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Abstract: Accurate selective image segmentation continues to pose substantial challenges, particularly under
conditions of noise interference, intensity inhomogeneity, and irregular object boundaries. To address these
complexities, a novel framework is introduced that integrates fuzzy Einstein—-Dombi (ED) operators with level
set energy minimization, guided by marker-based initialization. The proposed approach departs from traditional
intensity-driven models by jointly incorporating intensity, texture, and gradient-based features, thereby facilitating
improved boundary delineation and enhanced regional homogeneity. A spatially adaptive regularization term has been
embedded within the level set formulation to reinforce contour stability and robustness in the presence of artefacts
and signal degradation. The fuzzy ED operators enable nuanced fusion of multiple features through non-linear
aggregation, yielding a more expressive and resilient energy functional. In contrast to conventional segmentation
schemes, the developed method achieves superior convergence and delineation accuracy, particularly within complex
grayscale and noisy medical image datasets. Experimental validation has been conducted across a range of imaging
conditions, with performance quantitatively assessed using established metrics, including segmentation accuracy
(0.95), intersection over union (IoU: 0.89), and Dice similarity coefficient (DSC: 0.94). These results demonstrate
statistically significant improvements over comparative models. Additionally, qualitative evaluations reveal enhanced
contour fidelity and resistance to local intensity fluctuations. The methodological simplicity and computational
efficiency of the framework render it highly suitable for real-time applications in medical imaging diagnostics, object
detection, and related image analysis tasks. By offering a robust, interpretable, and generalizable solution, this work
establishes a new reference point for selective image segmentation under non-ideal conditions, and paves the way for
further exploration of fuzzy operator integration within variational segmentation paradigms.

Keywords: Image processing; Selective segmentation; Fuzzy set theory; Einstein—Dombi (ED) operators; Level set
evolution; Medical image analysis

1 Introduction

Image segmentation is a fundamental task in computer vision, playing a pivotal role in applications such as
object detection, medical imaging, autonomous driving, and content-based image analysis [1-3]. The process
involves partitioning an image into meaningful and coherent regions based on attributes like color, intensity, texture,
and shape. This step is crucial for isolating relevant features or objects, thereby enabling more advanced image
analysis. However, achieving accurate and reliable segmentation in real-world scenarios is challenging due to
factors such as complex backgrounds, varying lighting conditions, overlapping objects, and noise [4]. In critical
domains like medical imaging, these challenges directly impact clinical outcomes. For example, noise and intensity
inhomogeneity can obscure tumor boundaries in MRI scans or CT images, leading to inaccurate diagnoses and
treatment planning. Similarly, in remote sensing, intensity variations can result in misclassification of land cover,
affecting environmental monitoring and urban planning.

Conventional segmentation techniques, including thresholding, edge detection, and clustering, rely on deterministic
criteria, which often make them susceptible to noise and ineffective in handling smooth intensity transitions [5—7].
For instance, edge detection methods excel at identifying regions with high gradients but perform poorly in noisy
environments or when edges are blurred. Clustering-based approaches, such as k-means, divide an image into k
clusters by minimizing intra-cluster variance. However, they are prone to local minima and are highly sensitive to
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initialization. While these methods are simple, they struggle to address the complexities of real-world images, where
boundaries between regions are often gradual rather than sharp. In medical scenarios, this limitation may result in
under-segmentation of organs or over-segmentation of healthy tissues, both of which compromise the reliability of
automated diagnostic tools.

To overcome these limitations, more sophisticated techniques have been developed. Region-growing algorithms [4,
8] and graph-based methods [9, 10] incorporate spatial information to improve segmentation. Region-growing
approaches start from seed points and expand regions based on homogeneity criteria, but their performance heavily
depends on accurate seed placement and can be adversely affected by noise. Graph-based techniques, such as graph
cuts, partition images by minimizing a global energy function. Although effective, these methods often require
extensive parameter tuning and significant computational resources, which can hinder their practical use. Such
computational demands may not be suitable for time-sensitive medical applications, such as intraoperative image
analysis, where fast and precise segmentation is required.

The rise of machine learning has introduced supervised and unsupervised learning techniques for image
segmentation. Convolutional neural networks (CNNs) have achieved state-of-the-art results in semantic segmentation
by learning hierarchical features from data [11, 12]. Architectures like fully convolutional networks (FCNs) and
U-Net have shown remarkable success in fields such as medical imaging and autonomous driving. However, these
methods depend heavily on large annotated datasets and substantial computational power, which may not always
be available [13]. Additionally, the lack of interpretability in deep learning models poses a challenge in critical
applications like medical imaging, where understanding the decision-making process is essential [14]. This lack
of transparency can be problematic for radiologists and clinicians, who need to validate and trust the automated
segmentation results before making medical decisions.

In response to these challenges, fuzzy logic-based segmentation has emerged as a promising approach for
handling uncertainty and imprecision in image data [15, 16]. Fuzzy logic provides a mathematical framework to
model gradual transitions between regions in an image. Unlike traditional methods that use crisp thresholds, fuzzy
segmentation assigns a degree of membership to each pixel, indicating its likelihood of belonging to a specific
region. For example, the fuzzy c-means (FCM) algorithm clusters pixels based on intensity while considering spatial
coherence [17]. However, FCM is sensitive to initialization and noise, prompting the development of robust variants
like spatially constrained FCM.

Membership functions are central to fuzzy logic and play a key role in defining the relationship between
pixel features and their corresponding regions. For instance, Gaussian membership functions model the degree of
belongingness of a pixel p(z, y) based on its intensity I(x, y):
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where c represents the center of the intensity range, and ¢ controls the spread [18]. By adjusting these parameters,
fuzzy membership functions can adapt to diverse image characteristics, making them well-suited for complex
segmentation tasks. This adaptability is particularly valuable in medical images where soft tissues exhibit gradual
intensity transitions that are difficult to segment with crisp threshold-based methods.

Recent advancements in fuzzy logic-based segmentation include hybrid models that combine fuzzy logic with
other computational techniques. For example, integrating fuzzy logic with genetic algorithms and swarm intelligence
has been explored to optimize membership functions and segmentation parameters. Additionally, fuzzy-rule-based
systems have been developed to incorporate domain knowledge into the segmentation process, improving both
accuracy and interpretability [19, 20]. Such hybrid approaches have shown promise in segmenting organs, lesions,
and other anatomical structures in MRI and CT scans, where both accuracy and explainability are crucial.

In medical imaging, fuzzy logic has been successfully applied to segment structures like brain tissues and lesions,
where intensity variations are subtle and boundaries are unclear. For instance, fuzzy region-growing techniques
have been used to identify tumors in MRI images by leveraging both intensity and texture features [17]. In remote
sensing, fuzzy logic-based methods have been employed to classify land cover types, addressing challenges posed
by spectral similarities between classes. These real-world successes demonstrate the robustness of fuzzy approaches
in scenarios where uncertainty and noise dominate, further motivating the development of enhanced fuzzy-based
segmentation models.

Among the various segmentation tasks, selective segmentation focuses on extracting specific objects or regions
while ignoring irrelevant background information. This task is particularly challenging in complex images where
the target object may have weak boundaries, overlap with other objects, or be embedded in noisy backgrounds.
Traditional segmentation methods, such as thresholding, edge detection, and region-growing, often struggle with
these challenges. For example, thresholding methods may fail when the intensity distribution of the target object
overlaps with the background, while edge detection methods may produce fragmented boundaries in noisy images.
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More advanced techniques, such as active contours and level set methods, have shown promise but still face limitations
in handling heterogeneous regions and weak boundaries.

To address these challenges, we propose a novel image selective segmentation model that integrates ED operators,
marker points, and level set methods. The proposed model leverages the flexibility of ED operators to combine
multiple image features (e.g., intensity, texture, and gradient) into a unified representation, enabling accurate
segmentation of complex regions. Marker points provide prior knowledge about the location of the target object,
guiding the segmentation process and reducing the influence of background noise. Level set methods, on the other
hand, allow the contour to adapt to complex shapes and topological changes, ensuring robust boundary detection.

The proposed model overcomes several limitations of existing segmentation methods. First, the use of ED
operators provides a flexible framework for combining multiple features, addressing the challenge of heterogeneous
regions. Unlike traditional methods that rely on a single feature (e.g., intensity or gradient), the proposed model
integrates intensity, texture, and gradient information, leading to better region homogeneity and more accurate
segmentation. Second, the incorporation of marker points ensures robustness to noise and weak boundaries. By
providing prior knowledge about the target object, marker points guide the contour evolution process, reducing the
risk of mis-segmentation due to background clutter or weak edges. Finally, the level set framework allows the contour
to handle complex shapes and topological changes, overcoming the limitations of rigid models that assume simple
geometries.

The proposed model integrates three fundamental components, each playing a crucial role in enhancing the
accuracy and robustness of the segmentation process. These components include ED Operators, Marker Points, and
Level Set Methods, which collectively contribute to an improved segmentation framework by effectively handling
intensity variations, noise, and complex object boundaries.

* ED Operators

— These are fuzzy logic-based aggregation functions that combine multiple image features such as intensity,
texture, and gradient in a nonlinear and flexible manner.

— They provide an effective mechanism for handling uncertainty and imprecision in image data.

— Einstein Product and Sum: Used to fuse multiple features while preserving essential details and suppressing
noise.

— Dombi Operator: Controls the trade-off between different features by adjusting parameters, enabling adaptive
fusion based on local image characteristics.

— Enhancement of Region Homogeneity: Ensures that similar regions are grouped effectively while maintaining
clear object boundaries, leading to better region separation and contrast enhancement.

* Marker Points

— These serve as guiding cues for the segmentation process and can be manually selected or automatically
detected.

— Providing Prior Knowledge: Offers initial information about the target object’s location, reducing ambiguity
and improving boundary delineation.

— Facilitating Convergence: Helps in faster convergence of the segmentation process, reducing computational
complexity.

* Level Set Method

— A geometric framework that evolves contours to capture object boundaries accurately.

— Implicit Representation: The contour is represented as a zero level of a higher dimensional function, allowing
for smooth and topologically adaptable boundary evolution.

— Robustness to Noise and Occlusions: Can handle partial occlusions, intensity inhomogeneities, and complex
shapes without requiring explicit contour initialization.

— Energy-Based Evolution: Driven by an energy functional that incorporates edge-based, region-based, and prior
shape constraints, allowing for fine detail capture while maintaining global consistency.

In summary, the proposed model offers a robust and flexible solution for image selective segmentation, addressing
the limitations of existing methods in handling complex images with heterogeneous regions, weak boundaries, and
noise. By combining the strengths of ED operators, marker points, and level set methods, the proposed model
achieves superior segmentation accuracy and robustness, making it suitable for a wide range of applications in
computer vision and image analysis.

2 Literature Review

Mohamed et al. [21] proposed the Total Variation Selective Segmentation (TVSS)-based Active Contour Model
(TV-SSM), which integrates a Total Variation (TV) regularizer, a distance function, and local image fitting energy
to enhance segmentation performance, particularly for medical images with inhomogeneous intensity. Their
approach effectively addresses the limitations of traditional Active Contour Models (ACMs) by ensuring better
edge preservation and reduced sensitivity to noise through the incorporation of the TV regularizer. The distance
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function aids in refining the segmentation boundary by adapting to object contours, while the local image fitting
energy improves the model’s adaptability to varying intensity levels within medical images. The energy functional
for the TVSS model is defined as:

Blmin) = v [ (B@)IV6l+ 5 (T = (mH (@) + na(1 — HO)))* )do
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Here, k, represents a Gaussian kernel with a standard deviation . The parameter 6 serves to regulate the
contour evolution, preventing it from deviating significantly from the targeted object. In general, a lower value of
0 is preferred when the target object exhibits clear contrast with the background, allowing better segmentation. On
the other hand, the total variation (TV) term, represented by the first integral, plays a crucial role in smoothing the
segmentation boundary. The regularization strength is controlled by v, which can be set higher for images containing
significant noise to ensure a stable contour evolution.

However, this method has certain limitations, including the staircasing effect introduced by the TV term in
smoother regions, which may affect the segmentation of fine structures. Additionally, the model requires parameter
tuning, which can be challenging for different types of medical images. While TV-SSM enhances segmentation
accuracy for noisy medical data, its performance deteriorates in complex selective segmentation scenarios where
weak boundaries or overlapping objects exist. This highlights the need for more adaptive models that can combine
local feature information with global shape priors.

Ibrar et al. [4] introduced a local statistical features selective segmentation model (LSFM) that enhances object
detection by integrating local statistical features with edge-based constraints. The model’s energy functional is
formulated as:
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Where, the regularization parameter is set to . = 0.1, ensuring a smooth level-set function while allowing
flexibility in boundary adaptation. The contour evolution strength is controlled by v = 1.5, making segmentation
more aggressive in capturing object boundaries. The weighting factor A = 0.8 determines the balance between
edge-based and region-based energy terms, where a higher value prioritizes statistical region constraints over edge
information. Edge sensitivity is fine-tuned using v = 0.2, which adjusts the impact of edge detection on segmentation.
The regional area constraints are defined as R; = 0.6 and Ry = 0.4, ensuring proper differentiation between the
target region and background.

The model demonstrates high accuracy in segmenting objects, particularly in noisy and intensity-inhomogeneous
environments. Its combination of edge detection and statistical region constraints improves boundary localization
and robustness. Additionally, it effectively balances global and local image properties, ensuring precise segmentation
outcomes.

However, the approach has notable limitations. The computational complexity remains high due to iterative
optimization, making real-time applications challenging. Parameter selection plays a critical role in performance,
requiring careful tuning for different image datasets. Moreover, the reliance on manually placed markers can limit
automation, reducing its scalability for large-scale segmentation tasks. Furthermore, while LSFM performs well on
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selective segmentation tasks, its dependency on precise marker placement and sensitivity to parameter tuning limits
its applicability in complex medical images where intensity variations and weak edges prevail.

Although existing methods such as clustering, graph-based models, and machine learning approaches have shown
improvements in general segmentation, they often fail to handle selective segmentation in complex environments
effectively. For instance, clustering-based approaches struggle when target and background intensities overlap, while
deep learning methods require large annotated datasets and lack interpretability for medical diagnostics. These gaps
highlight the necessity for a more robust and interpretable model capable of handling noise, intensity inhomogeneity,
and weak boundaries simultaneously.

The primary research objectives of this study are as follows:

* To develop a selective segmentation model that effectively handles intensity inhomogeneity, noise, and complex
object boundaries.

« To integrate ED operators for adaptive feature fusion, improving region homogeneity and boundary preservation.

* To incorporate marker points and a level set framework to guide contour evolution, reducing mis-segmentation
in complex images.

* To validate the proposed approach against state-of-the-art models using both qualitative and quantitative metrics.

3 Mathematical Framework of the Proposed Model

The proposed model is formulated as an energy minimization problem, where the goal is to evolve a contour
(represented by a level set function) to accurately segment the target object. The energy functional incorporates
region-based and edge-based terms, regularized using ED operators and marker points. The proposed model consists
of the following steps.

3.1 Preprocessing

In the preprocessing stage, the input to the model is an image I :  — R, where Q C R? represents the
image domain. To reduce noise and enhance the quality of the image, a Gaussian smoothing filter is applied. This
smoothing operation is defined as:

Tsmooth = Grr * I, (6)

where, G, is a Gaussian kernel with a standard deviation o. The Gaussian kernel effectively blurs the image while
preserving important edges, which is crucial for accurate segmentation.

In this work, the set of marker points M = {mj, ma, ..., my} is selected manually, where each m; represents
a point located within the target object. Manual selection allows domain experts (e.g., radiologists for medical
images) to provide precise guidance for segmentation. Although manual selection may reduce scalability, it ensures
high accuracy and reproducibility for challenging cases with weak or overlapping boundaries. These marker points
serve as prior knowledge about the location of the object and are used to initialize the level set function, ensuring
that the segmentation process starts close to the target region. The marker points play a critical role in guiding the
segmentation, particularly in complex images where the target object may have weak boundaries or overlap with other
regions. By combining the smoothed image and the marker points, the preprocessing stage sets a robust foundation
for the subsequent steps in the segmentation pipeline.

3.2 Feature Extraction

In the feature extraction stage, relevant features are extracted from the image to guide the segmentation process.
The first feature is the intensity feature, which is simply the smoothed image I y0m Obtained during preprocessing.
This feature captures the overall brightness and intensity distribution of the image. The second feature is the texture
feature, which is computed using local texture descriptors such as Gabor filters or local binary patterns. These
descriptors capture the spatial variation of pixel intensities, providing information about the texture of the target
object and its surroundings. The third feature is the gradient feature, which is computed as the image gradient
V Iimootn- This feature highlights edges and boundaries in the image, making it easier to distinguish between different
regions. To combine these features into a unified representation, ED operators are used. These fuzzy logic operators
provide a flexible and smooth way to integrate intensity, texture, and gradient information, resulting in a unified
feature map F'. This feature map serves as the basis for the subsequent steps in the segmentation process, ensuring
that the model can accurately identify and segment the target object.

3.3 ED Operators

ED operators are a class of fuzzy logic operators that provide a flexible and smooth framework for combining
multiple image features, making them particularly well-suited for image selective segmentation. These operators are
defined for two fuzzy sets A and B as follows: the Einstein Product is given by:

A-B

AOB = A o By @
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and the Einstein Sum is defined as:
A+ B

1+A-B
In the context of image selective segmentation, ED operators are used to combine intensity, texture, and gradient
features into a unified feature map F'. Specifically, the intensity feature is derived from the smoothed image Ismooth»
the texture feature is computed using local texture descriptors (e.g., Gabor filters or local binary patterns), and the
gradient feature is obtained from the image gradient V Iy oom. The combined feature map F' is computed as:

AP B= (8)

F= ([smooth ® Texture) SY VIsmnothy (9)

where, ® and & are applied pixel-wise. This combination ensures that the feature map captures the most relevant
information from the image, enabling the segmentation model to distinguish between the target object and the
background effectively. The smooth and flexible nature of ED operators allows the model to handle complex images
with heterogeneous regions, weak boundaries, and overlapping objects, making them a powerful tool for accurate
and robust image selective segmentation.

3.4 Level Set Initialization

The segmentation boundary is represented as the zero level set of a higher-dimensional function ¢ : Q — R,
where, I' = {x € Q | ¢(x) = 0} defines the contour. The level set function ¢ is initialized using the marker points
M. Specifically, a signed distance function (SDF) is used to define ¢ such that:

(10)

b(z) = —d(x, M) if z is inside region,
~ )d(z, M) if zis outside region,

where, d(x, M) is the distance from « to the nearest marker point.

The choice of SDF for initialization is motivated by its robustness and stability compared to other initialization
techniques, such as random contours or simple binary masks. SDF ensures that the level set function has smooth and
well-defined signed distances, which reduces numerical instabilities during evolution and accelerates convergence.
Furthermore, SDF-based initialization minimizes the need for reinitialization steps, thereby improving computational
efficiency. In contrast, arbitrary initial contours often require additional regularization to maintain a proper level
set structure, which increases both complexity and computation time. This initialization ensures that the level set
function starts close to the target object, providing a robust starting point for the contour evolution process.

3.5 Energy Functional

The energy functional E(¢) is designed to guide the evolution of the level set function ¢ and consists of three key
terms: the region-based term, the edge-based term, and the regularization term. Each term is specifically designed
to address a particular challenge in selective segmentation. The region-based term improves homogeneity in regions
affected by noise or intensity variations, the edge-based term ensures accurate alignment with object boundaries,
and the regularization term prevents contour irregularities, making the method robust against artifacts and uneven
shapes.The energy functional is defined as:

E((b) = Eregion((b) + Eedge((/b) + Ereg(gb)- (1 1)

3.5.1 Region-based term

The region-based term ensures that the contour separates regions with distinct feature properties. It uses ED
operators to combine intensity, texture, and gradient features into a unified feature map. This term plays a crucial
role in tackling intensity inhomogeneity by grouping pixels based on feature similarity rather than relying on a single
intensity value, thereby improving segmentation accuracy in medical and noisy images. The term is formulated as:

Frgin(®) = M /Q (F @ )2 H(¢)da
+ /\2/9(F@C2)2(1*H(¢))d$, (12)

where, \; and )\, are weighting parameters that control the influence of the region-based term. ¢; and ¢, represent
the average feature values inside and outside the contour, respectively. The term (F ® c1)? measures the difference
between the feature map F' and the average feature value c; inside the contour. This term ensures that the contour
evolves to align with regions where the feature map closely matches the average feature value inside the target
object. Similarly, (F @ co)? measures the difference between F' and the average feature value ¢, outside the contour,
encouraging the contour to separate regions with distinct feature properties. The Heaviside function H (¢) ensures
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that the energy term is active only in the relevant regions (inside or outside the contour). Specifically, H (o) is

defined as:
)1 ifg >0,
H(9) = {o if 6 < 0, (13)

where, ¢ > 0 corresponds to the inside of the contour and ¢ < 0 corresponds to the outside. By incorporating
the Heaviside function, the region-based energy term effectively distinguishes between the target object and the
background, ensuring accurate segmentation.

3.5.2 Edge-based term

The edge-based term plays a crucial role in attracting the contour to object boundaries by leveraging the image
gradient. This term directly addresses the challenge of weak or blurred edges, ensuring that the evolving contour
locks onto the most prominent gradient changes. It is mathematically expressed as:

Fage(®) = 1 /Q J(IVI)5(6)V| de. (14)

where, g(|VI|) = ﬁ is an edge indicator function. This function takes small values in regions with strong
gradients (edges) and large values in homogeneous regions, effectively emphasizing object boundaries. The Dirac
delta function (), defined as §(¢) = dljéf’) , ensures that the energy term is active only near the zero level set
(the contour). This restriction prevents unnecessary computations in regions far from the contour. The parameter p
controls the weight of the edge-based term, balancing its influence relative to the other terms in the energy functional.

3.5.3 Regularization term

The regularization term ensures the smoothness of the contour and prevents irregularities such as sharp corners
or jagged edges. This is particularly important in medical imaging where noisy regions or artifacts can cause the
contour to become irregular. The regularization term enforces a smooth boundary, ensuring clinical interpretability
of the segmented results.It is given by:

Prs(@) = v | [VH()] s ()

where, v is a weighting parameter that balances the trade-off between contour smoothness and adherence to image
features. The term |V H (¢)| penalizes abrupt changes in the contour, ensuring that it evolves smoothly and maintains
a regular shape. This term is particularly important in noisy images, where the contour might otherwise become
fragmented or irregular.

3.6 Energy Minimization

The energy functional E(¢), which combines the region-based, edge-based, and regularization terms, is
minimized using gradient descent. The evolution of the level set function ¢ is governed by the partial differential
equation:

96 OE(9)
ot 0¢

This equation describes how the level set function changes over time to minimize the energy functional. The
gradient descent update rule is:

(16)

, OE (")
kL _ gk At 17
¢ ¢ 90 7)
where, At is the time step controlling the rate of evolution. A smaller At ensures stability but may require more

iterations, while a larger At speeds up convergence but risks instability. The term agf) represents the derivative of

the energy functional with respect to ¢, guiding the contour toward the optimal segmentation.

Computational Complexity: The proposed approach involves iterative updates of the level set function, where
each iteration requires evaluating feature maps and gradient terms. The overall complexity is approximately O(n-m),
where n is the number of iterations and m is the number of pixels. Although ED-operator-based feature fusion
introduces additional computations, it significantly reduces the number of iterations needed for convergence compared
to conventional region-based models, thus providing a practical trade-off between accuracy and computational cost.
On a standard CPU implementation, convergence is typically achieved within 1-2 seconds for 256 x 256 images.
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3.7 Contour Evolution

The level set function ¢ is evolved iteratively to refine the segmentation boundary. During each iteration, the
contour is updated based on the gradient descent rule, moving closer to the target object’s boundaries. The evolution
process continues until the change in ¢ between consecutive iterations falls below a predefined threshold e, indicating
convergence. This stopping criterion is expressed as:

[¢F Tt — ¢F| <e. (18)

Once the evolution process terminates, the final contour represents the segmentation boundary of the target
object. The combination of the three energy terms ensures that the final boundary is both smooth and accurately
aligned with edges, while remaining robust against noise and intensity inhomogeneity.

After the contour evolution process terminates, the final segmentation result may still contain minor imperfections,
such as irregularities in the boundary or small artifacts within the segmented region. To address these issues,
postprocessing techniques are applied to refine the segmentation result. First, morphological operations, such
as dilation and erosion, are used to smooth the contour and eliminate small irregularities. Dilation expands the
boundary of the segmented region, filling in small gaps, while erosion shrinks the boundary, removing small
protrusions. These operations are often applied sequentially (e.g., opening or closing) to achieve a balance between
smoothing and preserving the overall shape of the target object. Additionally, small artifacts or holes within the
segmented region are removed using connected component analysis. This involves identifying and filtering out
regions that are too small to be part of the target object, ensuring that the final segmentation is clean and accurate. By
applying these postprocessing steps, the segmentation result is further refined, resulting in a smooth and well-defined
boundary that accurately represents the target object.

4 Experimental Validation

The experimental validation of the proposed segmentation model was conducted using a structured approach
to ensure robustness and reproducibility. The model integrates three key components: ED Operators, Marker
Points, and Level Set Methods—to enhance segmentation accuracy by effectively managing intensity variations,
noise, and complex object boundaries. The experiments were carried out on a diverse dataset comprising grayscale
medical images (e.g., MRI brain scans and CT slices) and synthetic images with varying noise levels and intensity
inhomogeneity. The dataset included 150 images, with approximately 60% medical images and 40% synthetic test
cases, providing a balanced evaluation of both real-world and controlled scenarios. Gaussian noise with variances
ranging from 0.01 to 0.05 was added to certain synthetic images to evaluate noise robustness, while intensity
inhomogeneity was simulated using bias field distortions.

All images were resized to a resolution of 255 x 255 pixels to ensure a standardized evaluation across different test
cases. MATLAB R2015a was used as the primary software environment for implementing and testing the proposed
model, with custom scripts designed to handle image preprocessing, feature extraction, and segmentation. Given the
computational constraints of MATLAB R2015a, special considerations were made to optimize performance while
ensuring the accuracy of the results.

The evaluation framework included both qualitative assessments—such as visual inspection of segmented
contours—and quantitative metrics, including accuracy, IoU, and DSC. For a fair comparison, all competing methods
were tested under identical conditions with the same dataset and noise configurations.

The parameters for optimal segmentation performance are set empirically. Gaussian smoothing uses a standard
deviation of o = 1.5 to reduce noise while preserving edges. The region-based term weights are A\; = 1.2 and
A2 = 1.0, while the edge-based term is controlled by ¢ = 0.8. The regularization term is v = 0.5, and the gradient
descent time step is At = 0.1, ensuring stable convergence. The process halts when ¢ = 10~ is met, stabilizing the
segmentation boundary. The ED operators integrate multiple image features, with Einstein Product and Sum applied
pixel-wise using parameters « = 1.2 and § = 1.0. Feature integration weights are set as w; = 0.5 for intensity,
we = 0.3 for texture, and w3 = 0.2 for gradient, ensuring robust segmentation across diverse image conditions.

The proposed model demonstrates an effective segmentation performance, as shown in Figure 1. The model
utilizes a feature map-based approach to enhance boundary detection, improving segmentation accuracy compared
to traditional methods. The first column presents the original images, while the second column provides ground truth
segmentation with purple contours for reference. The third column illustrates the intermediate segmentation results
obtained using the fuzzy feature map-based method, highlighting significant structural details. Finally, the fourth
column presents the final results of the segmentation produced by the proposed model, where the blue contours
accurately delineate the boundaries of the objects. The consistency and precision of these results indicate the
robustness of the proposed method in handling diverse image structures and intensity variations.

Figure 2 presents segmentation results on real noisy medical images, comparing the performance of the TV-
SSM [21], LSFM [4], and Khan et al. [8] modelled with the proposed model. The first column displays the
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original images, followed by segmentation outputs from the competing models. The primary challenge in these
images is the presence of noise, weak boundaries, and intensity variations, which significantly affect the accuracy
of traditional segmentation techniques. Competing models TV-SSM, LSFM, and Khan et al. struggle to maintain
clear boundary separation due to their reliance on conventional edge-based or region-based energy minimization.
However, the proposed model integrates ED operators, and fuzzy energy functional to achieve superior segmentation
performance. The Einstein Product and Sum effectively fuse intensity, texture, and gradient features while preserving
crucial boundary details and reducing noise interference. Additionally, the Dombi operator adapts to local image
characteristics, enhancing region homogeneity while ensuring smooth boundary evolution. The use of marker points
as guiding cues significantly improves segmentation precision by offering prior knowledge about object locations,
thereby reducing ambiguity and improving convergence speed. The last column of Figure 2 clearly illustrates that the
proposed model, highlighted with blue contours, provides more accurate segmentation by effectively distinguishing
objects from noisy backgrounds and preserving fine anatomical structures.

Figure 3 extends the segmentation analysis to X-ray images, emphasizing the importance of ED operators, and
level set evolution in handling complex anatomical structures. The first column presents the original images, followed
by segmentation results from TV-SSM , LSFM, and Khan et al.’s model. While these models provide reasonable
approximations of object boundaries, they exhibit sensitivity to intensity inhomogeneities and weak edges, leading
to segmentation errors such as boundary leakage and over-segmentation. The proposed model, shown in the
last column, integrates entropy-based marker point selection, which guides the level set initialization process and
improves boundary detection. The ED operators play a crucial role in adaptive feature fusion, enabling a more robust
segmentation process by maintaining a balance between texture, gradient, and intensity variations. This ensures
better region separation and contrast enhancement, reducing false region detection observed in competing models.
The level set method, with its implicit representation and energy-based evolution, further enhances segmentation
robustness by ensuring smooth boundary progression even in the presence of occlusions or intensity variations. As
seen in the results, the proposed model exhibits strong boundary adherence, enhanced anatomical detail preservation,
and superior segmentation accuracy compared to traditional methods.

To evaluate the performance of selective segmentation models, we employ a suite of well-established metrics that
quantify both the accuracy and efficiency of the segmentation process. These include Accuracy, Precision, Recall,
F1 Score, IoU, DSC. Additionally, CIs are computed to assess the statistical reliability of these metrics, ensuring a
robust performance evaluation. Below, we present the mathematical formulations for each metric.

Figure 1. Segmentation results on synthetic images

Note: The first column shows the original images, the second column presents ground truth with purple contours, the third column displays the

proposed fuzzy feature map based segmentation, and the fourth column shows the proposed model’s results with blue contours.
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Figure 2. Segmentation results on real noisy medical images
Note: The first column shows the original images, followed by the segmentation results of TV-SSM [21], LSFM [4], and Khan et al. [8] in the

next three columns. The last column presents the results of the proposed model with blue contours, demonstrating improved boundary accuracy.
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Figure 3. Segmentation results on X-ray images
Note: The first column shows the original images, followed by the segmentation results of TV-SSM [21], LSFM [4], and Khan et al. [8] in the
next three columns. The last column presents the proposed model’s results with blue contours, demonstrating enhanced segmentation accuracy

in medical imaging.

Accuracy (Acc)

Accuracy is defined as the proportion of correctly classified pixels (both true positives and true negatives) relative
to the total number of pixels in the image. It is mathematically expressed as:

_ TP+ TN
" TP+TN+FP+FN’

Ace (19)

where:
e T'P =True Positives (correctly predicted foreground pixels),
e TN = True Negatives (correctly predicted background pixels),
» F'P = False Positives (incorrectly predicted foreground pixels),
» F'N = False Negatives (incorrectly predicted background pixels).

Precision (P) and Recall (R)

Precision quantifies the proportion of predicted positive pixels that are actually correct. Recall, also referred to as
sensitivity, measures the proportion of actual positive pixels correctly identified by the model. These are computed
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as:

TP TP
P=——r R=—"7"-—.
TP+ FP’ TP+ FN
These metrics emphasize the accuracy of positive predictions.

(20)

F1 Score (F})

The F1 Score is the harmonic mean of Precision and Recall, providing a balanced measure between the two. It is
especially useful when there is an imbalance between foreground and background pixels. The F1 Score is computed
as:

P-R
P+ R
This metric combines both the sensitivity and precision into a single value.

=2

2

IoU and DSC

The IoU, also known as the Jaccard Index, measures the overlap between the predicted segmentation and the
ground truth. The DSC also quantifies the overlap between the predicted and ground truth segmentation regions.
These are expressed as:

PNG 2-1PNG
POCI poo_ 2:1PNGI
|PUG] [P+ G|
where, P = Predicted segmentation region, and G = Ground truth region.

A higher IoU indicates better segmentation performance, particularly in delineating object boundaries. The DSC

is widely used in applications such as medical imaging and natural image segmentation, where precise boundary
detection is critical.

IoU =

(22)

Cls

CIs are used to quantify the uncertainty of the performance metrics. They provide a statistical range within which
the true value of a metric is likely to fall with a specified confidence level (usually 95%). The CI for a given metric
w is calculated as:

o

CI:MiZa/Q-%, (23)
where, p is the mean value of the metric, Z,, /2 refers to the Z-score corresponding to the desired confidence level,
o is the standard deviation of the metric, and n is the number of samples.

By incorporating these performance metrics and CIs, we ensure a comprehensive and statistically sound evaluation
of the selective segmentation model. This approach not only provides a quantitative assessment of accuracy but also
highlights the computational efficiency and the reliability of the results.

Table 1 presents the performance evaluation of the proposed model in comparison with three other models
(TV-SSM, LSFM and Khan et al.) using six key metrics: Accuracy, Precision, Recall, F1 Score, IoU, and
DSC. The proposed model outperforms all competing models across all metrics, achieving the highest Accuracy
(0.95), Precision (0.93), Recall (0.90), F1 Score (0.91), IoU (0.89), and DSC (0.94). TV-SSM shows competitive
performance with an Accuracy of 0.90 and a DSC of 0.88, followed by LSFM, which achieves an Accuracy of 0.88
and a DSC of 0.86. Khan et al. demonstrates the lowest performance, with an Accuracy of 0.86 and an IoU of
0.75. The higher IoU and DSC values of the proposed model indicate better segmentation quality and overlap with
ground truth data. These results highlight the effectiveness of the proposed model in achieving superior segmentation
performance compared to the existing approaches (see Figure 4).

Table 1. Performance metrics for proposed and competing models

Metric Proposed Model TV-SSM LSFM Khan et al. Model

Accuracy 0.95 0.90 0.88 0.86
Precision 0.93 0.89 0.86 0.86
Recall 0.90 0.87 0.85 0.83
F1 Score 0.91 0.86 0.87 0.86
TIoU 0.89 0.79 0.77 0.75
DSC 0.94 0.88 0.86 0.84
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Figure 4. Quantitative performance comparison of the proposed segmentation model with competing models
Note: The bar charts display Accuracy, Precision, Recall, F1 Score, IoU, and DSC metrics. The proposed model outperforms competing

models, demonstrating higher segmentation accuracy and robustness.

Table 2 shows that the proposed selective segmentation model achieves the highest performance across all
metrics, with consistently narrower 95% confidence intervals compared to the competing models (TV-SSM, LSFM,
and Shahkar et al.). For instance, its Accuracy of 0.95 is accompanied by a tight CI of [0.931, 0.969], indicating
high precision and reliability in the estimates. Similarly, Precision ([0.910, 0.950]), Recall ([0.880, 0.920]), F1
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Score ([0.891, 0.929]), and IoU ([0.870, 0.910]) all display superior central values and smaller intervals, reflecting
reduced variability. In contrast, the competing models not only have lower central metric values but also exhibit
wider intervals, suggesting less consistent performance. These results confirm that the proposed model offers both
statistically higher accuracy and greater stability.

Table 2. Confidence intervals (95% ClIs) for performance metrics of the proposed selective segmentation model
and competing models (TV-SSM, LSFM and Khan et al. model)

Metric Model Mean 95% CIs
Accuracy  Proposed Model 0.95 [0.931, 0.969]
TV-SSM 0.90  [0.880, 0.920]
LSFM 0.88  [0.860, 0.900]

Khan et al. Model 0.86  [0.840, 0.880]
Precision ~ Proposed Model 0.93 [0.910, 0.950]

TV-SSM 0.89  [0.870,0.910]

LSFM 0.86  [0.840, 0.880]

Khan et al. Model  0.86 [0.840, 0.880]

Recall Proposed Model 090 [0.880, 0.920]
TV-SSM 0.87  [0.850, 0.890]

LSFM 0.85  [0.830, 0.870]

Khan et al. Model 0.83  [0.810, 0.850]

F1 Score Proposed Model 091 [0.891, 0.929]
TV-SSM 0.86  [0.840, 0.880]

LSFM 0.87  [0.850, 0.890]

Khan et al. Model 0.86  [0.840, 0.880]

TIoU Proposed Model 0.89 [0.870,0.910]
TV-SSM 0.79  [0.760, 0.820]

LSFM 0.77  [0.750, 0.790]

Khan et al. Model 0.75  [0.730, 0.770]

The proposed model holds significant potential for real-world applications, particularly in medical imaging.
By providing accurate and robust segmentation of anatomical structures even in the presence of noise and intensity
inhomogeneity, the model can assist clinicians in tasks such as tumor boundary delineation, organ volume estimation,
and pre-operative planning. Its ability to reduce manual intervention through marker-based guidance can streamline
clinical workflows, minimize inter-observer variability, and support more reliable decision-making in diagnostic and
therapeutic procedures.

5 Conclusion

This paper introduced a novel selective segmentation model that integrated region- and edge-based energy terms
with ED operators to achieve robust and accurate image segmentation. The proposed approach effectively combined
intensity, texture, and gradient information through weighted feature integration, enhancing segmentation precision,
particularly in challenging conditions such as noise, blur, and intensity inhomogeneity. Experimental validation
was conducted using a dataset comprising blurred and noisy images, where the model was compared with existing
state-of-the-art techniques. The results demonstrate superior performance in terms of accuracy, precision, recall, F1
score, and IoU, confirming the effectiveness of the proposed method. Statistical significance tests further validate
that the improvements are not random but rather a result of the novel fusion strategy.

The broader implications of the findings are noteworthy. The ability of the model to handle noisy and intensity-
inhomogeneous images highlights its potential for real-world applications, especially in fields like medical imaging,
where accurate segmentation of degraded or low-quality scans is critical for diagnosis and treatment planning. Such
robustness can reduce manual corrections, thereby improve workflow efficiency and reduce diagnostic errors.

Despite its advantages, the proposed model has certain limitations. The computational complexity remains
relatively high due to the involvement of multiple feature fusion mechanisms and iterative optimizations. Moreover,
the model exhibits sensitivity to parameter settings (e.g., weighting parameters and time-step size), which can affect
segmentation performance if not carefully tuned. In addition, while the model performs well under moderate noise
and blur, potential failure cases may arise in scenarios with extreme occlusions, very low contrast, or highly irregular
textures where feature fusion alone may be insufficient. To address these challenges, future work will focus on
optimizing the algorithm’s computational efficiency, exploring deep learning-based feature extraction for improved
robustness, and extending the framework to multi-modal image segmentation. We also plan to investigate automated

86



parameter selection strategies and adaptive feature weighting to reduce sensitivity and improve generalization across
diverse image conditions. Further improvements in real-time processing capabilities will also be explored to make
the model suitable for time-sensitive applications such as medical imaging and autonomous navigation.
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