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A B S T R A C T  A R T I C L E   I N F O 

As an analytical approach, decision-making is the process of finding the 
best option from all feasible alternatives. The application of decision-
making process in economics, management, psychology, mathematics, 
statistics and engineering is obvious and this process is an important part of 
all science-based professions. Proper management and utilization of 
valuable data could significantly increase knowledge and reduce cost by 
preventive actions, whereas erroneous and misinterpreted data could lead to 
poor inference and decision-making. This paper presents a class of practical 
methods to analyze high-dimensional event history data to reduce redundant 
information and facilitate practical interpretation through variable 
inefficiency recognition. In addition, numerical experiments and 
simulations are developed to investigate the performance and validation of 
the proposed methods. 
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1. INTRODUCTION 

Analytics data driven decision-making can substantially improve management decision-making process. 

In social science areas such as economics, business and management, decision-making is increasingly 

are based on the type and size of data, as well as analytic methods. It has been suggested that new 

methods to collect, use and interpret data should be developed to increase the performance of the 

decision makers (Lohr, S., 2012) (Brynjolfsson, E., 2012). 

In the fields of economics, business and management, analyzing the collected data from different sources 

such as financial reports and consequently determining effective explanatory variables, specifically in 

complex and high-dimensional event history data provide an excellent opportunity to increase efficiency 

and reduce costs. 
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In economics, term event history analysis is used as an alternative to time-to-event analysis which has 

been used widely in the social sciences where interest is on analyzing time to events such as job changes, 

marriage, birth of children and so forth (Lee, E. T., and Wang, J. W., 2013). Some aspects make 

difficulty in analyzing this type of data using traditional statistical models. Dimensionality and non-

linearity are among those (Allison, Paul D., 1984). Analysis of datasets with high number of explanatory 

variables requires different approaches and variable selection techniques could be used to determine a 

subset of variables that are significantly more valuable to (Yao, F., 2007) (Hellerstein, J., 2008) 

(Segaran, T., and Hammerbacher, J., 2009) (Feldman, D. et al., 2013) (Manyika, J. et al., 2011) (Moran, 

J., 2013) (Brown, B. et al., 2011). 

The purpose of this study is to design a procedure including a class of methods for variable reduction 

via determining variable inefficiency in high-dimensional event history analysis where variable 

efficiency refers to the effect of a variable on event history data. As an outline, the concept of decision-

making process, event history analysis, and relevant data analysis techniques are presented in Section 2. 

The logical model for the transformation of the explanatory variable dataset is proposed and three 

multidisciplinary variable selection methods and algorithms through variable efficiency are designed in 

Section 3. The results and comparison of results with well-known methods and simulation patterns are 

presented in Section 4. Finally, concluding remarks, including the advantages of the proposed methods 

are discussed in Section 5. The computer package that we use in this research is the MATLAB® R2011b 

programming environment. 

2. BASES AND CONCEPTS 

In this section, applied introductions to decision-making process and event history analysis as well as 

data analysis techniques are presented. 

2.1. Decision-Making Process 

Decision-making theories are classified based on two attributes: (a) Deterministic, which deals with a 

logical preference relation for any given action or Probabilistic, which postulate a probability function 

instead, and (b) Static, which assume the preference relation or probability function as time-independent 

or Dynamic which assume time-dependent events (Busemeyer, J. R., and Townsend, J. T., 1993). 

Historically, the Deterministic-Static decision-making is more popular decision-making process 

specifically under uncertainty. The assumption of decision-making in this study falls in this category as 

well. 

As a process of making choices by setting objectives, gathering information, and assessing alternative 

choices in a decision-making process, broadly includes seven steps: (1) Defining the decision, (2) 
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Collecting information, (3) Identifying alternatives, (4) Evaluating the alternatives, (5) Selecting best 

alternative(s), (6) Taking action, (7) Review decision and consequences (Busemeyer, J. R., and 

Townsend, J. T., 1993). 

A major part of decision-making involves the analysis of a finite set of alternatives described in terms 

of evaluative criteria. The mathematical techniques of decision-making are among the most valuable 

factors of this process, which are generally referred to as realization in the quantitative methods of 

decision-making (Sadeghzadeh, K., and Salehi, M. B., 2010). With the increasing complexity and the 

variety of decision-making problems due to the huge size of data, the process of decision-making 

becomes more valuable (Brynjolfsson, E., 2012). 

A brief review of event history analysis concept and definition of survival function is following. 

2.2. Event History Analysis 

Event history analysis consider the time until the occurrence of an event. The time can be measured in 

days, weeks, years, etc. Event history analysis is also known as time-to-event analysis which generally 

defined as a set of methods for analyzing such data where subjects are usually followed over a specified 

time period. Event history (time-to-event data) analysis has been used widely in the social sciences such 

as felons’ time to parole in criminology, duration of first marriage in sociology, length of newspaper or 

magazine subscription in marketing and worker’s compensation claims in insurance (Lee, E. T., and 

Wang, J. W., 2013) (Hosmer D. W. Jr., and Lemeshow, S., 1999) (Kalbfleisch, J. D., and Prentice, R. 

L., 2011). 

Methods to analyze event history data can be categorized in parametric, semi-parametric and 

nonparametric methods. Parametric methods are based on survival function distributions such as 

exponential. Semi-parametric methods don’t assume knowledge of absolute risk and estimates relative 

rather than absolute risk and this assumption is called the proportional hazards assumption. For 

moderate- to high-dimensional covariates, it is difficult to apply semi-parametric methods (Huang, J., 

Ma, S., and Xie, H, 2006). In nonparametric methods which are useful when the underlying distribution 

of the problem is unknown, there are no math assumptions. Nonparametric methods are used to describe 

survivorship in a population or comparison of two or more populations. The Kaplan-Meier Product 

Limit estimate is a nonparametric method which is the most commonly used nonparametric estimator 

of the survival function and has clear advantages since it does not require an approximation that results 

the division of follow-up time assumption (Lee, E. T., and Wang, J. W., 2013) (Holford, T. R., 2002).  

The probability of the event occurring at time t is 
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𝑓𝑓(𝑡𝑡) = lim
∆𝑡𝑡→0

𝑃𝑃(𝑡𝑡≤𝑇𝑇<𝑡𝑡+∆𝑡𝑡)
∆t

                (1) 

In event history analysis, information on an event status and follow up time is used to estimate a survival 

function 𝑆𝑆(𝑡𝑡), which is defined as the probability that an object survives at least until time t: 

𝑆𝑆(𝑡𝑡) = 𝑃𝑃 (𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡) = 𝑃𝑃 (𝑇𝑇 > 𝑡𝑡)           (2) 

From the definition of the cumulative distribution function: 

             𝑆𝑆(𝑡𝑡) = 1 − 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡) = 1− 𝐹𝐹(𝑡𝑡)         (3) 

Accordingly survival function is calculated by probability density function as: 

𝑆𝑆(𝑡𝑡) =  ∫ 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑∞
𝑡𝑡                                     (4) 

In most applications, the survival function is shown as a step function rather than a smooth curve. 

Nonparametric estimate of 𝑆𝑆(𝑡𝑡) according to Kaplan–Meier (KM) estimator for distinct ordered event 

times 𝑡𝑡1 to 𝑡𝑡𝑛𝑛  is: 

𝑆̂𝑆(𝑡𝑡) = ∏ (1− 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)𝑡𝑡
𝑖𝑖=1                         (5) 

Where at each event time 𝑡𝑡𝑗𝑗  there are 𝑛𝑛𝑗𝑗  subjects at risk and 𝑑𝑑𝑗𝑗  is the number of subjects which 

experienced the event. 

A review of relevant used data analysis techniques in this study including discretization process as well 

as data reduction and variable selection methods is presented next. 

2.3. Data Analysis Techniques 

Discretization Process 

Variables in a dataset potentially are a combination format of different data types such as dichotomous 

(binary), nominal, ordinal, categorical, discrete, and continuous (Interval). There are many advantages 

of using discrete values over continuous as discrete variables are easy to understand and utilize, more 

compact and more accurate. Quantizing continuous variables is called discretization process. 

In the splitting discretization methods, continuous ranges are divided into sub-ranges by the user 

specified width considering range of values or frequency of the observation values in each interval, 

respectively called equal-width and equal-frequency. A typical algorithm for splitting discretization 
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process which quantifies one continuous feature at a time generally consists of four steps: (1) sort the 

feature values, (2) evaluate an appropriate cut-point, (3) split the range of continuous values according 

to the cut-point, and (4) stop when a stopping criterion satisfies. 

In this study, discretization of explanatory variables of event history dataset assumed unsupervised, 

static, global and direct in order to reach a top-down splitting approach and transformation of all types 

of variables in dataset into a logical (binary) format. Briefly, static discretization is dependent of 

classification task, global discretization uses the entire observation space to discretize, and direct 

methods divide the range of k intervals simultaneously. For a comprehensive study of discretization 

process, see (Liu, Huan, et al., 2002). 

Data Reduction and Variable Selection Methods 

Data reduction techniques are categorized in three main strategies, including dimensionality reduction, 

numerosity reduction, and data compression (Han, J. et al, 2006) (Tan, P. et al., 2006). Dimensionality 

reduction as the most efficient strategy in the field of large-scale data deals with reducing the number 

of random variables or attributes in the special circumstances of the problem. All dimensionality 

reduction techniques are also classified as feature extraction and feature selection approaches. Feature 

Extraction is defined as transforming the original data into a new lower dimensional space through some 

functional mapping such as PCA and SVD (Motoda, H., and Huan, L., 2002) (Addison, D. et al., 2003). 

Feature selection is denoted as selecting a subset of the original data (features) without a transformation 

in order to filter out irrelevant or redundant features, such as filter methods, wrapper methods and 

embedded methods (Saeys, Y. et al., 2007) (Guyon, I., and Elisseeff, A., 2003). 

Variable selection is a necessary step in a decision-making process dealing with a large-scale data. There 

is always uncertainty when researchers aim to collect most important variables specifically in the 

presence of big data. Variable selection for decision-making in many fields is mostly guided by expert 

opinion (Casotti, M., n.d.). The computational complexity of all the possible combinations of the p 

variables from size 1 to p, could be overwhelming, where the total number of combinations are 2𝑝𝑝 − 1. 

For example, for a dataset of 20 explanatory variables, the number all possible combinations is 220 −

1 =  1048575. 

Next section presents proposed methodology for multidisciplinary decision-making approach based on 

proposed analytical model, designed methods and heuristic algorithms for explanatory variable subset 

selection. 

3. METHODOLOGY 
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In this section, first proposed analytical model for transformation of the explanatory variable dataset to 

reach the logical representation as a sort of binary variables is presented. Next, in order to select most 

significant variables in terms of inefficiency, designed variable selection methods and heuristic 

clustering algorithms are introduced. 

3.1. Logical model 

A multipurpose and flexible model for a type of event history data with a large number of variables 

when the correlation between variables is complicated or unknown is presented. The logical model is to 

simplify the original covariate dataset into a logical dataset by transformation lemma. Next, we show 

the validation of this designed logical model by correlation transformation (Sadeghzadeh, K., and Fard, 

N, in press) (Sadeghzadeh, K., and Fard, N, 2014). 

The original event history dataset may include any type of explanatory. Many time-independent 

variables are even binary or interchangeable with a binary variable such as dichotomous variable. Also, 

interpretation of binary variable is simple, understandable and comprehensible. In addition, the model 

is appropriate for fast and low-cost calculation. The General schema of high-dimensional event history 

dataset includes n observations with p variables as shown in Table 1.  

Table 1: Schema for high-dimensional event history dataset 

    Variables 

Obs. #  Time to 
Event  Var. 1 Var. 2 … Var. p 

1  t1  u11 u12 … u1p 
2  t2  u21 u22 … u2p 
…  …  … … … … 
n  tn  un1 un2 … unp 

Each array of p variables vectors will take only two possible values, canonically 0 and 1. As discussed 

in Section 2, discretization method is applied to values by dividing the range of values for each variable 

into 2 equally sized parts. We define 𝑤𝑤𝑖𝑖𝑖𝑖  as an initial splitting criterion equal to arithmetic mean of 

maximum and minimum value of 𝑢𝑢𝑖𝑖𝑖𝑖  for 𝑖𝑖 = 1 …𝑛𝑛, 𝑗𝑗 = 1 …𝑝𝑝. The criteria 𝑤𝑤𝑖𝑖𝑖𝑖  could be defined by 

expert using experimental or historical data as well. For any array 𝑢𝑢𝑖𝑖𝑖𝑖  in the n-by-p dataset matrix 𝑼𝑼 =

[𝑢𝑢𝑖𝑖𝑗𝑗], then allocate a substituting array 𝑣𝑣𝑖𝑖𝑖𝑖 as 0 if  𝑢𝑢𝑖𝑖𝑖𝑖 < 𝑤𝑤𝑖𝑖𝑖𝑖  and 1 if 𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 𝑤𝑤𝑖𝑖𝑖𝑖. The proposed model 

assumes any array with a value of 1 as desired for expert and 0 otherwise. In other words, vij = 0 represent 

the lack of the jth variable in the ith observation. The result of the transformation is an n-by-p dataset 

matrix 𝑽𝑽 = [𝑣𝑣𝑛𝑛𝑛𝑛] which will be used in the following methods and algorithms.  Also, we define time-

to-event vector 𝑻𝑻 = [𝑡𝑡𝑛𝑛]  including all observed event times. The logical model initially could be 



PAGE 83| Journal of Corporate Governance, Insurance, and Risk Management | 2014, VOL. 1, NO. 2 

satisfied by proper design of data collection process by based on Boolean logic to generate binary 

attributes. 

To validate the robustness of this model we show that the change of correlation between variables before 

and after transformation is not significant and the logical dataset has followed the same pattern and 

behavior as the original; in terms of correlation of covariates. We define correlation matrix for each of 

original and transformed dataset based on Pearson product-moment correlation coefficient; M = [mij] 

and N = [nij] where 𝑖𝑖 = 1 …𝑛𝑛, 𝑗𝑗 = 1 … 𝑝𝑝, where 𝑛𝑛𝑖𝑖𝑖𝑖  and 𝑚𝑚𝑖𝑖𝑖𝑖 denote covariance of variables i and j for 

original and transformed dataset respectively as follows: 

𝑛𝑛𝑖𝑖𝑖𝑖 = 1
𝑛𝑛−1

∑ (𝑢𝑢𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1 − 𝑢𝑢�𝑖𝑖)(𝑢𝑢𝑗𝑗𝑗𝑗 − 𝑢𝑢�𝑗𝑗)            𝑖𝑖 = 1 …𝑝𝑝, 𝑗𝑗 = 1 …𝑝𝑝                (6) 

𝑚𝑚𝑖𝑖𝑖𝑖 = 1
𝑛𝑛−1

∑ (𝑣𝑣𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1 − 𝑣̅𝑣𝑖𝑖)(𝑣𝑣𝑗𝑗𝑗𝑗 − 𝑣̅𝑣𝑗𝑗)            𝑖𝑖 = 1 …𝑝𝑝, 𝑗𝑗 = 1 …𝑝𝑝                (7) 

where (𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖𝑖𝑖) and (𝑢𝑢�𝑖𝑖 , 𝑣̅𝑣𝑖𝑖) represent value of variable i in observation k and mean of variable i in each 

dataset respectively, and similarly the second parenthesis in equations(6) and (7) are defined for variable 

j. 

The experimental fitted line for the scatter plot of mij and nij for any dataset is 𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 where b is 

positive small and a is not significant. For instance, Figure 1 shows the primary biliary cirrhosis (PBC) 

dataset (Section 4) for an experimental result of an uncensored data with the fitted line of y = 0.6356𝑥𝑥 +

0.0116𝑏𝑏. 

 

Figure 1: Comparison of covariate correlations in the original and the transformed dataset. Fitted polynomial for 

the uncensored PBC dataset (Section 4) is 𝑦𝑦 = 0.0116 + 0.6356𝑥𝑥 
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The proposed logical model validation and verification of the robustness were presented 

comprehensively in (Sadeghzadeh, K., and Fard, N, in press) and (Sadeghzadeh, K., and Fard, N, 2014).  

In order to select the most significant variables in terms of inefficiency, methods and algorithms are 

presented next.   

3.2. Designed Methods and Heuristic Algorithms 

We design a class of methods applying on proposed logical model to select inefficient variables in a 

high-dimensional event history datasets. The major assumption to design appropriate methods for this 

purpose is that the variable which is completely inefficient solely can provide a significant performance 

improvement when engaged with others, and two variables that are inefficient by themselves can be 

efficient together (Guyon, I., and Elisseeff, A., 2003). Based on this assumption, we design three 

methods and heuristic algorithms to select inefficient variables in event history datasets with high-

dimensional covariates. We use Kaplan-Meier estimator in this study to estimate survival probabilities 

as a function of time. The n-by-p matrix V is the prepared transformed logical dataset according to 

Section 3.1, where n is the number of observations, p is the number of variables, and k is the estimated 

subset size to select for calculation parts in the algorithms.  

Recalling V which is constructed by k observation vectors corresponding to each of the variables, 𝑫𝑫 =

[𝑑𝑑𝑘𝑘𝑘𝑘] as a k-by-p matrix is a selected subset of V and k is defined as the number of observations in any 

subset of V, where 𝑘𝑘 ≤ 𝑛𝑛. For any variable i, we define vector Oi as a time-to-event vector which 

includes failure times of any observation j the value of vij is one. Similarly, we define vector Zi including 

failure times of any observation j where the value of vij is zero. The vectors R and S are defined as 

follow: 

𝑟𝑟𝑖𝑖 = �𝑡𝑡𝑖𝑖 , ∑𝑑𝑑𝑑𝑑.≥ 0
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒           𝑖𝑖 = 1 …𝑛𝑛          (8) 

𝑠𝑠𝑖𝑖 = �𝑡𝑡𝑖𝑖 , ∏𝑑𝑑𝑑𝑑. = 1
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒           𝑖𝑖 = 1 …𝑛𝑛          (9) 

Vector 𝑹𝑹 is constructed by all non-zero arrays r and similarly vector 𝑺𝑺 is constructed by all non-zero 

arrays s.  

We propose three methods and algorithms to select inefficient variables as follows: 

Singular Variable Effect Algorithm 
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The objective of Singular Variable Effect (SVE) method is to determine the efficiency of a variable by 

analyzing the effect of the presence of any variable singularly in comparison with its absence in a 

transformed logical dataset. For p variable, we aim to set vector Δ = [δi] where 𝑖𝑖 = 1 … 𝑝𝑝 to rank the 

efficiency of the variables. The preliminary step for the highest efficiency in this method is to initially 

clustering the variables based on the correlation coefficient matrix of original dataset, M, and choose a 

representative variable from each highly correlated cluster and eliminate the other variables from the 

dataset. For instance, for any given dataset, if three variables are highly correlated, only one of them is 

selected randomly and the other two are eliminated from the dataset. The result of this process assures 

that the remaining variables for applying methods and heuristic algorithms are not highly correlated. 

As an outcome of the SVE procedure, if one hopes to reduce the number of variables in the dataset for 

further analysis, could eliminate less efficient identified variables or if aims to concentrate on a reduced 

number of variables, could choose a category of more efficient identified variables as well. Heuristic 

algorithm for SVE method is: 

 for i = 1 to p do 
 Calculate Oi and Zi for variable i observation vector in dataset V 
 Compare T and Oi with Wilcoxon rank sum test 
 Save the test score for variable i as αi 
 Compare T and Oi with Wilcoxon rank sum test 
 Save the test score for variable i as βi 
 Calculate δi = αi - βi 
 end for 
 Return Δ = [δp] as the variable efficiency vector 

Splitting Semi-Greedy Clustering Algorithm 

Splitting Semi-Greedy (SSG) method to select an inefficient variable subset is proposed. A clustering 

procedure through randomly splitting approach to select the best local subset according to a defined 

criterion incorporated. In this method we use block randomization which is designed to randomize 

subjects into equal sample sizes groups. A nonparametric test is used to test a null hypothesis that 

whether two samples are drawn from the same distribution, as compared to a given alternative 

hypothesis. Wilcoxon rank sum test is used in this method. 

The concept of this method is inspired by the semi-greedy heuristic (Feo, T. A., and Resende, M. G., 

1995) (Hart, J. P., and Shogan, A. W., 1987) and tabu search (Gendreau, M., and Potvin, J. Y., 2005). 

Criterion of this search is similar to The Nonparametric Test Score (NTS) method (Sadeghzadeh, K., 

and Fard, N, in press) which is to collect the most inefficient variable subset via Wilcoxon rank sum test 

score. At each of l trials, all p variables from the transformed logical dataset V are randomly clustered 

into subsets of size k variables, where one cluster possibly contains less than k variables and the number 
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of clusters is equal to ⌈𝑝𝑝/𝑘𝑘⌉ . To calculated score summation for each variable over all trials, a 

randomization dataset matrix Ξ = [ξlk] where each row is formed by k variable identification numbers in 

any selected subsets for all l trials. Comprehensive experimental results for validation of the proposed 

methods by comparison with similar methods are presented next. Heuristic algorithm for SSG method 

is:  

 for i = 1 to l do 
 Split the data into equally sized subsets 
 Compose the dataset D for each subset 
 Calculate R over the D for each subset 
 Compare T and R with Wilcoxon rank sum test and save the test score for each 

subset one by one 
 Select a subset with the highest test score 
 Save the test score for variables in the selected subset as ξi(k+1) 
 end for 
 Assume Θ = [θp] as the reverse variable efficiency vector where initially each array 

as the cumulative contribution score corresponding to a variable is zero 
 for i = 1 to l do 
 for j = 1 to k do 
 Add the value of ξi(k+1) to the cumulative contribution score θp of the variable i 

based on its identification number = ξij 
 end for 
 end for 
 Return Θ = [θp] as the variable inefficiency vector 

Weighted Time Score Algorithm 

The Weighted Time Score (WTS) method is a variable clustering technique which selects set of size k 

variables from the transformed logical dataset V and calculates the score of each variable. The first step 

is to determine the observations in a selected subset which all k variables are 1 for that observation and 

eliminate other observation from subset. Cumulative time score over the vector T credit each of variables 

in the subset. Final score of all variables is reached by aggregation of those credits in l trials. 

Randomization algorithm randomly chooses a defined l subset of k from the V, transformed logical 

dataset of p variable. We define a randomization dataset matrix Ψ = [ψlk] where each row is formed by 

k variable identification numbers in any selected subsets for overall l subsets. Heuristic algorithm for 

WTS method is: 

 for i = 1 to l do 
 Compose the dataset Di for variable set i in Ψ including variables ψij where j = 1 

to k 
 Calculate Si over the dataset Di 
 Calculate ∑ti for Si as a time score 
 Save the time score for variables in subset i as ψi(k+1) 
 end for 
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 Assume Ω = [ωp] as the reverse variable efficiency vector where initially each 
array as the cumulative contribution score corresponding to a variable is zero 

 for i = 1 to l do 
 for j = 1 to k do 
 Add the value of ψi(k+1) to the cumulative contribution score ωp of the variable i 

based on its identification number = ψij 
 end for 
 end for 
 Return Ω = [ωp] as the variable inefficiency vector 

The experiment results for these algorithms are followed in Section 4. 

4. RESULTS AND ANALYSIS 

To evaluate the performance of the designed methods, first well-known and publicly available primary 

biliary cirrhosis (PBC) dataset (Fleming and Harrington 1991) is considered as the sample collected 

dataset. These dataset includes 111 uncensored complete observations and 17 explanatory variables in 

addition to event times for each observation. In order to obtain an approximate value of desired number 

of variables in any selected subset, we use principal component analysis (PCA) scree plot criterion 

(Sadeghzadeh, K., and Fard, N, in press) (Sadeghzadeh, K., and Fard, N, 2014). For the original 

uncensored PBC dataset, approximation of this number is 3. 

To verify the performance of the proposed methods, the result of these methods and algorithms for the 

transformed logical uncensored PBC dataset is compared with the results of Nonparametric Test Score 

(NTS) method (Sadeghzadeh, K., and Fard, N, in press), Random Survival Forest (RSF) method 

(Ishwaran, H. et al., 2008) (Ishwaran, I., and Kogalur, U. B., 2007), Additive Risk Model (ADD) (Ma, 

S., Kosorok, M. R., and Fine, J. P., 2006), and Weighted Least Square (LS) method (Huang, J., Ma, S., 

and Xie, H, 2006) for similar dataset variable selection, given in Table 1. A comprehensive comparison 

of NTS, RSF, ADD and LS performance with other relevant methods in high-dimensional time-to-event 

data analysis such as Cox’s Proportional Hazard Model, LASSO and PCR has been presented in (Huang, 

J., Ma, S., and Xie, H, 2006) (Ishwaran, H. et al., 2008) (Ma, S., Kosorok, M. R., and Fine, J. P., 2006). 

Each number in Tables 2 and 3 represents a specific variable in experiment dataset. For example, in 

Table 2, variable #1 is a selected as an inefficient variable by all methods. 

Table 2: Selected inefficient variables in all proposed methods and comparison to NTS, RSF, ADD, and LS 

method results 

Method  Selected Inefficient Variables 
SVE  1, 3, 5, 10, 13, 17 
SSG  1, 3, 5, 10, 15, 17 



PAGE 88| Journal of Corporate Governance, Insurance, and Risk Management | 2014, VOL. 1, NO. 2 

WTS  1, 3, 5, 10, 15, 17 
NTS  1, 3, 5, 6, 10, 15, 17 
RSF  1, 3, 5, 12, 13, 14, 15, 17 
ADD  1, 2, 5, 12, 14 
LS  1, 2, 3, 14, 15, 17 

From the results shown on Tables 2, the SSG and WTS methods have a same performance. More than 

80% of inefficient variables which has been detected by other methods (NTS, RSF, LS and ADD) are 

collected by proposed algorithms at significantly shorter calculation period, where the robustness of this 

class of methods has examined for several sample datasets. 

To show variable inefficiency through three designed methods SVE, SSG, and WTS, graphical 

representation for the experiment results for uncensored PBC dataset is depicted in Figure 2. Each 

variable with larger radius and more distance from the center is less efficient and an ideal candidate to 

remove from dataset if it is desired. 

 

Figure 2: Radar plot of inefficient variables: Normalized inefficiency results from the transformed logical 

uncensored PBC dataset by SVE algorithm (red), SSG algorithm (green), and WTS algorithms (yellow). 

As another validation of the proposed methods, a simulation is designed. We set n = 400 observations 

and p = 15 variables and simulated event times from a pseudorandom algorithm. We also set first five 

variables inefficient, where first two are absolutely inefficient. Some variable vectors are set as a linear 

function of event time data in addition to constant and periodic binary numbers as well as normal and 

exponential distributed pseudorandom numbers as independent values of explanatory variables. The 

results of methods and algorithms applying the simulated data are presented in Table 3. These results 

are compared with the results from NTS method.  From the simulation defined pattern the comparison 

verifies the performance of all proposed methods. 
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Table 3: Selected inefficient variables in all proposed methods and comparison to NTS results and simulation 

defined pattern 

Method  Selected Inefficient Variables (No.) 
SVE  1, 2, 3, 10 
SSG  1, 2, 3 
WTS  1, 2, 3, 5, 12 
NTS  1, 2, 5 

Definition  1, 2, 3, 4, 5 

Inefficiency analysis results for the simulation experiment shows that variables with identification 

number 1, 2 and 3 are detected as inefficient variables by all proposed methods. To reduce the number 

of variables in the dataset for further analysis, these explanatory variables are the best candidates to be 

eliminated from the dataset. 

5. CONCLUSIONS 

The proposed logical model, designed variable selection methods, and heuristic clustering algorithms in 

this paper are beneficial to explanatory variable reduction through an inefficient variable selection 

approach to obtain an appropriate variable subset in high-dimensional and large-scale event history data 

in order to avoid difficulties in decision-making. 

By using such novel methods in the fields of economics, business and management, data analysis and 

decision-making processes will be faster, simpler and more accurate. For example, in business 

applications, many explanatory variables in a customer survey are defined based on cause and effect 

analysis process data or similar analytic process outcome. In most cases, correlations of these 

explanatory variables are complicated and unknown, and it is important to simply understand the 

efficiency of each variable in the survey. These procedures potentially applicable solutions for many 

problems in a vast area of science and technologies are presented. 

Next step in this study is to considering event data and time-to-event models including new types of 

dependent variables through well-known models such as accelerated failure time and applying heuristic 

algorithms especially in the field of artificial intelligence. 
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