
[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

International Journal of Transport Development and Integration 

Vol. 9, No. 1, March, 2025, pp. 39-48 

Journal homepage: http://iieta.org/journals/ijtdi Comparative Analysis of Deep Neural Networks YOLOv11 and YOLOv12 for Real-Time Vehicle Detection in Autonomous Vehicles Mohammed Chaman* , Anas El Maliki

, Hamza El Yanboiy

, Hamad Dahou

, Hlou Laâmari

, 

Abdelkader Hadjoudja



Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics. Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco 

Corresponding Author Email: mohammed.chaman@uit.ac.ma Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijtdi.090104 

ABSTRACT 

Received: 7 February 2025 

Accurate,  real-time  vehicle  detection  is  crucial  for  autonomous  vehicles  navigating Revised: 14 March 2025 

dynamic  traffic  environments.  This  study  compares  YOLOv11  and  the  newly  released Accepted: 25 March 2025 

YOLOv12,  two  state-of-the-art  deep  learning  models  for  object  detection,  to  assess Available online: 31 March 2025

enhancements  in  speed,  accuracy,  and  robustness.  YOLOv12  has  improved  upon YOLOv11's  architecture  with  an  attention  mechanism  and  Residual  Efficient  Layer Aggregation  Networks  (R-ELAN).  The  improvements  for  YOLOv12  are  designed  to 

 Keywords: 

obtain  better  accuracy  and  improved  computational  performance  as  compared  to real-time 

 object 

 detection, 

 YOLOv11, 

YOLOv11.  YOLOv11  and  YOLOv12  were  trained  and  tested  on  a  newly  developed YOLOv12,  autonomous  vehicles,  vehicle dataset with 38,500 fully annotated images of seven classes of vehicles taken in different detection, deep learning, ADAS 

environmental  conditions.  Results  show  YOLOv12  achieves  higher  recall  (95.0%),  F1-score  (96.03%),  and  mAP@50–95  (88.6%),  while  both  maintain  real-time  inference speeds.  YOLOv12  also  demonstrated  an  improved  capacity  to  detect  small  or  partially occluded objects in challenging scenes. Overall, these findings establish YOLOv12 as a better solution for perceiving real-time data while autonomous driving, with a real prospect for implementation in intelligent transportation systems and edge-computing. 

1. INTRODUCTION

YOLOv12  in  early  2025,  which  implemented  attention mechanisms, R-ELAN modules and improved detection heads. 

The  rapid  advancement  of  autonomous  vehicles  relies It  significantly  increases  accuracy  while  also  boosting heavily on real-time object detection to identify surrounding inference speed, further solidifying its position as a valuable vehicles,  pedestrians,  and  road  signs  under  various  and option  to  be  incorporated  into  Advanced  Driver  Assistance complex traffic environments  [1]. Luckily, this list has been Systems (ADAS) and intelligent transportation systems (ITS) compiled to present some of the most exciting developments 

[5]. 

that  have  made  the  most out of these  new-found algorithms However, despite  the  architectural  innovations  introduced and methodologies, specifically the YOLO (You Only Look in YOLOv12, a comprehensive comparative evaluation with Once) family that has generated for itself a sunshed amount of its  immediate  predecessor,  YOLOv11,  remains  lacking, popularity surely due to its relatively high-speed and accuracy particularly  in  the  context  of  real-time  vehicle  detection  for when it comes to solving standards object detection problems autonomous driving. 

[2, 3]. 

The  YOLO  object  detection  framework  has  undergone The evolution of the YOLO object detectors from YOLOv1 

continuous  evolution  since  its  initial  introduction.  Over  the (2016) to YOLOv12 (2025) depicts continuous enhancement years, multiple versions have been developed, each bringing in  speed,  performance,  and  computational  efficiency,  as improvements  in  speed,  accuracy,  and  computational shown  in  Figure  1.  Over  time,  significant  architectural efficiency.  Early  versions  such  as  YOLOv3,  YOLOv4,  and modifications  such  as  fusion  schemes  in  features,  attention YOLOv5  introduced  enhanced  feature  extraction  and units,  and  optimizations  in  the  detection  head  have  been detection head refinements, significantly improving real-time introduced  to  improve  object  detection  in  autonomous object detection performance [7]. 

vehicles,  surveillance  systems,  and  various  real-world This study addresses this gap by evaluating and comparing deployments  [4].  This  evolution  outlines  an  unmistakable YOLOv12  with  YOLOv11  regarding  detection  accuracy, trajectory toward better generalizability, reduced latency, and inference  speed,  and  computational  efficiency  in  a  driving improved  detection  performance,  positioning  YOLOv12  as environment. The outcomes will inform us on the best fit for the most advanced iteration to date [5, 6]. 

deployment in ADAS in real-time. 

More  recently,  YOLOv11  and  even  more  recently, Subsequent  models,  including  YOLOv6  and  YOLOv7 
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added  more  advanced  mechanisms,  including  Swin environments.  Recent  generations,  such  as  YOLOv8  and Transformers [8, 9] and Multi-Stage Feature Fusion (MSFF) YOLOv9,  improved  detection  accuracy  and  efficiency, modules  [10],  further  improving  detection  performance, enabling them to be used in intelligent transportation systems especially  in  the  case  of  occlusion  and  challenging and traffic monitoring applications [11-13]. 

Figure 1.  Evolution of the YOLO architecture As discussed by Sundaresan Geetha et al. [14], YOLOv10 

of-the-art 

performance 

through 

advanced 

attention 

and YOLOv11 continued this trend, improving the detection mechanisms  and  Residual  Efficient  Layer  Aggregation of small objects and crowded traffic scenarios. Sharma et al. 

Networks  (R-ELAN).  By  focusing  on  detection  accuracy, 

[15] found  that  YOLOv11  notably  outperformed  all  other inference  speed,  and  computational  overhead,  this  work detectors for occluded vehicle detection, even in challenging highlights  YOLOv12’s  architectural  innovations  and environments, showing that YOLOv11 is a great candidate for demonstrates  how  it  surpasses  its  predecessor,  YOLOv11, real-time traffic surveillance [16, 17]. 

without  sacrificing  efficiency.  The  findings  offer  valuable The  most  recent  development  in  this  lineage  YOLOv12 

insights  into  the  trade-offs  between  precision  and  speed, shows  lackluster  progress,  moving  towards  an  attention-serving  as  a  crucial  benchmark  for  researchers  and centric  feature  world,  aiming  etc.,  In  terms  of  accuracy  and practitioners  shaping  the  future  of  autonomous  vehicle real-time  inference  speeds.  Studies  by  Tian  et  al.  [18], applications. 

YOLOv12 outperforms its predecessors, as well as the recent real-time Detection Transformer (RT-DETR) in terms of mean 2.1 YOLO neural network models 

Average  Precision  (mAP)  while  consuming  lower computational resources. Despite these advancements, a direct The YOLO (You Only Look Once) neural network family, comparison  between  YOLOv11  and  YOLOv12  specifically developed by Ultralytics, has established a strong reputation for autonomous vehicle perception remains an open research for real-time object detection by balancing high accuracy with question, which this study aims to address. 

computational efficiency. In this study, we examine two of its To address this research gap, this study proposes a detailed recent iterations YOLOv11 and YOLOv12, which have gained comparative analysis of YOLOv11 and YOLOv12, focusing traction in autonomous vehicle applications, where rapid and on  three  key  performance  metrics:  detection  accuracy, precise detection of objects is paramount for operational safety. 

inference  speed,  and  computational  efficiency  in  real-world Both  models  stem  from  a  lineage  of  continual  refinements, autonomous  driving  conditions.  In  contrast  to  all  previous targeting  challenges  such  as  detecting  smaller  objects, studies,  which  have  considered  YOLO  models  on  separate optimizing attention mechanisms, and reducing computational benchmarks,  this  work  is  intended  to  evaluate  their overhead [15, 17, 19]. 

performance when it comes to their direct use  in real-world YOLOv11 introduced several notable architectural updates environments,  where  real-time  is  paramount  for  ADAS. 

compared to its predecessors. As shown in Figure 2(a), a key Through  a  performance  analysis  over  a  diverse  set  of change  involved  replacing  the  C3k2  module  with  the  more monitored  traffic  scenarios,  this  work  aims  to  evaluate  if flexible  C2f  module,  enabling  the  network  to  adapt  more YOLOv12's  architectural  benefits  outweigh  its  predecessor effectively  to  diverse  detection  scenarios.  Additionally, YOLOv11,  thus  making  a  case  towards  its  adoption  as  a YOLOv11  incorporated  a  C2PSA  block  that  improved  the coverage tool for safety-critical environments. 

attention mechanism, enhancing the extraction of contextual The  rest  of  the  paper  is  organized  as  follows:  Section  2 

features  in  complex  environments.  Another  significant describes the YOLOv12 architecture, dataset preparation, and improvement was the use of depthwise separable convolutions evaluation metrics. In section 3, we present the experimental in the detection head, which streamlined computations while results  and  comparisons  of  YOLOv12  against  YOLOv11, minimizing  any  impact  on  overall  accuracy.  Despite  these along  with  some  of  the  key  observations  from  these advances, YOLOv11 exhibited limitations in detecting smaller experiments  with  an  emphasis  on  the  trade-offs  between objects, spurring further research into refined feature pyramids accuracy,  speed,  and  computational  efficiency.  Finally, or enhanced upsampling strategies [20-22]. 

Section 4 concludes the paper with a summary of important Building on YOLOv11’s framework, YOLOv12 broadened contributions  and  directions  for  further  research  in  online performance  improvements  through  several  innovations.  As object detection models for autonomous driving. 

illustrated  in  Figure  2(b),  YOLOv12  integrates  A2  (area-attention)  modules  for  more  fine-grained  focus  on  salient regions,  especially  in  cluttered  scenes  or  varied  lighting 2. MATERIAL AND METHOD

conditions. The network also leverages R-ELAN to optimize gradient  flow  and  multi-scale  feature  aggregation,  and This study employs a systematic approach to evaluate and continues using depthwise separable convolutions refined for compare  YOLOv11  and  YOLOv12  in  real-time  vehicle even lower computational overhead. In addition, Figure 2(c) detection  for  autonomous  driving.  YOLOv12  represents  the compares the attention modules C3K2 and the novel R-ELAN 

latest milestone in real-time object detection, achieving state-introduced  in  YOLOv12,  highlighting  how  R-ELAN 
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significantly  improves  residual  connections  and  enhances produces  more  robust  multi-scale  representations,  and  the feature  aggregation.  These  advancements  contribute  to integration  of  residual  connections  with  scaling  improves YOLOv12’s improved ability to detect objects of varying sizes, training stability, especially in larger models. Flash Attention even  on  resource-constrained  platforms  such  as  embedded minimizes  memory  overhead  by  optimizing  access  patterns, systems and edge devices [6, 18]. 

and  the  simplified  attention  implementation  eliminates  the Several  new  features  (key  improvements)  further need  for  positional  encoding,  reducing  model  complexity. 

distinguish YOLOv12 from YOLOv11. Zone-based attention Furthermore,  the  optimization  of  MLP  ratios  ensures  more mechanisms  efficiently  handle  large  receptive  fields  while efficient  allocation  of  computing  resources,  allowing maintaining  a  balanced  computational  load  across  upstream YOLOv12  to  achieve  high  accuracy  with  fewer  parameters. 

layers.  The  enhanced  feature  aggregation  in  R-ELAN 

[23]. 
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Figure 2.  YOLO neural network architecture and module comparison: (a) YOLOv11 architecture; (b) YOLOv12 architecture, highlighting the integration of A2 modules; (c) Comparison of attention modules: C3K2 and the novel R-ELAN introduced in YOLOv12 



A  comparative  evaluation  of  YOLOv11,  YOLOv12,  and overall  computational  load.  Small-object  detection, other  object  detection  frameworks  is  presented  in  Figure  3, traditionally a challenge for real-time systems, benefits from underscoring YOLOv12’s advantages in speed, accuracy, and refined  feature  scaling  and  hardware  acceleration  options, 41
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enabling  YOLOv12  to  handle  intricate  scenarios  more hyperparameters,  and  ablation  studies.  By  uniting  advanced effectively. Researchers can consult supplementary materials attention  modules,  efficient  convolutional  operations,  and and  referenced  literature  for  deeper  insight  into  these carefully tuned resource allocations, YOLOv12 offers a robust, architectures,  including  specific  implementation  strategies, forward-looking solution for modern object detection needs. 

 

 

 

Figure 3.  Performance comparison of YOLOv12, YOLOv11, and other object detection models 2.2 Dataset and resources for training and deployment Each image underwent manual annotation using Roboflow, 

 

with  bounding  boxes  drawn  around  every  target  object. 

In  this  study,  we  curated  a  diverse  and  meticulously Annotations  were  then  exported  in  YOLO  format  for annotated dataset of 38,500 images to train and evaluate both streamlined  integration  with  the  training  pipeline. 

YOLOv11 and YOLOv12 for vehicle detection. The images Subsequently,  images  were  resized  to  640  ×  640  pixels  to were  derived  from  video  frames  recorded  in  various  traffic strike  a  balance  between  computational  efficiency  and environments  urban  streets,  highways,  intersections,  and preservation of visual detail [24]. 

parking lots to ensure broad coverage of real-world scenarios. 

To  enhance  the  dataset’s  robustness,  we  applied  data To  further  enhance  representativeness,  we  included  images augmentation  techniques  such  as  flipping,  rotation,  noise captured  under  different  weather  conditions  (daylight, injection,  and  exposure  adjustments.  These  transformations nighttime,  fog,  rain)  and  in  the  presence  of  occlusions.  The effectively  increased  the  variety  of  training  samples, dataset encompasses seven categories of vehicles E-Scooter, mitigating  overfitting  and  improving  generalization.  In Bicycle, Bus, Car, Motorcycle, Truck, and Emergency Vehicle addition, saturation adjustment was introduced to account for reflecting the spectrum of traffic objects typically encountered varying lighting and color conditions. Specifically, saturation by autonomous driving systems, as shown in Table 1. Highwas modified within a range of -25% to +25%, simulating both resolution images were collected from both in-vehicle cameras muted  and  vibrant  scenarios.  The  transformation  can  be and roadside surveillance systems, supplemented by samples described as: 

from open-source repositories. 





 I'=adjust_saturation(I, α),  α [−0.25,0.25] 

(1) 

Table 1.  Dataset image categories where,  I is the original image and  I′ is the saturation-adjusted Id 

Class 

Image 

image. 

0 

E-Scooter 

Noise  augmentation  was  implemented  by  adding  small random  pixel  perturbations  to  simulate  real-world  image 1 

Emergency vehicle 

imperfections  such  as  sensor noise  or  compression  artifacts. 

This process is mathematically expressed as: 2 

Bicycle 

 I′=I+N 

(2) 





where,  N represents the noise applied to the image, affecting 3 

Bus 

up to 0.1% of the pixels. 

For  exposure  adjustment,  brightness  was  modified uniformly by approximately 10% across the image to simulate 4 

Car 

varying lighting conditions. The formula used is: 5 

Motorcycle 

 I′=clip(I+β×I,0,255), β≈0.1 

(3) 





6 

Truck 

This adjustment enhances the model’s resilience to extreme lighting  environments,  ensuring  better  generalization  across day, night, or glare-affected scenes. 
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Random  rotations  were  also  introduced,  wherein  images with  GPU  acceleration  for  optimized  deep  learning were  rotated  between  -15° and  +15°,  simulating  camera  tilt computations. 

and  slight  perspective  changes.  This  transformation  can  be To  achieve  efficient  convergence  and  optimal  detection written as 

accuracy,  key  hyperparameters  were  configured  as  follows: 100 epochs, a batch size of 16, an image resolution of 640 × 

 I′=rotate (I, θ), θ [−15°,15°] 

(4) 

640  pixels,  and  the  Stochastic  Gradient  Descent  (SGD) optimizer. Additional settings included a momentum of 0.937, and the bounding boxes were dynamically adjusted to ensure a weight decay of 0.0005, an initial learning rate of 0.01, and vehicles  remained  properly  enclosed  after  rotation. 

a final learning rate of 0.01. These configurations, as detailed Geometrically,  each  pixel’s  coordinates  underwent  a  2D 

in Table 2, were selected to balance computational efficiency rotation matrix transformation, 

and  model  accuracy,  ensuring  robust  real-time  vehicle detection capabilities. 

cos(θ)

− sin(θ)



R(θ)=[

] 

(5) 

sin(θ)

cos(θ)

Table 2.  Hardware and software configurations with hyperparameter settings 

where,  R( θ)  denotes  the  rotation  matrix,  which  is  especially relevant for rotating or mobile cameras. 

Hardware and Software 

Hyperparameters 

In  addition,  horizontal  flipping  was  applied  with  a  50% 

Environment 

probability  to  simulate  mirrored  perspectives  and  enhance Name 

Version 

Parameters 

Details 

spatial diversity in vehicle orientation. 

AMD Ryzen 9 

CPU 

Epochs 

100 

7940HX 

These  combined  augmentation  methods  not  only  broaden NVIDIA 

the  range  of  environmental  variations  but  also  help  address GPU 

GeForce 

Batch size 

16 

class imbalance by expanding underrepresented categories. 

RTX4070 

Finally,  the  dataset  was  divided  into  training  (70%), VRAM 

8 GB 

Image size (Pixels)  640×640 

validation  (20%),  and  test  (10%)  sets  to  enable  systematic Memory 

32 GB DDR5  Optimizer algorithm  SGD 

hyperparameter tuning and unbiased performance evaluation. 

Operating System  Windows 11 

Momentum 

0.937 

Figure  4 illustrates the  workflow  from image  collection and Python Version 

3.12.4 

Weight Decay 

0.0005 

annotation to structured dataset partitioning. By combining a PyTorch Version 

2.5.1 

Initial Learning Rate  0.01 

thoroughly  annotated  dataset  with  systematic  preprocessing CUDA Version 

11.8 

Final Learning Rate 

0.01 

and augmentation, this approach provides a robust foundation for  assessing  the  accuracy,  robustness,  and  real-time 2.4 Models evaluation metrics 

performance of YOLOv11 and YOLOv12 under challenging 

 

traffic conditions. 

Precision, Recall, mAP, and F1-score are employed as the primary  evaluation  metrics  for  the  thorough  evaluation  of YOLOv11 and YOLOv12 performance in vehicle detection in this  study.  These  metrics  measure  the  models'  accuracy, stability, and  generalization capacity for different categories of vehicles. 

Precision, Eq. (6), determines the proportion of true positive detections  correctly  identified,  defining  the  ability  of  the model to suppress false positives. Recall, Eq. (7), determines the proportion of true objects detected correctly, representing the model's sensitivity to detect all relevant instances. Average Precision (AP), Eq. (8), taken across all categories, gives the mean  Average  Precision  (mAP),  Eq.  (9),  as  the  global 

 

performance  indicator  combining  precision-recall  values  for Figure 4.  Dataset preparation workflow all detected classes. The F1-score, Eq. (10), balances precision and recall  and  gives  the  global  view  of  the  model  detection 2.3 Experimental environment and parameter settings reliability in realistic situations [25, 26]. 



With  these  criteria,  this  study  ensures  that  there  is  a To ensure a fair and efficient evaluation of YOLOv11 and standardized  and  rigorous  measurement  of  the  detection YOLOv12,  all  experiments  were  conducted  in  a  high-performance, which simplifies comparison of YOLOv11 and performance  computing  environment,  optimized  for  deep YOLOv12  for  real-time  autonomous  vehicle  detection.  The learning workloads. The training setup was carefully designed criteria  enable  a  balance  between  accuracy,  computational to provide consistent computational power and efficient GPU 

overhead, and the capability to manage variability so that the acceleration, ensuring stable model convergence and reliable models are viable for use in dynamic traffic conditions. 

performance  assessment.  The  details  of  the  hardware  and software  configurations,  along  with  the  hyperparameter Precision= 𝑇𝑃 ×100% 

(6) 

settings, are summarized in Table 2. 

TP+FP



The system was equipped with an AMD Ryzen 9 7940HX 

CPU,  an  NVIDIA  GeForce  RTX  4070  GPU  with  8  GB  of Recall= 𝑇𝑃 ×100% 

(7) 

TP+FN

VRAM, and 32 GB of DDR5 memory, running on Windows 11.  The  software  environment  was  built  on  Python  3.12.4, AP= 1

∫ 𝑃(𝑅)𝑑𝑅 

(8) 

0

using PyTorch 2.5.1 with CUDA 11.8, ensuring compatibility 43
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YOLOv11  and  YOLOv12  models  demonstrate  clear 

∑𝑐 (𝐴𝑃)𝑗

mAP= j=1



(9) 

distinctions in their detection performance, which is critical for 𝑐

real-time autonomous driving applications. Both models were trained  using  NVIDIA  GPUs  in  a  high-performance F1-score=2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙 

(10) 

Precision+Recall

computing  environment,  utilizing  the  PyTorch  framework. 



The  training  setup  incorporated  an  SGD  optimizer  with  a learning rate of 0.01, momentum of 0.9, and a decay strategy. 

3. RESULTS AND DISCUSSION 

A batch size of 16 was used, and early stopping was activated after  20  epochs  without  validation  improvement  to  mitigate The experimental results from training and validation of the overfitting. 









Figure 5.  Training results of YOLOv11 







Figure 6.  Training results of YOLOv12 



Table 3.  Metrics of the proposed models smoothly  over  epochs.  The  quantitative  performance comparison (Table 3) shows that while YOLOv11 achieved a Metrics of the Models 

slightly  higher  precision  (97.7%),  YOLOv12  demonstrated Model 

Precision  Recall  F1-score  mAP@50  mAP@50-95 

superior recall (95.0%), F1-score (96.03%), and mAP@50–95 

YOLOv11  97.7%   94.3%  95.96% 

98% 

88.1% 

(88.6%).  These  improvements  can  be  attributed  to YOLOv12  97.1% 

95%  96.03% 

98.2% 

88.6% 

YOLOv12’s  refined  architecture,  which  incorporates advanced  attention  mechanisms  and  R-ELAN.  These As shown in Figures 5 and 6, both models exhibited steady enhancements  provide  more  effective  feature  extraction  and convergence,  with  training  and  validation  losses  decreasing 44
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object  localization,  particularly  in  cluttered  or  occluded balances precision and recall, is a key metric for determining scenes. 

the overall detection effectiveness of the models. 

Nevertheless, YOLOv12 is not without limitations. Class-specific  analysis  reveals  that  it  still  struggles  with  detecting certain categories such as bicycles and buses. These challenges are  likely  due  to  several  factors:  the  relatively  small  size  of these objects in the input images, frequent occlusions in urban environments,  and  high  intra-class  variability  in  shape, orientation,  and  color.  Such  characteristics  reduce  the effectiveness  of  feature  extraction  layers,  especially  when spatial  resolution  is  limited.  This  indicates  that  while YOLOv12 improves overall performance, further refinement is  needed  to  ensure  reliable  detection  of  all  vehicle  types. 

Future  enhancements  could  include  integrating  multi-scale feature  fusion  to  better  preserve  small  object  features  and applying sensor fusion strategies such as incorporating LiDAR 



or radar data to complement visual inputs. 



Figures  7  and  8  illustrate  the  Precision-Recall  (PR) Figure 9.  F1 and confidence curves of YOLOv11 

confidence  curves  for  both  models.  YOLOv12  consistently outperforms YOLOv11 in recall, demonstrating fewer missed detections,  while  maintaining  high  precision.  Its  mAP@50 

increased  slightly  from  0.980  (YOLOv11)  to  0.982 

(YOLOv12), reinforcing its enhanced classification accuracy. 

Vehicle  classes such as E-Scooters, motorcycles,  and trucks show high and stable performance in both models. However, bicycles  and  buses  display  noticeable  variability  in  recall, emphasizing  the  need  for  targeted  improvements  in  these categories. 







Figure 10.  F1 and confidence curves of YOLOv12 



As  depicted  in  Figures  9  and  10,  both  models  achieve consistently  high  F1  scores,  indicating  strong  detection performance  across  multiple  vehicle  categories.  However, YOLOv12  exhibits  a  superior  F1  score  at  lower  confidence thresholds  (0.591)  compared  to  YOLOv11  (0.671), confirming its enhanced detection capability and reduced false negatives.  This  improvement  reflects  YOLOv12’s  refined Figure 7.  Precision-Recall confidence curve of YOLOv11 

feature extraction, optimized detection head, and better object classification under varying conditions. 







Figure 8.  Precision-Recall confidence curves of YOLOv12 



The  F1-confidence  curves  for  YOLOv11  and  YOLOv12, provide  a  detailed  evaluation  of  their  precision-recall  trade-offs  at  varying  confidence  thresholds.  The  F1  score,  which Figure 11. Normalized confusion matrix for YOLOv11 
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R-ELAN  and  attention  mechanisms,  contribute  to  its  higher efficiency in real-time autonomous vehicle perception. 

Figures 11 and 12 show the normalized confusion matrices, which  offer  deeper  insights  into  classification  performance. 

YOLOv11  displayed  misclassifications,  particularly  for bicycles and cars, likely due to similarities in visual features and  environmental  clutter.  YOLOv12,  by  contrast,  achieved more accurate class distinctions and a reduced false positive rate,  especially  for  visually  similar  objects.  These improvements stem from the attention-based architecture and enhanced feature learning provided by the R-ELAN modules. 

Figure  13  presents  qualitative  comparisons  in  diverse environmental conditions, including fog, grayscale, occlusions, and  dense  traffic.  YOLOv12  showed  improved  detection consistency  and  bounding  box  accuracy  in  all  scenarios, especially  under  adverse  conditions  like  low  visibility  and partial  object  obstruction.  These  results  validate  its  superior Figure 12.  Normalized confusion matrix for YOLOv12 

real-time adaptability in complex driving environments. 



From  a  real-world  perspective,  the  improved  detection capabilities of YOLOv12 have several important implications for autonomous driving systems. Higher recall reduces the risk of missing critical objects, particularly in dense urban or high-speed  environments,  enhancing  situational  awareness  and safety. The model’s robustness in detecting occluded or small objects supports more reliable performance in complex real-world  traffic  scenes,  directly  benefiting  ADAS.  However, these  advantages  must  be  balanced  against  deployment constraints,  especially  in  edge-computing  environments. 

YOLOv12's  enhanced  architecture  introduces  additional computational  demands,  making  model  optimization necessary for use in real-time applications. Techniques such as quantization, pruning, or deploying lightweight variants may be required to ensure responsiveness on embedded systems. 

YOLOv12  outperforms  YOLOv11  in  most  evaluation metrics  and  real-world  detection  scenarios,  confirming  its readiness  for  advanced  perception  tasks  in  intelligent transportation  systems.  Yet,  continued  efforts  are  needed  to address  class-specific  weaknesses  and  enhance  its deployability across embedded systems. The findings in this study  offer  a  strong  foundation  for  future  enhancements  in object detection models tailored for autonomous driving. 





4. CONCLUSIONS 

 

The comparison of YOLOv11 and YOLOv12 demonstrates the  continuous  progress  in  real-time  object  detection, particularly  for  autonomous  vehicle  perception.  YOLOv12 

exhibits  significant  enhancements  in  regard  to  the  accuracy, recall,  and  robustness  of  detections  built  on  architectural advances,  including  the  design  of  attention  modules  and  R-ELANs.  Experimental  evaluation  demonstrates  stable performance of YOLOv12 in difficult conditions such as low visibility,  occlusion,  and  high  traffic  density,  suggesting  its possibilities for real-world applications. 



In  addition,  the  model  has  better  capability  to  identify Figure 13.  Comparison of YOLOv11 and YOLOv12 in partially occluded or smaller cars, which is one of the needed diverse driving conditions 

capabilities  for  enhancing  safety  and  situation  perception  in complex city driving environments. YOLOv12, though, still Among different vehicle classes, bicycles and buses show has difficulty with certain categories of objects, such as buses slight dips in F1 scores, likely due to occlusion challenges and and  bicycles,  especially  under  cluttered  or  overlapping size  variations  in  the  dataset.  Conversely,  E-Scooters, conditions.  These  issues  indicate  the  need  for  further motorcycles, and trucks maintain stable F1 scores across both optimization in handling visually ambiguous or scale-invariant models,  highlighting  their  robust  detection  accuracy.  The objects. 
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Accurate, real-time vehicle detection is crucial for autonomous vehicles navigating
dynamic traffic environments. This study compares YOLOvI1 and the newly released
YOLOVI2, two state-of-the-art deep learning models for object detection, to assess
enhancements in speed, accuracy, and robustness. YOLOVI2 has improved upon
YOLOvVI's architecture with an attention mechanism and Residual Efficient Layer
Aggregation Networks (R-ELAN). The improvements for YOLOVI2 are designed to

Keywords; ; obtain better accuracy and improved computational performance as compared to
real-time - object detection, YOLOvIl,  yq1 yl1. YOLOVII and YOLOVI2 were trained and tested on a newly developed
YOLOVI2, autonomous  vehicles, vehicle

dataset with 38,500 fully annotated images of seven classes of vehicles taken in different
environmental conditions. Results show YOLOVI2 achieves higher recall (95.0%), F1-
score (96.03%), and mAP@S0-95 (88.6%), while both maintain real-time inference
speeds. YOLOVI2 also demonstrated an improved capacity to detect small or partially
oceluded objects in challenging scenes. Overall, these findings establish YOLOVI2 as a
better solution for perceiving real-time data while autonomous driving, with a real prospect

detection, deep learning, ADAS

for implementation in intelligent transportation systems and edge-computing.

1. INTRODUCTION

The rapid advancement of autonomous vehicles relies
heavily on real-time object detection to identify surrounding
vehicles, pedestrians, and road signs under various and
complex traffic environments [1]. Luckily, this list has been
compiled to present some of the most exciting developments
that have made the most out of these new-found algorithms
and methodologies, specifically the YOLO (You Only Look
Once) family that has generated for itself a sunshed amount of
popularity surely due to its relatively high-speed and accuracy
when it comes to solving standards object detection problems
[2,3].

The evolution of the YOLO object detectors from YOLOv1
(2016) to YOLOV12 (2025) depicts continuous enhancement
in speed, performance, and computational cfficiency, as
shown in Figure 1. Over time, significant architectural
modifications such as fusion schemes in features, attention
units, and optimizations in the detection head have been
introduced to improve object detection in autonomous
vehicles, surveillance systems, and various real-world
deployments [4]. This evolution outlines an unmistakable
trajectory toward better generalizability, reduced latency, and
improved detection performance, positioning YOLOvV12 as
the most advanced iteration to date [5, 6].

More recently, YOLOvll and even more recently,

39

YOLOvI2 in ecarly 2025, which implemented attention
mechanisms, R-ELAN modules and improved detection heads.
It significantly increases accuracy while also boosting
inference speed, further solidifying its position as a valuable
option to be incorporated into Advanced Driver Assistance
Systems (ADAS) and intelligent transportation systems (ITS)
[5].

However, despite the architectural innovations introduced
in YOLOv12, a comprehensive comparative evaluation with
its immediate predecessor, YOLOvII1, remains lacking,
particularly in the context of real-time vehicle detection for
autonomous driving.

The YOLO object detection framework has undergone
continuous evolution since its initial introduction. Over the
years, multiple versions have been developed, each bringing
improvements in speed, accuracy, and computational
efficiency. Early versions such as YOLOv3, YOLOv4, and
YOLOVS introduced enhanced feature extraction and
detection head refinements, significantly improving real-time
object detection performance [7].

This study addresses this gap by evaluating and comparing
YOLOvI2 with YOLOvII regarding detection accuracy,
inference speed, and computational efficiency in a driving
environment. The outcomes will inform us on the best fit for
deployment in ADAS in real-time.

Subsequent models, including YOLOv6 and YOLOv7
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