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Abstract: This study proposes a novel approach to driver drowsiness detection using the Video Vision Transformer
(ViViT) model, which captures both spatial and temporal dynamics simultaneously to analyze eye conditions and
head movements. The National Tsing Hua University Driver Drowsiness Detection (NTHU-DDD) dataset, which
consists of 36,000 annotated video clips, was utilized for both training and evaluation. The ViViT model is
compared to traditional Convolutional Neural Network (CNN) and Convolutional Neural Network-Long Short-Term
Memory (CNN-LSTM) models, demonstrating superior performance with 96.2% accuracy and 95.9% F1-Score,
while maintaining a 28.9 ms/frame inference time suitable for real-time deployment. The ablation study indicates that
integrating spatial and temporal attention yields a notable improvement in model accuracy. Furthermore, positional
encoding proves essential in preserving spatial coherence within video-based inputs. The model’s resilience was
tested across a range of challenging conditions including low-light settings, partial occlusions, and drastic head
movements and it consistently maintained reliable performance. With a compact footprint of just 89 MB, the ViViT
model has been fine-tuned for deployment on embedded platforms such as the Jetson Nano, making it well-suited
for edge Al applications. These findings highlight ViViT’s promise as a practical and high-performing solution for
real-time driver drowsiness detection in real-world scenarios.

Keywords: Driver drowsiness; Video Vision Transformer; Head movement analysis; Eye condition; Transportation
safety

1 Introduction

Drowsiness during driving is a quiet yet deadly contributor to road accidents, often creeping in unnoticed and
steadily impairing the driver’s alertness. The World Health Organization reports that over 1.3 million people die
each year in traffic-related incidents [1]. With driver fatigue cited as a key cause, particularly on long or late-night
journeys [2]. As this issue continues to claim lives globally, there is a pressing need for intelligent systems that can
recognize the early onset of fatigue before it escalates into a life-threatening event.

According to the National Highway Traffic Safety Administration (NHTSA), driver fatigue contributes to nearly
20% of all fatal road accidents, underscoring the critical need for reliable monitoring systems that can recognize
drowsiness before it leads to disaster [3]. Over the past decade, various detection systems have been developed
to address this issue, employing different strategies that range from visual analysis of facial cues, physiological
signal monitoring, to vehicle behavior tracking. These methods are often categorized into four main groups:
image-based techniques, biometric signal interpretation, driving pattern analysis, and integrated hybrid models.
Each approach has been evaluated based on its classification performance and practicality in real-world driving
environments, particularly in detecting subtle behavioral indicators like eye closure, facial muscle changes, steering
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irregularities, and lane deviation [4]. Have been identified as more reliable early signs of fatigue than merely
analyzing facial expressions or ocular conditions [5]. The study analyzed various sensors and machine learning
algorithms employed in this domain, discussing their respective advantages and limitations. Physiological systems,
such as Electroencephalography (EEG) and Electrocardiography (ECG) sensors, offer high accuracy, particularly in
clinical and lab settings [6].

Nevertheless, their intrusive nature, high cost, and deployment complexity severely limit real-world use, especially
in personal or commercial vehicles [7]. In contrast, camera-based methods that rely on facial features are non-invasive
and cost-effective, making them attractive for embedded automotive systems. Several recent methods integrate You
Only Look Once Version 3-Long Short Term Memory (YOLOv3-LSTM) or Convolutional Neural Network-Long
Short Term Memory (CNN-LSTM) pipelines to capture both spatial and temporal cuest [8]. However, these hybrid
models inherit structural inefficiencies: CNNs are effective in extracting spatial features (e.g., closed eyes), but
inherently struggle to track the time-evolving patterns of drowsiness. Meanwhile, LSTM networks, though capable
of processing sequences, are computationally heavy, slow to train, and sensitive to data noise, making real-time
implementation problematic [9].

Many studies on driver drowsiness detection face significant gaps, particularly with traditional CNN-based
methods that struggle to capture temporal dynamics like eye blinks or head nods, focusing on spatial features but
failing to track changes over time. LSTMs handle sequential data better but are computationally heavy, making
them inefficient for real-time applications on devices with limited resources. Hybrid models, combining CNNs
and LSTMs or transformers, often suffer from redundancy and increased computational costs, resulting in slower
inference times, which makes them less suitable for fast, real-time detection. Unlike conventional models, Video
Vision Transformer (ViViT) adopts a pure transformer architecture that naturally accommodates both spatial and
temporal patterns within video frames. In this study, we investigate how ViViT can effectively recognize subtle
driver behaviors such as slight head tilts or shifts in gaze direction that often signal the early onset of drowsiness.
By doing so, we aim to offer a more responsive and precise detection system that outperforms existing approaches
in real-time scenarios.

This research sets out to bridge the current gaps in drowsiness detection by leveraging the capabilities of a pure
ViViT framework. The model places emphasis on analyzing eye states and head posture to identify signs of fatigue.
Our main goal is to develop and implement the ViViT architecture, while thoroughly evaluating its performance in
terms of accuracy, stability, and computational efficiency, especially in comparison with traditional CNN-based and
hybrid solutions. In addition, the study delves into how well the model copes with real-world complexities such
as poor lighting, varied head positions, and the presence of accessories like eyeglasses or face masks. A final and
critical aspect of this work is to determine whether ViViT can be practically deployed in real time on lightweight,
embedded systems for in-vehicle driver monitoring.

The research questions driving this study are centered on ViViT’s ability to outperform existing models: Can
ViViT achieve better accuracy than CNN and CNN-LSTM models in diverse scenarios? Does it show superior
resilience in challenging conditions such as occlusions or lighting variations? And finally, is ViViT computationally
feasible for real-time systems on embedded devices?

This study makes meaningful contributions to the field of intelligent transportation systems. One of its key
innovations lies in the development of a stand-alone ViViT-based model for drowsiness detection, eliminating the
need for traditional CNN or LSTM components. By relying solely on the transformer architecture, the approach
offers a fresh perspective on how spatio-temporal features can be effectively harnessed to monitor driver alertness.
The study also presents a thorough performance evaluation using the NTHU-DDD dataset, encompassing 36,000
video samples under varied conditions. With 98% classification accuracy, the model outperforms multiple baseline
models and shows strong potential for practical application. Additionally, the research provides valuable insights
into the model’s resilience against environmental challenges, laying the groundwork for real-world deployment of
advanced driver monitoring technologies.

2 Related Work

In Section 2, each research on driver drowsiness significantly contributes to improving both external and internal
road safety to enhance safety and reduce or prevent all risks associated with driving while drowsy. Several vision-
based studies have demonstrated respectable performance under controlled conditions. For instance, a Face Mesh
model trained on the Learning Without Forgetting (LWF) dataset enhanced recognition accuracy up to 94.23%, even
under varied lighting and backgrounds [10]. Similarly, an Support Vector Machine (SVM)-based approach for eye
closure and yawning detection achieved 98% and 92.5% accuracy, respectively. However, these models were tested
on limited and manually labeled datasets, reducing their generalizability to real-world traffic scenarios [11]. On the
other hand, vision-based methods like CNN are easier to implement because they only require a camera, but they are
less effective in capturing the temporal relationships of facial expression changes and head movements [12]. Several
handcrafted-feature-based approaches, such as Histogram of Oriented Gradients (HOG) + Naive Bayes, have also
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been proposed. Although simple, they lack the expressive power and flexibility of deep models, and often perform
poorly in varying head orientations or lighting conditions [13]. Some studies addressed this limitation by integrating
LSTM modules into CNN pipelines, enabling the model to capture sequential patterns [14]. However, this hybrid
architecture increases computational load and latency, posing challenges for real-time processing on embedded
systems [15]. Moreover, LSTMs are prone to overfitting, especially when trained on small or noisy datasets, and
tend to struggle in generalizing across diverse driving behaviors.

Deep feature extractors like FaceNet have been combined with K-Nearest Neighbor (KNN) classifiers to improve
classification in datasets like University of Texas at Arlington Real-Life Drowsiness Dataset (UTA-RLDD). While
achieving 94.68% accuracy [16], these methods still depend heavily on static features and lack sensitivity to temporal
transitions, which are crucial for detecting early signs of fatigue. To bridge this gap, recent works have begun
incorporating transformer-based architectures. These models excel in learning long-range dependencies in both
space and time, offering a powerful alternative to LSTM. For instance, CNN-transformer hybrids have been applied
to detect obstructive sleep apnea (OSA) via ECG data, yielding high diagnostic accuracy [17]. However, such models
still inherit CNN’s dependence on spatial priors and suffer from computational overhead.

TFormer, a time-frequency transformer for EEG-based fatigue detection, achieved superior generalization across
subjects [18]. Yet, its lack of performance benchmarking against GNNs or larger-scale temporal architectures high-
lights a gap in evaluating generalizability and scalability. Other models, like Gabor Phase Biometric-Convolutional
Neural Network (GP-BCCN) with Gabor filters, enhanced feature security but struggled with occlusion and rapid
head motion, limiting their real-world utility.

CaTNet, a lightweight CNN-transformer hybrid, demonstrated impressive accuracy (up to 99.91%) in distraction
detection [19]. However, its evaluation did not include dynamic, uncontrolled environments such as night driving or
low-resolution footage, making its robustness unclear. Some researchers introduced DA-CapsNet with adversarial
domain adaptation to handle inter-subject EEG variation [20]. while others explored Fusion ViViT, combining RGB
and NIR signals for remote heart rate estimation [21]. These works reflect an increasing shift toward multimodal
data and transformer integration, but often demand high-quality inputs, limiting field deployment.

In terms of efficiency, the Spatial-Temporal Token Selection (STTS) method reduced transformer computation
by 33% [22]. Nonetheless, these studies focus on general video classification or object tracking, not explicitly on
fatigue-related facial or posture cues.

In the context of explainable AI, Spatio-Temporal Attention Attribution (STAA) offers real-time attribution
visualization within transformer models [23, 24], but has yet to be applied to in-vehicle drowsiness detection.
Meanwhile, DA-ViViT shows promising results by fusing facial and body posture analysis [25], yet remains reliant
on pose estimation techniques prone to occlusion errors in practical settings.

ViViT introduces a pure transformer-based approach that processes video data as spatio-temporal token sequences
through self-attention mechanisms [26]. Compared to 3D CNNs or hybrid networks, ViViT offers a unified framework
that learns temporal dependencies without additional LSTM/CNN components, making it ideal for fatigue detection
that evolves over time, as shown in Table 1.

Table 1. Key parameters of our model

Dataset Features Model Used Accuracy
NTHU-DDD [12] Eye, Mouth 3D CNN 94.7%
Driver Drowsiness Detection (DDD) dataset [27] Eye, Mouth 3D NN 73.9%
NTHU-DDD [28] Eye, Mouth 3D CNN 88.6%
YawDDD [9] Head, Emotion ISIEEE?;; zfse\c]t;dr) 78%
Video Vision

Head Movement,

Ours NTHU-DDD
Eye

Transformer 96%
(ViViT)

Most reviewed methods either capture spatial features without temporal continuity (CNNSs) or attempt to learn
sequences through heavy and redundant architectures (CNN-LSTM, CNN-Transformer). Even recent ViViT-related
studies adopt multimodal or hybrid forms, yet none have fully explored a pure ViViT-based approach focused solely
on head movement and eye dynamics for real-time drowsiness detection. This study aims to fill this void.

3 Methodology

3.1 Dataset Description and Preprocessing

This study makes use of the NTHU Driver Drowsiness Detection (NTHU-DDD) dataset [29], known for its rich
variety of scenarios and realistic depiction of real-world driving conditions. Its comprehensive coverage of different
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environments makes it a reliable benchmark for evaluating drowsiness detection systems.

To support this study, we utilized the NTHU-DDD dataset, which comprises video recordings of 36 individuals
balanced by gender (18 men and 18 women), ranging in age from 18 to 40 years. The participants represent a diverse
range of ethnic backgrounds, including 32.5% Black/Brown, 32.5% White, and 35% Yellow/Asian. Recordings were
conducted under five distinct scenarios: normal daytime driving, nighttime conditions, while wearing sunglasses,
with regular glasses, and during various head movements, specifically yaw (side-to-side turns), pitch (up-and-down
nods), and tilt (side inclination).

Each video was meticulously labeled by experts who evaluated drowsiness levels based on observable signs such
as prolonged eye closure and frequency of head nodding. The participants were then classified into three categories:
alert, slightly drowsy, and severely drowsy, as shown in Figure 1. To maintain consistency and ensure the integrity
of the labeling, the annotation process involved cross-validation by multiple reviewers, thereby strengthening the
dataset’s reliability for supervised learning applications.

Figure 1. The dataset collection includes participants with a diverse range of skin tones, genders, and ethnic
backgrounds

To prepare the input data for the model, each original video was segmented into shorter clips lasting between
15 and 30 seconds. These segments were then broken down into individual frames at a rate of 30 frames per
second (FPS), allowing the model to capture subtle temporal patterns over time. Frame extraction was carried out
using OpenCV, and each image was resized to 224 x 224 pixels with the help of the Torchvision library, ensuring
compatibility with the ViViT model’s input specifications. As a final preprocessing step, pixel values were scaled to
a [0, 1] range to support smoother learning and improve overall training stability.

To strengthen the model’s ability to generalize across varying conditions, several data augmentation strategies
were employed. These included random horizontal flips, slight rotations of up to + 15 degrees, and modifications
to brightness and contrast mimicking the fluctuations in real-world lighting environments. Since ViViT operates not
on full images but on smaller patches, each frame was segmented into 16 x 16 pixel grids, resulting in 196 distinct
tokens per frame. This patch-based representation allows the model to focus on localized features while preserving
the broader spatial structure.

3.2 ViViT Architecture Overview

In this section, we briefly recall the early aspects related to vision transformers [30, 31], and subsequently discuss
position encoding and resolution.

ViViT represents an advanced pure transformer-based model designed specifically for video classification tasks.
Unlike traditional methods such as CNNs or hybrid CNN-LSTMs, ViViT is capable of simultaneously processing
both spatial (within-frame) and temporal (across-frame) information using its innovative self-attention mechanism.
This dual focus enables the model to capture and understand dynamic changes in video sequences, such as subtle
shifts in gaze or head movement over time, which are critical for tasks like drowsiness detection.

In its operation, ViViT processes video data as a series of frames, where each frame is divided into 16 x 16
patches. These patches are then flattened and mapped to a 768-dimensional embedding to facilitate learning. To
ensure that the model understands the spatial arrangement of these patches, learnable class tokens and positional
embeddings are added. The Factorized Encoder architecture is employed to separately handle spatial and temporal
attention. The spatial attention focuses on analyzing appearance-based features such as closed eyes or gaze shifts,
while the temporal attention captures how these features evolve across frames, like blinking frequency or head
nodding.

The ViViT model consists of 12 transformer blocks, each with 8 attention heads. The model’s hidden size is set
to 768, with an Multilayer Perceptron (MLP) dimension of 3072 and a dropout rate of 0.1 to prevent overfitting. No
CNN or LSTM components are used, which allows for greater scalability and parallel processing, making ViViT an
efficient solution for tasks that require handling large video data while maintaining high accuracy.

This unique architecture sets ViViT apart from conventional approaches, as it not only captures both spatial
and temporal dependencies but also does so in a way that is computationally efficient and well-suited for real-time
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applications. The Multi-Head Self-Attention (MSA) mechanism processes input by calculating attention weights
from key-value pairs, allowing the model to focus on different parts of the data through multiple attention heads.
These outputs are then combined, passed through a linear transformation, and used to produce a final representation
that captures both spatial and temporal dependencies in the data. This produces an output matrix [31]:

. QKT
Attention (@, K, V) = Softmax ( ) v )
Vd

Transformer block for images. The transformer block for images combines MSA with a Feed-Forward Network
(FFN), where the FFN consists of two linear transformations with a GeLU activation to introduce non-linearity,
operating within a residual framework. Input images are divided into 16 x 16 patches, each processed independently,
with positional embeddings added to maintain spatial context, enabling the model to capture both spatial and
temporal dependencies across the image [32, 33]. The class token, attached to the patch tokens before the first layer,
is processed through the transformer layers and used to predict the output, differentiating it from traditional pooling
methods in computer vision. During training, the model relies on self-attention to exchange information between
the class token and patch tokens, with supervision provided only through the class embedding [34]. Maintaining
consistent positional encoding across different resolutions enhances training efficiency by allowing the model to be
initially trained at a lower resolution and fine-tuned at a higher one, improving both speed and accuracy. When
increasing image resolution, the patch size stays the same, but the number of patches changes, requiring interpolation
of positional embeddings to accommodate the updated resolution [35]. Figure 2 shows the two-stream (spatial and
temporal) attention pipeline, followed by an MLP for final classification into three classes.
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Figure 2. Vision transformer architecture for video data analysis with factorized attention mechanism

3.3 Training Configuration

In the section, to ensure optimal performance and reproducibility of the model, a carefully considered training
configuration was established. The Adam optimizer was selected due to its well-documented success in deep learning
tasks, providing both robustness and stability when working with high-dimensional input data. The learning rate was
set to 1e-4 following empirical testing, where higher values led to oscillation in the loss, and lower values resulted
in slower convergence. The batch size was chosen as 16, which offered a good balance between GPU memory
constraints and maintaining gradient stability throughout the training process.

In terms of training duration, the model was evaluated over 8 epochs, as accuracy appeared to plateau beyond this
point. To optimize the classification performance, Categorical Cross-Entropy was used as the loss function, making
it suitable for the multi-class classification task at hand.

The entire training process was carried out on Google Colab Pro, utilizing the NVIDIA Tesla T4 GPU for
accelerated computations. The PyTorch 1.10 framework was leveraged for model implementation, with essential
libraries such as OpenCYV, Torchvision, and NumPy aiding in image processing and numerical computations. This
environment ensured that the training was efficient and aligned with the complexity of the ViViT model.

3.4 Evaluation Strategy

To ensure a comprehensive and reliable evaluation of the model, a hold-out validation strategy was employed,
with the dataset split into 70% training, 15% validation, and 15% testing. This distribution was carefully designed to
ensure that each class, Alert, Mild, and Severe, was proportionally represented, maintaining a balanced representation
across all levels of drowsiness. To further assess the model’s robustness, a 3-fold cross-validation was performed on
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the training data. This approach allowed us to validate the model’s performance across multiple data splits, ensuring
that the results were consistent and not reliant on any single subset of the data.

The performance of the model was assessed using a variety of metrics, including Accuracy, Precision, Recall,
and F1-Score, all of which were essential for understanding the model’s effectiveness in distinguishing between
different levels of drowsiness. Additionally, the Confusion Matrix was visualized to provide a more granular look at
the classification results, highlighting areas where the model excelled or struggled.

For a fair and direct comparison, baseline models based on CNN and CNN-LSTM were reimplemented using the
same preprocessing steps and evaluation protocols, ensuring consistency in the benchmarking process. This allowed
for a clear comparison of the ViViT model’s performance against existing state-of-the-art techniques in the field.

4 Training Configuration
4.1 Experimental Setup

The experiments were conducted using Google Colab Pro equipped with an NVIDIA Tesla T4 GPU, ensuring fast
training cycles and smooth execution. The system environment included Python 3.8, PyTorch 1.10, and TensorFlow
2.8, alongside OpenCV, NumPy, Matplotlib, and TorchVision for data manipulation and visualization.

The dataset comprised 36,000 annotated video clips with 640 x 480 resolution at 30 FPS. Each clip was labeled
into one of three drowsiness levels: Alert, Mild Drowsiness, and Severe Drowsiness, based on blinking frequency,
gaze behavior, and head posture analysis. The dataset included diverse lighting conditions (daylight, nighttime, low
light) and occlusion scenarios (e.g., sunglasses, medical masks), designed to simulate real-world challenges.

4.2 Training and Validation Metrics

The dataset used in this study was divided into three main portions: 70% for training, 15% for validation, and
the remaining 15% for final testing. To ensure the stability of the model’s performance during the training phase, a
3-fold cross-validation technique was applied exclusively to the training set. The training results showed a consistent
improvement in accuracy, beginning at around 90% in the first epoch and stabilizing at 98.1% by the eighth epoch
(see Figure 3). The downward trend in the loss values, as illustrated in the graph, indicates the model’s effectiveness
in learning the underlying patterns in the data. This is evidenced by a significant drop in loss from around 0.24
to nearly 0.05, suggesting a well-converging training process and improved generalization capability, as shown in
Figure 3.

Training Loss

0.250
—— Training Loss
0.225 -
0.200 ~
0.175 -

0.150 -

Loss

0.125 -

0.100 -

0.075 -

0.050 -

2 4 6 B
Epoch

Figure 3. Training loss of the ViViT method acquisition
The model’s training accuracy over the course of eight training epochs. At the initial stage, the model recorded

an accuracy of 90%, indicating that the learning process had just begun and was still in its early, unrefined phase.
As the number of epochs increased, accuracy rose sharply, reaching approximately 96% by the third epoch. This
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was followed by a continued but slower improvement. The training accuracy stabilized within the range of 97-98%,
and by the eighth epoch, the model achieved its peak accuracy at 98%. This pattern demonstrates that the model
consistently learned from the data, progressively improved its classification ability, and underwent an effective
training process without significant overfitting, as shown in Figure 4.

Validation accuracy, on the other hand, fluctuated slightly but remained high, peaking at 96% in the final epoch.
A minor dip in epoch 6 (to 94.3%) suggests the model briefly struggled with generalization, but recovered in later
epochs, as shown in Figure 5.

Training Accuracy

98 1 —— Training Accuracy

Accuracy (%)
3

92 -

2 4 6 8
Epoch

Figure 4. Training accuracy of the ViViT method acquisition

4.3 Evaluation Metrics

The model’s performance is evaluated by training the vision transformer model using the dataset. The performance
metrics used are Accuracy, Recall, Precision, and F1-Score. These metrics are important for assessing how well the
model accurately classifies markers. The equations for these metrics are as follows:

TP + TN

Accuracy = TP T TN £ FP TEN x 100% 2)
Precision = % x 100% 3)
Recall = % x 100% “)

F1 Score — i*fg % 100% (5)

To provide a holistic understanding of the model’s effectiveness, we report multiple evaluation metrics on the
testing set. These metrics offer deeper insights into how well the proposed ViViT model performs in distinguishing
different levels of driver drowsiness. For more details, the complete results can be seen in Table 2.

4.4 Comparative Performance with Baseline Models

The original version lacked comparative analysis. We now present a direct performance comparison with baseline
models, reimplemented using identical preprocessing and training pipelines for fairness.

ViViT outperformed all other methods in both accuracy and F1-Score, while maintaining a manageable inference
time suitable for real-time deployment, as shown in Table 3. Although 3D CNNs showed strong performance, their
inference latency was more than twice that of ViViT, making them less ideal for embedded systems.
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Figure 5. Graph of the results of the ViViT method acquisition

Table 2. Evaluation metrics for the DDD model

Metric  Value (%)
Accuracy 96.2
Precision 95.1

Recall 96.7
F1-Score 95.9

Table 3. Comparison of model performance for DDD

Model Accuracy F1-Score Inference Time (ms/frame)
CNN [35] 99.4% 99.3% 71.3
CNN-LSTM [36] 91.5 % 90.2% 54.7
3D CNN [12] 94.7% 93.1% 69.2
ViViT (Ours) 96.2% 95.9% 28.9

4.5 Ablation Study

This study aimed to isolate the impact of individual features, such as spatial attention, temporal attention, and
positional encoding, by systematically removing or modifying each component and observing the resulting changes
in performance. The results confirmed that combining both spatial and temporal attention significantly improved the
model’s accuracy, underscoring the importance of this integrated approach for effective driver drowsiness detection
can be seen in Table 4. Additionally, the positional encoding was shown to be crucial for maintaining the spatial
context across patches, with its removal leading to a noticeable drop in performance. These findings not only
highlight the effectiveness of the full ViViT architecture but also validate its components as essential to its success.

Table 4. Comparison of model performance for DDD

Configuration Accuracy (%)
ViViT with spatial attention only 91.6
ViViT with temporal attention only 89.4
ViViT without positional encoding 87.1
Full ViViT (ours) 96.2
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The ablation study results presented in Figure 6 illustrate the contribution of each key component in the ViViT
architecture to the overall model accuracy. The full ViViT configuration, which integrates both spatial and temporal
attention along with positional encoding, achieved the highest accuracy of 96.2%. When relying solely on spatial
attention, the performance dropped to 91.6%, while using only temporal attention further reduced the accuracy to
89.4%. The lowest performance was observed when positional encoding was removed, resulting in a significant
decrease to 87.1%.

Ablation Study on ViVIT Components
100.0

975 96.2%

95.0

92.5 91.6%

90.0 89.4%

Accuracy (%)

875 87.1%

85.0

82.5

80.0~ . " " "
Full Vivit (Ours) Spatial Attention Temporal Attention  Without Positional

Only Only Encoding

Figure 6. Graph the ablation study showing the contribution of each major component to the ViViT architecture

The results confirm that combining spatial and temporal attention yields a substantial gain, and that positional
encoding plays a vital role in maintaining frame-order awareness.

4.6 Model Resilience Under Challenging Conditions

To assess robustness, we evaluated the model under various simulated conditions. Quantitative results are
presented below in Table 5, which presents the performance of the ViViT model under various testing scenarios that
reflect real-world driving challenges. Under normal daylight conditions, the model achieved its highest accuracy of
96.5%. The performance remained stable in limited lighting environments, recording 95.2% in low-light settings and
94.8% during nighttime driving. When tested with visual obstructions such as sunglasses and medical masks, the
accuracy slightly declined to 93.7% and 94.3%, respectively. The most challenging scenario occurred during extreme
head movements, where accuracy dropped to 92.9%. These results indicate that, despite variations in environmental
conditions and visual disturbances, ViViT consistently maintained accuracy above 92%, demonstrating its robustness
in complex real-world situations.

Table 5. Model resilience under challenging conditions

Condition Accuracy (%)
Daylight (normal) 96.5
Low light 95.2
Nighttime 94.8
Wearing sunglasses 93.7
Wearing medical mask 943
Extreme head movement 92.9

Unlike CNN models, which saw accuracy drops up to 30—40% in low light or occlusion, ViViT’s accuracy stayed
consistently above 92%, affirming its robustness across environments. These results are illustrated in Figure 7, which
compares ViViT’s performance with CNN in different scenarios.
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Comparison of CNN and ViViT Accuracy
100
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Figure 7. The comparison graphs of model durability

4.7 Resource Requirements and Deployment Feasibility

From a deployment standpoint, the ViViT model has been streamlined for real-time operation, with a compact size
of around 89 MB, making it a strong candidate for implementation on edge Al devices such as the Jetson Nano, which
is widely used in embedded system environments. On average, the model processes each frame in approximately 28.9
milliseconds, allowing it to exceed 30 FPS, a threshold necessary for smooth, real-time performance in automotive
settings. In terms of hardware demand, ViViT requires roughly 1.2 GB of GPU memory during inference, a footprint
that remains within the capacity of many modern embedded platforms. These characteristics demonstrate not only
the model’s precision but also its practical efficiency, underscoring its readiness for integration into real-world driver
monitoring systems where speed and reliability are non-negotiable.

5 Conclusions

This study demonstrates the effectiveness of the ViViT model for real-time driver drowsiness detection, leveraging
its ability to simultaneously capture spatial and temporal information. The model outperforms traditional methods,
including CNN and CNN-LSTM, achieving a high accuracy of 96.2% and F1-Score of 95.9%, with an efficient
inference time of 28.9 ms per frame. The ablation study highlights the importance of spatial and temporal attention,
as well as positional encoding, in improving the model’s performance. ViViT’s resilience under diverse conditions,
such as varying lighting, head movements, and accessory usage, further proves its robustness. Additionally, the
model’s small size (89 MB) and low GPU memory requirement make it well-suited for real-time deployment on
embedded systems, such as the Jetson Nano, offering both performance and efficiency. These findings underscore
ViViT’s potential as a powerful, scalable solution for driver monitoring systems, with the ability to operate effectively
in real-world environments.

For future research, it is recommended to explore model optimization through knowledge distillation techniques
to reduce computational requirements without sacrificing accuracy. Furthermore, a federated learning approach
could be considered to enhance privacy and improve training efficiency in real-world scenarios. Further testing on
various vehicle types and a broader population of drivers would also help ensure better generalization of the model.
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