approach improves classification performance.

As shown in Figure 2, the DWPM module maps the feature representations of samples through a projection head,
projecting them from the original feature space to an attention space. It uses an n-layer cross-attention block based on
the Transformer structure to facilitate information interaction between support samples and query samples.
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Figure 2. Diagram of the DWPM

In the DWPM module, a 4-layer Transformer structure is adopted. Each layer consists of Multi-Head Attention,
Feed-Forward Network (FFN), and Residual Connection to enhance the ability of information aggregation. The
hidden layer dimension of the Transformer layer is set to 512, and the number of attention heads is set to 8, to
balance computational efficiency and feature representation capability. Moreover, in the cross-attention mechanism,
by calculating the correlations between query samples and support samples of each category, the classification
prototype assigns higher weights to more discriminative samples. The strength of the attention weights is controlled
by the hyperparameter λ. When λ is set to 0, the prototype calculation uses average weighting, similar to traditional
prototype learning. As the value of λ increases, the effect of attention weights becomes stronger. The formula for
calculating the category prototype ck is as follows:

ck =
∑

(xi,yi)∈Sk

(
λ · wi

attn + (1− λ) · wi
avg

)
fθ (xi)

where, Sk denotes the set of support samples for a class, fθ(x) represents the features extracted by the feature
extractor,and wi

attn and wi
avg represent the attention weights and average weights, respectively. After obtaining the

prototype representation, the distance between the query sample and the prototype is measured using Euclidean
distance. The probability that the query sample x belongs to class k is calculated using the softmax function, as
follows [35]:

pθ(y = k | x) = exp (−d (fθ(x), ck))∑
k′ exp (−d (fθ(x), ck′))

where, d (fθ(x), ck) represents the Euclidean distance between the query sample feature fθ(x) and the class prototype
ck [36].

In few-shot text classification tasks, distributional shifts are inevitable due to intraclass variations and interclass
similarities. To simultaneously reduce the impact of intraclass diversity on feature distribution and enhance interclass
discriminability, we introduce a hybrid loss function that combines contrastive learning loss and prototypical loss
to fine-tune the model, thereby improving the discriminative power between samples. During fine-tuning, only the
shared weights of the BERT model are updated, enabling the model to better adapt to the feature distribution of the
target task. Combined with the DWPM, the model can leverage limited samples to mitigate distributional shifts
caused by intraclass diversity and interclass similarity, ultimately enhancing the accuracy and robustness of few-shot
text classification tasks [37].

The hybrid loss function we employ combines contrastive loss and prototypical classification loss. The formula
for calculating the prototypical classification loss is as follows:

Lcls = − 1

|Q|
∑

(xi,yi)∈Q

logP∅ (y = yi | xi)

where, |Q| denotes the number of query samples during the training process. (xi, yi) represents the query sample xi

and its true class yi, while P∅ (y = yj | xi) denotes the predicted probability of the query sample xi being classified
into class yi.

For each query sample xq in the batch, the contrastive learning loss is calculated based on the distances between
the query sample and its positive class prototype c+ and negative class prototype c−. The formula for calculating the
contrastive learning loss is as follows:

Lcontrastive =
1

|B|
∑
(xq,c)

[y · d (xq, c+) + (1− y) ·max (0,m− d (xq, c−))]
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where, |B| denotes the total number of query samples in the batch, and y is a binary indicator variable. When
the query sample xq belongs to the positive class, y=0; when the query sample xq belongs to the negative class,
y=1. m represents the margin threshold in contrastive learning, which is used to adjust the distance of negative
samples, ensuring that the feature separation between negative samples and the query sample is at least m to enhance
discriminability.

The hybrid loss is the weighted sum of the prototypical classification loss and the contrastive learning loss:

Lhybrid = α · Lproto + (1− α) · Lcontrastive

where, α is the weighting coefficient that controls the contributions of the two types of losses. When α is large, the
model primarily relies on the prototype classification loss for optimization; when α is small, the model emphasizes
enhancing class discriminability through the contrastive loss.

This hybrid loss fine-tunes the BERT model, bringing significant advantages to few-shot text classification
tasks. By minimizing the distance between query samples and their correct class prototypes [38], the prototypical
classification loss enhances intraclass consistency, making samples from the same class more clustered in the feature
space and effectively reducing the impact of intraclass variations. Meanwhile, the contrastive learning loss, by pushing
query samples away from incorrect class prototypes, improves interclass discriminability and avoids the overlap of
features from different classes. During fine-tuning, the hybrid loss further optimizes the shared weights of the BERT
model, making its feature extraction capabilities more adaptive to the feature distribution in few-shot tasks. This
allows the model to quickly adapt to new classes and improve classification accuracy. Additionally, by adjusting
the weighted ratio between the prototypical and contrastive losses, the hybrid loss achieves an effective balance
between intraclass consistency and interclass discriminability, enabling the model to exhibit stronger generalization
and robustness across various few-shot scenarios.

4 Experiments
4.1 Dataset

The experiments used six publicly available datasets, including three open-domain datasets and three medical-
domain datasets. Each dataset was divided into base classes and novel classes according to their categories, forming
the base dataset and the novel dataset, respectively [14]. Table 1 summarizes the average length of samples in each
dataset, as well as the number of classes in the base and novel datasets.

-AG news: A text classification dataset containing 4 news categories, including World, Sports, Business, and Tech.
-DBpedia14: A text classification dataset with 14 categories.
-Snippets: A text dataset containing web snippets from Google search.
-Symptoms: This dataset, available on Kaggle, contains over 8 hours of audio data describing common medical

symptoms. We used the text transcriptions of the audio data and removed duplicates. After preprocessing, the dataset
contains 231 samples divided into 7 symptom categories.

-PubMed20k: A sequence classification dataset based on PubMed.
-NICTA-PIBOSO: A dataset based on the ALTA 2012 Shared Task, used for classifying sentences from biomedical

abstracts into predefined categories [14].

Table 1. Statistics of sample length and class numbers in each dataset

Dataset Avg. Length |Yb| / |Yn| Domain
AG news 39 2/2 Open-domain

DBpedia14 50 8/6 Open-domain
Snippets 18 4/4 Open-domain
Symptom 11 4/3 Medical-domain

PubMed20k 26 3/2 Medical-domain
NICTA-PIBOSO 24 3/2 Medical-domain

4.2 Experimental Settings
In the experiments, all models were initialized with the pre-trained BERT-base-cased model. Our method

employed a hybrid loss function that combines prototypical loss and contrastive learning loss for optimization. During
training, the batch size for the base dataset was set to 64, while the batch size for the novel dataset was set to 32. The
learning rates were set to 2× 10−5 and 4× 10−5, respectively, and the AdamW optimizer was employed. During the
optimization process of the hybrid loss function, the weight parameter α is selected through grid search within the
range {0.2,0.4,0.6,0.8}, and is ultimately set to 0.6. In the Adaptive Masking strategy, the masking ratio threshold τ is
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set to 0.15, the number of Transformer layers L is set to 12, and the integration step size F is set to 50, to ensure
that the model can effectively learn important feature information. DWPM module employs a 4-layer Transformer
structure, with each layer comprising 8 attention heads and a FFN hidden dimension of 512. In the experiments,
the batch size for all comparison models is uniformly set to 32, the learning rate is set to 4× 10−5, and the number
of training epochs is set to 10, to ensure a fair comparison with the method proposed in this paper. Each set of
experiments is repeated five times, and the average accuracy and standard deviation are reported to ensure the stability
and fairness of the results.

4.3 Experimental Results and Analysis
To validate the effectiveness of our proposed method, we compared it with several few-shot classification models

on six publicly available datasets. The comparison methods included standard BERT, further pre-trained BERT
(FPT-BERT), sentence prompt-based NSP-BERT, contrastive learning-based CPFT, and some mainstream few-shot
classification models such as Prototypical Networks (SN-FT) and Siamese Networks (SN-FT). Experiments were
conducted under both 5-shot and 8-shot settings to comprehensively evaluate the performance of each method under
different sample sizes.

The main results of the performance comparison are listed in Table 2 and Table 3. Overall, our method
outperformed the comparison methods on both open-domain and medical-domain datasets [14]. On open-domain
datasets (such as AG News and DBpedia14), our method achieved performance comparable to the state-of-the-art,
demonstrating strong generalizability. On medical-domain datasets (such as Symptoms and PubMed20k), our
method showed significant advantages, proving its effectiveness in handling few-shot classification problems in more
challenging scenarios (e.g., domain-specific tasks).

Table 2. Comparison results under the 5-shot setting

K-
short Models AG News DBpedial4 Snippets Symptoms PubMed20k NICTA-

PIBOSO

5-short

BERT 0.752±0.098 0.947±0.028 0.854±0.025 0.782±0.040 0.845±0.027 0.696±0.054
FPT-BERT 0.779±0.035 0.963±0.026 0.888±0.028 0.800±0.112 0.864±0.030 0.727±0.042
Re-init-
BERT 0.762±0.024 0.941±0.029 0.799±0.061 0.830±0.047 0.862±0.019 0.702±0.063

CPFT 0.768±0.047 0.965±0.013 0.853±0.029 0.876±0.044 0.848±0.028 0.723±0.068
SN-FT 0.768±0.055 0.971±0.003 0.867±0.024 0.858±0.059 0.782±0.031 0.736±0.041

NSP-BERT0.820±0.016 0.973±0.002 0.885±0.016 0.870±0.043 0.883±0.043 0.732±0.047
our 0.824±0.022 0.978±0.004 0.891±0.013 0.884±0.025 0.881±0.015 0.752±0.033

Table 3. Comparison results under the 8-shot setting

K-
short Models AG News DBpedial4 Snippets Symptoms PubMed20k NICTA-

PIBOSO

8-short

BERT 0.790±0.063 0.979±0.004 0.888±0.021 0.855±0.066 0.875±0.024 0.714±0.038
FPT-BERT 0.801±0.035 0.978±0.012 0.903±0.023 0.848±0.094 0.870±0.014 0.726±0.048
Re-init-
BERT 0.789±0.026 0.964±0.011 0.863±0.028 0.882±0.046 0.880±0.008 0.738±0.034

CPFT 0.816±0.021 0.978±0.002 0.888±0.017 0.936±0.029 0.871±0.022 0.776±0.046
SN-FT 0.817±0.024 0.986±0.002 0.881±0.020 0.876±0.081 0.796±0.044 0.757±0.033

NSP-BERT0.833±0.009 0.986±0.003 0.898±0.018 0.897±0.031 0.761±0.051 0.749±0.040
our 0.834±0.026 0.987±0.001 0.908±0.011 0.938±0.047 0.899±0.005 0.779±0.034

Under the 5-shot setting, our method achieves an accuracy of 0.891±0.013 on the Snippets dataset and 0.884±0.025
on the Symptoms dataset, showing significant improvements compared to methods such as NSP-BERT and CPFT.
The performance improvement is primarily attributed to the introduction of the Adaptive Masking strategy. This
strategy dynamically and selectively masks irrelevant information, enabling the model to focus on the key feature
segments that are crucial for the classification task, thereby significantly enhancing the discriminability of feature
extraction. This advantage is particularly evident on the Snippets dataset, which comprises short texts of various
categories. Within this dataset, the expression styles of texts within the same category are highly diverse, while
texts from different categories may overlap in certain keywords or expressions. For instance, for the “movie review”
category, sentences may cover multiple different focuses such as actors, plot, and ratings. Similarly, texts in the “news
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report” category may also involve related social events, making it difficult for traditional methods to distinguish
between them. Without Adaptive Masking, the model may be distracted by redundant information and struggle to
extract features with high inter-class discriminability. Adaptive Masking, however, identifies and masks the most
discriminative tokens through gradient integration, allowing the model to concentrate on the information in the text
that truly aids classification (for example, words like “box office” and “director” are more representative of movie
reviews, while “government” and “policy” are more indicative of news reports). This approach enhances intra-class
consistency, reduces inter-class confusion, and ultimately improves classification performance.

Data in the medical field typically exhibits high terminological density and semantic complexity. For instance, in
the symptoms dataset, symptom descriptions of certain categories such as “headache” and “migraine,” or “influenza”
and “cold,” are highly similar. Moreover, cases within the same category may be described using different medical
terminologies. This makes traditional text classification methods susceptible to noise and challenges in effectively
distinguishing between similar categories. In contrast, our method, through the dynamic weighted prototype learning
mechanism of the DWPM module, assigns dynamic weights to support samples, enabling the category prototypes
to more accurately describe the characteristics of each category. Unlike fixed-weight methods, DWPM adjusts the
weights of category prototypes through cross-attention mechanisms, so that features with stronger discriminative
power for certain categories are assigned higher weights, thereby optimizing the construction of category prototypes.
Specifically, in the symptoms dataset, DWPM assigns higher attention weights to key medical terms such as “fever”
and “cough,” while reducing the weights of potentially cross-category irrelevant information. This enables the model
to more precisely capture subtle differences between categories in the face of high inter-class similarity tasks, thereby
enhancing classification performance.

At the same time, under the 8-shot setting, as the number of support samples increases, the method proposed in
this paper maintains a high accuracy rate on all datasets, demonstrating strong stability. On the DBpedia14 dataset,
the accuracy of the proposed method under the 8-shot setting reaches 0.987±0.001, close to the optimal performance.
This performance improvement is mainly attributed to the design of the hybrid loss function. This loss function
combines contrastive loss and prototype loss, thereby performing well in optimizing the structure of the feature
space. In traditional few-shot classification tasks, the feature representations of categories are easily influenced by
the limited number of samples, leading to unstable prototype distributions. Particularly when category boundaries
are ambiguous, the model’s discriminative ability may decline. However, the hybrid loss function, by incorporating
contrastive learning to bring similar samples closer and push dissimilar samples farther apart, while also combining
prototype loss to enhance intra-class consistency, ultimately optimizes the geometric structure of the feature space.
For example, on the DBpedia14 dataset, under the 8-shot setting, the model is able to better leverage the additional
samples, causing samples of the same category to cluster more tightly in the feature space, while increasing the
feature distances between different categories. This improves classification accuracy and reduces category confusion.
Moreover, the hybrid loss function further balances intra-class consistency and inter-class discriminability, enabling
the model to exhibit excellent performance across different datasets and task settings.

4.4 Ablation Study
In this section, we conducted experiments on the AG News dataset under the 5-shot setting to investigate the specific

impacts of the adaptive encoding strategy (A) and contrastive learning (B) within the DWPM on the performance
of DWPM. This study aims to address the challenges of high intraclass diversity and high interclass similarity in
few-shot text classification tasks [17].

The starting point of the ablation study was a baseline BERT model integrated with the DWPM without contrastive
learning (B). At this stage, DWPM focused solely on optimizing the class center feature representations through
prototypical loss, without leveraging contrastive learning to enhance feature discrimination. The accuracy achieved
by this baseline model was 0.745±0.063. In the second stage, when only the adaptive encoding strategy (A) was
introduced to the baseline model, the accuracy improved to 0.769±0.048, an increase of 1.79 percentage points
compared to the baseline model.g This improvement can be attributed to the strategy’s ability to optimize the BERT
model by selectively masking text information irrelevant to the classification task, thereby prompting the model to
focus more on features critical to classification.

In the third stage, contrastive learning (B) was introduced into the DWPM module based on the baseline model to
combine with the prototypical loss, forming a new hybrid loss function. This step aims to evaluate how contrastive
learning works in synergy with the DWPM module and its specific impact on model performance. The experimental
accuracy further increased to 0.794±0.057.

Ultimately, when both the adaptive encoding strategy (A) and the contrastive learning mechanism (B) were
integrated into the baseline model, the precision reached its highest level at 0.824±0.022, demonstrating the model’s
robust performance across various evaluation metrics. The main results are summarized in Table 4. These findings
fully substantiate the advantages of our proposed model in optimizing interclass distances, enhancing intraclass
consistency, and improving feature discriminability. The adaptive masking strategy significantly enhances the
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extraction of key features, while the DWPM module further optimizes model performance by dynamically adjusting
the feature distribution of samples. The hybrid loss function ensures a balance between interclass separation and
intraclass aggregation. The synergistic action of these modules markedly improves the model’s performance in
few-shot text classification tasks, providing a solid foundation for classification and relationship mining tasks. Through
this structured experimental design, we are able to clearly demonstrate the specific contributions of each module to
the performance of DWPM and how they collectively enhance the overall performance in few-shot text classification
tasks.

Table 4. Ablation study results

Methods Dataset
BERT A B AG news
✓ 0.745± 0.063
✓ ✓ 0.769± 0.048
✓ ✓ 0.794± 0.057
✓ ✓ ✓ 0.824± 0.022

In the previous ablation studies, we analyzed the contributions of the adaptive encoding strategy (A) and the
contrastive learning mechanism (B) to model performance, demonstrating the advantages of these two modules in
optimizing intraclass consistency and interclass distances.

To more intuitively illustrate the effects of the model at different stages, we mapped the 5-shot training iteration
results on the Snippets dataset to two dimensions using UMAP and colored the results according to class labels, as
shown in Figure 3. In Snippets, the label IDs for the base dataset range from 0 to 7, while those for the novel dataset
range from 8 to 13. For comparison, we also visualized the training processes of BERT and AMBERT-DWPM. The
visualization results indicate that although both BERT and our module can effectively separate samples from different
classes, our module achieves a more uniform class distribution, avoiding the clustering of samples observed in BERT
during training. This characteristic is crucial for the effectiveness of FSL.

Figure 3. Visualization of training iterations on the snippets dataset

Figure 4. Visualization of the test set on snippets

During the UMAP dimensionality reduction process, we set n_neighbors=15, min_dist=0.1, n_components=2,
and random_state=42 to ensure the stability of the experimental settings. First, we extracted the hidden states of the
last Transformer layer from the BERT and AMBERT-DWPM models as feature vectors and performed dimensionality
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reduction using UMAP to map them onto a two-dimensional plane. Subsequently, to further evaluate the feature
distribution of the models on the test set, we randomly selected 200 test samples from the novel dataset and visualized
them using the same method, ensuring a balanced number of samples from each class to avoid the impact of uneven
data distribution on the visualization results. As shown in Figure 4, the results reveal that BERT struggles to separate
certain classes, especially those that are similar. In contrast, AMBERT-DWPM effectively addresses this issue and
enhances the compactness of samples within the same class, thereby improving the model’s discriminative power.

5 Conclusion
This paper proposes AMBERT-DWPM, a novel few-shot text classification framework that effectively improves

classification accuracy and stability by integrating an adaptive masking strategy and a DWPM. The adaptive masking
strategy dynamically guides the feature extraction process of BERT, enabling the model to focus on discriminative
features critical to classification tasks. Simultaneously, the DWPM module dynamically weights the contributions
of support samples, effectively addressing challenges associated with high intraclass diversity and high interclass
similarity. Comprehensive experimental results demonstrate that AMBERT-DWPM significantly outperforms existing
baseline methods, achieving notable improvements across multiple open-domain and domain-specific datasets.
Nevertheless, the model may face limitations when encountering extremely imbalanced or noisy datasets. Future
research directions include further exploration of adaptive masking strategies tailored for noisy data, enhancement of
DWPM’s robustness to data imbalance, and applying the proposed method to cross-domain and unsupervised FSL
scenarios.
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