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Abstract: This study investigates risk distribution models in the context of auto insurance in emerging markets, 

with a focus on the National Insurance Company (SAA), regional directorate of Setif, Algeria. The research applies 

generalized linear models (GLM) and factor analysis to model the frequency of vehicle accidents and their 

associated risks. A comprehensive approach is employed, beginning with a discussion of the techniques used for 

data collection and preliminary descriptive analysis. Following this, a theoretical framework is established for 

understanding the risk distribution models, highlighting the role of GLM in the modelling of accident frequencies 

within the insurance industry. Different types of factor analysis, including basic coefficient analysis, cross-factor 

analysis, generalized cross-factor analysis, and mixed factor analysis, are examined in relation to their applicability 

to insurance risk modelling. Subsequently, generalized linear models are implemented to derive a robust model 

for accident frequency, utilizing R software for analysis. The results reveal that the pricing system of the National 

Insurance Company is influenced by multiple, non-deterministic factors, which complicate the prediction of 

accident rates and insurance costs. These findings underscore the importance of incorporating various risk factors 

into pricing strategies, rather than relying on deterministic models. The study highlights the necessity of 

considering a broader range of factors in the development of pricing systems, particularly in emerging markets 

where data may be incomplete or subject to considerable variability. Furthermore, the use of Mixed Poisson models 

is suggested as an effective approach for capturing the non-linear relationship between various risk factors and 

accident occurrence. This research contributes to the existing body of knowledge by providing a nuanced 

understanding of the application of GLM and factor analysis in the auto insurance sector, particularly in emerging 

markets. 
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1. Introduction

In recent years, Algeria has seen a sharp rise in the frequency of car accidents: more than 32,200 accidents in

2022, more than 636,697 in 2023, and 12,162 accidents in the first half of 2024, according to the National Road 

Safety Delegation. Tens of thousands of traffic accidents are reported to the appropriate authorities (National 

Gendarmerie, Civil Protection, etc.) each year, requiring a significant investment of time and money. Consequently, 

numerous files are presented to insurance companies seeking reimbursement. Due to the delay in paying out 

compensation, this has a detrimental effect on both the financial performance of these businesses and consumer 

loyalty.  

The insurance business uses the theory of probability to compute losses, which is the basis for determining 

premiums, because it is uncertain to estimate the incidence of traffic accidents due to randomness. The distribution 

of accident rates must be understood in order to develop a deterministic method for pricing auto accidents. Since 

the number of accidents is random, we need to know how accidents are distributed. Any combination of variables 

that follows the Bernoulli distribution leads to the binomial distribution; however, if the number of observations 

is large and the probability of success is small, the binomial distribution will approximate the Poisson distribution 
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as a mathematical expectation. For a single driver, it is a random variable that takes the values 1 if the accident 

occurs and 0 if it does not; we have Bernoulli's law with probability (Denuit et al., 2007). However, a single driver 

can cause multiple accidents, and the insurance company's portfolio contains a large number of insurance policies. 

Hence, the Poisson distribution occupies the main role in modeling independent and counting data because it is 

adapted as a model where there is only randomness and within a homogeneous population. However, these two 

conditions are not always met in the case of modeling insurance-related data (Veysseyre, 2007). Therefore, we 

resort to Mixed Poisson models (negative binomial) to describe populations consisting of an infinite number of 

homogeneous subpopulations. In this research, we are trying to answer the following question: How is the 

frequency of vehicle accidents distributed in Algeria? 

This leads us to test the following hypothesis: The frequency of vehicle accidents in Algeria follows a negative 

binomial law. 

For this end, we began with a literature review, and then we should focus on a theoretical examination of risk 

distribution models. Additionally, we used generalized linear models and factor analysis to model the number of 

accidents. Before delving into the specifics of the generalized linear models for the study data, we provided a 

theoretical analysis of the last two concepts by outlining the various types of factor analysis, including basic 

coefficient analysis, cross factor analysis, generalized cross factor analysis, and mixed factor analysis. 

 

2. Literature Review 

 

As Lemaire (1985) remarked, of all types of non-life insurance, automobile third party undoubtedly gives rise 

to the most heated debate. This type of study has been a source of interest to many scholars, who have investigated 

some of the elements mentioned in this study, including: 

In the first study, Ghali (2002) examined a marginal pricing model for auto insurance in a regulated market. The 

study's aim was to use the marginal model to analyze the Tunisian auto insurance pricing system; to do this, the 

researcher employed a pricing model based on before and after characteristics. The study was carried out at the 

level of a significant private Tunisian company that held 7% of the country's auto insurance market between 1990 

and 1995. The study's sample consisted of 46,337 observations that were distributed annually during the same time 

period. From this sample and using counting models (Poisson and negative binomial), the importance of factors 

explaining vehicle accidents was estimated from the annual data, as well as the formation of marginal bonus and 

penalty tables (bonus-malus). 

The findings were that the Tunisian pricing system and the reward and penalty system are not marginal, as 

evidenced by the presence of other variables in addition to puissance and usage that are significant and explain the 

number of accidents. 

A study on pricing and segmentation in auto insurance was carried out on the French insurance company Mutant 

d'Assurance by Guillaume (2010). The study examined the company's operations in 2008 by examining all auto 

insurance policies with at least one day of guarantee during that year, as well as the losses that were reported 

during that same year. The following models were used in this study to develop models for the number of accidents 

and the amount of losses independently using generalized linear models (GLMs) after the data had been processed 

and corrected using factor analysis: Poisson, quasi-Poisson and gamma. The results obtained through this study 

are as follows: Building a pricing model for auto insurance based on generalized linear models and presenting a 

methodology for segmentation analysis in auto insurance pricing.  

The third study examined the factors that influence the frequency of losses in auto insurance and was conducted 

by Vasechko et al. (2009). This study was conducted on a sample of 50,000 observations in a French insurance 

company; the data of this sample are 4-wheel tourist cars during the year 2005. Typically, counting models 

(Poisson and negative binomial models) are used to model accident frequency in this study, which aims to identify 

the factors that explain the number of liability accidents reported by the insured to the insurer. However, a 

significant portion of the insureds in the insurance portfolio may have no recorded losses during the insurance 

period (year); this zero value may indicate either no loss or no declaration. In order to capture the importance of 

these null values as well as the heterogeneity in the study population, zero-inflated Poisson (ZIP) and zero-inflated 

Poisson (ZIP) models that follow a non-binomial distribution (ZINB) were used. Variables explaining the 

frequency of losses are the same as in classical counting models, except that the choice of contract suggests an 

adverse selection effect. Findings are organized as follows: Results related to the Poisson model and the negative 

binomial model; results related to the ZIP and ZINB models; and then the comparison between the models. 

Regarding the Poisson model and the negative binomial model, the study demonstrated that both models 

generated the same significant variables with comparable outcomes. The relationship between these variables was 

as follows: the type of driver, i.e., whether the insured is the same driver or not; the damage guarantee on the car 

in the three cases (with an important exemption, medium exemption, and weak exemption); the age of the car; the 

age of the license; and the bonus and penalty factor. While the other elements reduce the likelihood of recurring 

losses, the age of the vehicle and the reward and penalty factors increase it. However, because of the over 

dispersion in the data, the negative binomial model is a better fit for the data than the Poisson model. 
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Since it has already been stated how important it is for insureds to have no allowed losses (i.e., zero documented 

losses), the aforementioned models (ZIP and ZINB) were used, and the following outcomes were obtained:  

The first part, which deals with the frequency of losses, yields the same results as the classical counting models. 

The second part, which deals with data that has been inflated with zero values, shows that the probability of loss 

decreases according to the bonus and penalty coefficient and increases with the age of the car, the driver's license, 

and the damage guarantee on the car with an average exemption. To compare all these models, the Vuong test was 

used, and the result obtained was that a ZIP model is favored over the standard Poisson model, and a ZINB model 

is favored over a negative binomial model. Finally, ZINB is recommended as the final model.  

In the following study, Lai (2011) examined the development of a model to assess the risk of traffic accidents 

in urban areas using the Structural Equation Model. Because there are many variables influencing the occurrence 

of accidents, the researcher restricted them to three dimensions: driver characteristics, vehicle characteristics, and 

road characteristics. As a result, the study variables were determined to be as follows: The dependent variable: 

The risk of road traffic accidents, including both the risk realization rate, i.e., the number of accidents in relation 

to the number of vehicles, and the severity of the risk in relation to the number of deaths and injuries. 

The explanatory variables, in turn, include driver characteristics (gender, age, license, and blood alcohol 

content); vehicle characteristics (vehicle type and traffic volume); and road characteristics (road width, road 

straightness, etc.). 

The applied study was conducted in Taiwan Province (People’s Republic of China) with a coverage of 26 roads 

divided into 249 segments according to road characteristics; the data on accidents were obtained from the police 

office, and the study period lasted from 1 January to 31 December 2003. 

He drew the following conclusions: Both the driver and road dimensions have the greatest impact on the 

realization of risk, while the car dimension is not statistically significant, and concluded that the most influential 

cause of accidents always remains human. 

Locating the current study within previous studies: It is clear from the presentation of earlier research that a 

Poisson model and a negative binomial are required to model the number of vehicle accidents. Nevertheless, the 

data shows that there are many insured individuals with zero accidents, which may be due to the insured failing to 

report the accident or to other factors. To account for this situation, the author employed ZIP and ZINB models. 

Therefore, this study differs from previous studies in several points that we summarize: 

In terms of work environment: Previous studies were conducted in foreign countries such as France, Taiwan, 

and Arab countries (Tunisia). The current study is concerned with the case of Algeria, considered as an emerging 

market. 

In terms of objectives, the current study uses factor analysis to process and rectify the data in order to estimate 

the number of car accidents that occurred in the 2023/2024 period. It then uses generalized linear models to develop 

ZIP and ZINB models for the number of losses. The models listed above. 

 

2.1 Mixed Poisson Regression Models 

 

The end of the 1970s saw the introduction of this kind of model into modern economic analysis, where the 

dependent variable is valid and non-negative in order to account for its quirks. Numerous studies have been 

conducted in this area, such as those by Hausman et al. (1984) on the number of races in a specific time period; 

Cameron & Trivedi (1986) on the number of doctor examinations; Dionne & Vanasse (1989) on the number of 

accidents; and Winkelmann (1995) on the frequency of job changes. 

In general, a Poisson regression model can be defined as a model that relates a discrete dependent variable, 

which takes positive and valid values, to one or more explanatory variables. In order to use this model, the 

following conditions must be met: 

- The instantaneous probability of loss is proportional to the length of the period under consideration. 

- The instantaneous probability of an event occurring is constant over the period under consideration (i.e., the 

risk is constant in time). 

- The probability of more than one event occurring is low. 

- Accidents are independent of each other. 

These conditions are consistent with the Poisson distribution, which is characterized as the law of instantaneous 

and independent accidents; if the probability of an individual being involved in an accident during a given period 

is equal to (Partrat & Besson, 2005): 
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The Poisson parameter we are trying to estimate, which expresses both the mean and variance of the distribution. 

If the Poisson distribution follows any N↝P(λ), then the properties of the Poisson distribution can be summarized 
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as follows (as a Moment generating function): 
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Moments: From μ[k] = λk we conclude that: 
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The equality between the mean and variance, which we express as equi-dispersion, is the most important 

characteristic of the Poisson distribution. 

Additivity: Given two independent random variables N1 and N2, where: N1↝P(λ1) and N2↝P(λ2) then: 

 

1 2N N+ ↝ 1 2P( ) +  

 

Approximation towards the normal law N(λ, λ) with continuity correction: 
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Criteria Used: λ>18 

Decomposition: If the loss is divided into r independent categories (exhaustive), e.g., r is warranty, then if the 

total frequency N of losses follows Poisson's law P(λ), and if the frequency for each i (where i = 1…, r). We have 

a probability that the loss is from the category of i, and Ni is the frequency of loss corresponding to that category. 

Random variables are independent variables distributed according to Poisson's laws P(λπ1), P(λπ2), ..., P(λπr).  

Statistical inference: If (n1, n1, ……, n1) represents the sample observations (N) of the random variable, both 

the moments method and the maximum likelihood method lead to the same estimator for λ, which is λ̂ =  𝑛̅, t is 

evident from the foregoing that the conventional linear regression model is ineffective for two reasons when 

representing the relationship between a discrete dependent variable and explanatory variables: First of all, the 

shape of the cloud of observations does not fit the linear form. Second, the Poisson distribution is consistent with 

these two assumptions, suggesting that the normality hypothesis may not be negative. However, because of the 

high number of missing values and the existence of some extreme values, the hypothesis of equality between 

mathematical expectation and variance, which implies the homogeneity of the portfolio with regard to risk, is 

severely constrained (de Jong & Heller, 2008). Here, the variance exceeds the mean; we discuss a concept known 

as overdispersion of the variable N. This scenario necessitates a partial standard deviation estimation, which could 

lead to the null hypothesis regarding the estimator vector's dependability β in the model being rejected. By adding 

a new parameter that might represent the unobserved heterogeneity of the implicit variables that may contribute to 

this over-dispersion, the objective is to employ a different model that accounts for this over-dispersion. Mixed 

Poisson models are the models that address this problem. 

 

2.1.1 Mixed Poisson models 

Since each driver or group of drivers has unique characteristics that influence the likelihood of traffic accidents, 

the society we are studying (the population of insured drivers) is heterogeneous. For this reason, we use Mixed 

Poisson models to examine the distribution of losses (Lee et al., 2018). 

Definition of the Mixed Poisson model: The Poisson distribution often shows an inadequate fit to the 

observations of the underwriter's portfolio due to heterogeneity among underwriters; here we multiply the average 

loss frequency λ by a positive random variable Θ, so the average loss realization becomes a random variable 

dependent on Θ. We choose Θ, so E(Θ)=1 because we want to approximate the same frequency of occurrences in 

the portfolio under our condition Θ, we have: 
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where, p(λ) is the Poisson probability function with mean λ. This approach means that not all underwriters 

necessarily have the same accident frequency, but some have a high average (λ where 1) and some have a low 

average (λ where 1). 

The probability of vehicle accidents, as mentioned earlier, mostly follows Poisson’s mixed law, so the 

probability of registering a K number of losses with the insurance company as a result of these accidents has the 

same formula (2) with Θ expectation. In the general case, the Θ variable is random, neither continuous nor discrete, 

but a combination of both, so the probability distribution is as follows: 
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wherein FΘ the distribution function of the variable Θ. 

Hence, we say that the random variable N follows a Poisson distribution mixed with a parameter λ and level of 

risk equal to Θ, with a probability function of the formula (3), which we denote by N↝MPoi(λ, Θ). 

Become in this case: 
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Rewarding 𝑀𝛩(𝑡) = 𝜑𝑁 (1 +
𝑡

𝜆
), so we obtain mathematical expectation for Mixed Poisson distribution as 

follows: 
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And a variance 
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Note that the variance in this case is larger than in the Poisson distribution, which is justified by the 

overdispersion: 
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2.1.2 Poisson Inverse Gaussian distribution 

Here we complete formulas (2) and (3) as Θ↝Igau(1, τ) becomes 
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And a probability function 
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Poisson Inverse Gaussian distribution characteristics: 

Mathematical expectation 
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Variance 
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The generating function for moments of N is given by the relation: 
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2.1.3 Poisson log normal distribution 

When ↝logN(-σ2/2, σ2), taking μ = -σ2/2 (as E(Θ)=1), the probability density function of Θ is 
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However, the probability function for the Poisson log normal mixed distribution is given by the following 

formula: 
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Using relations (5) and (6), we can deduce the mathematical expectation and variance as follows: 
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2.1.4 The binomial negative model 

The Poisson distribution has been used to express the distribution of accidents for a set of individuals that  is 

implicitly assumed to contain all the information to express the probability of an accident occurring, but this 

property is too restrictive to study this type of model. We first consider the case where  do not have all the 

information about the individuals. 

 

A. Count models without individual features 

Assuming that  does not contain all the information and for each individual the number of accidents follows a 

Poisson law, it is convenient to assume that  follows  distribution of two parameters a and , in the case of the 

distribution of the number of losses in auto insurance. 

So,  distribution is f(), such as 𝑓(𝜆) =
𝜏𝑎𝑒−𝜏𝜆𝜆𝑎−1

𝛤(𝑎)
, with a mean = 

𝑎

𝜏
 and a variance = 

𝑎

𝜏2. (a) is a Gamma 

function of a. 

The probability of a randomly selected individual achieving an accident is defined as: 
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With an average = 
𝑎

𝜏
, and a variance = 

𝑎

𝜏
(1 +

1

𝜏
).  

Therefore, we say that the negative binomial law follows with two parameters (𝑎,
𝑎

𝜏
), and we write: 

 

X↝BinN ,
a

a


 
 
 

 

 

The most important use of this type of distribution in general insurance is in the distribution of the number of 

losses where the risks are heterogeneous and the variance is greater than the mathematical expectation. 

 

B. Count models with individual characteristics and their application 

We assume that a variable Ni represents the number of incidents for a person i that occur during a given period. 

If Ni is independent of Ni for all ≠i, then the set of such variables follows a parameterized Poisson's law i. 

In the counting models with individual characteristics, the practical formula that relates the parameter i to the 

individual variables is as follows: i=exp(Xiβ), where β is the vector of the parameters we are estimating that i 

represents the mean and variance. 

Using the exponent allows us to obtain a non-negative mean and variance that cancels out the linear regression 

models. Also, the probability of an individual i having Ki accident during a given period is given as follows: 
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The maximum plausibility function is given by 
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Since the logarithmic function is monotonic, this allows for a simple maximization of the logarithm of the 

maximum likelihood function rather than the function itself, and since the logarithm of the maximum likelihood 

function is not linear in β, solving the sentence requires the use of an iterative algorithm such as Newton Raphson 

methods. 
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where, g(.) represents that gradient is the logarithm of the plausibility function, βt is the arbitrary initial value, and 

iteration process terminates when the convergence condition is met (LIMDEP allows us to easily calculate a β 

value). 

However, the previous formulation suffers from at least two drawbacks: the model is built on the assumption of 

the independence of successive events with the assumption that the mean and variance of Ni are equal, and the 

second drawback is that the variables Xi express all the probabilities of the events. These two assumptions are not 

always fulfilled in real-life traffic accidents. 

Therefore, to address these issues, we assume that the characteristic vector Xi is not sufficient to capture all the 

differences between individuals, and we assume that there are other unobserved variables that can be represented 

by an additional random variable εi of the following form: 
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where, εi is a random variable that represents the various identification errors in i due to the presence of 

uncontrollable influencing factors that cannot be controlled and therefore cannot be included in the model. 

The marginal probability of an individual being involved in ki accident is: 
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where, h(εi) is the probability density function of εi, which is the general formula for the Poisson composite 

distribution. 

Our special formula is written as: 
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Assuming that μi=exp(εi) follows the Gamma distribution with a probability density function 
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with a mean equals to 1 (The mean εi assumed to be equal to 0), and variance = 1/a. 

 

Therefore, mean i is given by exp(Xiβ), and its variance is given by  
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which is the formula for a negative binomial distribution with parameters a and i=exp(Xiβ), its mean and variance 

are respectively: 

 

( ) ( )

( ) ( ) ( ) ( )

exp

1

i i

i i i i

E N X

V N E E V



  

=

 = + 

 (8) 

 

Its variation is an increasing and convex transformation of the mean. 

When analyzing the data collected on the insured, we find that a large number of them do not make any losses 

during the year, but the lack of losses may be actual, or it may be the result of not declaring the accident, i.e., a 

latent variable. These cases are handled using ZIP and ZINB models. 

 

2.1.5 ZIP and ZINB models 

Cragg (1971) developed various models to take into account the implicit variable mentioned above. In general, 

an event (e.g., buying an item, recognizing a loss...) may or may not occur. If the event does not materialize, this 

implicit variable takes a value of zero and is assumed to be an independent variable that takes positive values. The 

decision path is represented by the probit model, and the second event (number of incidents) is represented by the 

model defined in each case, so insureds with zero number of recorded losses (N=0) can be categorized into two 

categories: 

A first category, none of which actually caused a loss. 

Another group did not declare the accident because of its severity and to avoid the application of the penalty 

factor or to avoid the procedures for registering the accident. 

This distinction is important for the insurer, as it can be conjectured that not declaring an accident for which the 

insured is responsible indicates that the risk is small, as the latter does not take the measures to declare it in order 

to preserve certain privileges, some of which we have already mentioned, but this does not mean that the insured 

has become a risk to the insurer. 

The Poisson and negative binomial models do not allow us to distinguish between these two categories; however, 

the ZIP and ZINB models generate two separate models to be linked, which were developed by Greene (1994) and 

Lambert (1992) and assume only that zero and strictly positive values are generated by the same process. 

Compared to the aforementioned Poisson and negative binomial models, here we assume that the random 

variable is the product of a binary law and Poisson's law (in the case of ZIP), or a negative binomial law (in the 

case of ZINB). 
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*N BN=  (9) 

 

The unobserved random variable is modeled by logistic regression in order to estimate the probability of being 

ki = 0, i.e., specify the recorded incidents as zero for the insured i, bi = 0, if the insured did not declare the accident 

and bi = 1 in the reverse case. The random variable N* follows a Poisson model (or negative binomial model) and 

is used to predict the value N for insureds who authorize the loss (bi = 1). This equation estimates ki expectation. 

The models ZIP and ZINB have two parts, one part related to the counting model (for N* which takes into 

account the number of losses in case the insured declares them) and another part related to the zero-amplification 

(why probit?) that explains the non-declaration. 

More precisely, in the ZIP model, if we denote qi the probability bi = 0 (i.e., non-declaration) and i, the Poisson's 

law parameter of the frequency of dependent losses as mentioned earlier to the explanatory variables (8), then the 

probability density of the variable is written as follows 

 

( 0 / ) (1 ) i

i i iP N X q q e
−

= = + −  (10) 

 

wherein 𝑞𝑖 =
exp(𝑋𝑖

′𝛽)

1+exp(𝑋𝑖
′𝛽)

 and Xi, the matrix that describes the individual’s characteristics. β, the vector of the 

coefficients for which an estimate is required, for non-zero ki: 

 

( / ) (1 )
!

i

i

k

i
i i i

i

P N k X q e
k

 −
= = −  (11) 

 

The conditional probability of the number of losses bi = 1 is equal to the unconditional probability of the 

unobserved or unobserved variable 𝑘𝑖
∗. 

In the ZINB model, probability is given as 

 

 ( ) ( )
( )

( ) ( )
( / ) 1 min ,1 1

1 .

ik

i i
i i i i i

i i i

k
P N k X q k q

k


 

    

 +    
= = − + −    

 +  + +   

 (12) 

 

3. Methodology 

 

3.1. Data Collection and Descriptive Analysis 

 

The study population, which includes all auto insurance policies with yearly underwriting periods at agencies 

and insurance intermediaries connected to the Algerian Insurance Company’s (SAA) regional directorate in Setif 

in 2023, as well as the losses reported during that time, must be defined before discussing the data collection 

method. 

The process was carried out manually, and the data was only a sample of 520 units (insurance policies) 

underwritten in 2023; it was not exhaustive because it is not feasible. However, it was observed that: 

- The process was done manually because there is no technology available to obtain the combined data digitally. 

- The variable ageP, i.e., the age of the driver's license, is not expressed by the first date of issuance, but by the 

year of its renewal, and was therefore excluded from the study. 

- The variable val-V, i.e., the price of the insured vehicle, is only known in the case of the theft and fire or 

comprehensive warranty and was also excluded from the study. 

The study variables were defined as shown in the Table 1. 

 

3.2. Modelling the Number of Accidents in Auto Insurance 

 

3.2.1 Generalized linear model 

In simple linear models, the dependent variable is expressed by a single explanatory variable, X. Whereas, in 

multiple models it is expressed by several explanatory variables Xi; in classical linear models, instead of expressing 

the dependent variable Y, it is expressed by its mathematical expectation E(Y/X), whereas in generalized linear 

models (GLM) it is expressed by a cupulas, in order to interpret, we create a cupula between X and Y as we will 

detail below. 

In 1972, Nelder & Wedderburn (1972) presented generalized linear models, which, like previous models, seek 

to determine the relationship between the explanatory and dependent variables (Compain, 2010). The diagram that 

follows provides a summary of how to design a generalized linear model (Nelder & Wedderburn, 1972). 

Table 2 shows that choosing a y law from the exponential family is the first step in creating a generalized linear 
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model. 

The following functions: a(), b(), c(), are determined by first independently estimating the dispersion parameter, 

which we later deem constant, in order to apply the generalized linear model as a general rule of thumb. Then 

choose the cupula. The parameters (β1, …, βp) must then be estimated, in order to stabilize η(X) and thus determine 

μ = g-1(η(X)) considered as a mean (expectation) of the model, which is finally stabilized  which can be defined 

by  = (b’)-1(μ), which also allows for the calculation of the variance function V(μ), y variance. The aim of using 

cupula is to make the error variance more stable, and the simplest choice of cupula that simplifies calculations is 

choosing g that achieves g = (b’)-1. 

 

Table 1. Econometric study variables 
 

Type Variable Type Code Explanation 

Driver 

Driver is the 

insured 

type1 Takes the value 1 if the insured is the same as the driver, and 0 if not 

type2 
Takes the value 1 if the insured is not the same as the driver, and 0 if 

they are 

Driver’s age ageC Driver’s age is a variable that takes on normalized values 

Driver’s gendre 
M Takes the value 1 if the driver is male, and 0 if not 

F Takes the value 1 if the driver is female, and 0 if not 

Vehicle 

Usage 

Affaire 
Takes a value of 1 if the use of the vehicle is business specific and 0 

if it is not 

Fonctionnaire 
Takes a value of 1 if the use of the vehicle is functional and 0 if it is 

not 

Commerce 
Takes a value of 1 if the use of the vehicle is commercial and 0 if it is 

not 

auto-ecol, tax 
Takes a value of 1 if the use of the vehicle is for driving instruction 

or a taxi and 0 if not 

TPM 
Takes a value of 1 if the vehicle is used to transport goods and 0 if it 

is not 

TPV 
Takes a value of 1 if the vehicle is used for passenger transport and 0 

if it is not 

V. spécieux 
Takes a value of 1 if the use of the vehicle is private use and 0 if it is 

not 

Vehicle’s age ageV 
Vehicle age is a variable that takes normalized values (equal to 0 if 

the current year is the year of first use) 

Power Puissance Vehicle power 

Guarantees Guarantees types 

Garan1 
Takes a value of 1 if the selected Guarantee is Garan1 and 0 if it is 

not 

Garan2 
Takes a value of 1 if the selected Guarantee is Garan2 and 0 if it is 

not 

Garan3 
Takes a value of 1 if the selected Guarantee is Garan2 and 0 if it is 

not 

Sinistre 

Number of 

accidents 
Nb It takes normal values 

Amount of losses Sinistre A real positive variable 

Bonus-malus 

coefficient 
b-m It varies into 0.65 and 2 

Source: Author’s elaboration based on company’s information 

 

Table 2. GLM diagram 
 

Stochastic Compound 

Explanation 
Link Regular Interpretive Compound 

y follows an exponential law 

Its probability density function is 

given by 

( )
( )( )

( )
( ), exp ,

y b
f y c y

a
 

 




 − 
= + 

  

 

So, we have 

( ) ( )'E Y b = =  

( ) ( ) ( ) ( ) ( )''V Y b a V a   = =  

y expectation is symbolized by  linked to 

η(X) by a cupula symbolized g(.), a 

monotonous and differentiable function, so 

it should be reversible g() = η(X) 

a canonic cupula is a special function that 

satisfies 

( ) ( )1g X   −=  =  

Let x = (x1, …, xp) be the number 

of Explained Variables 

observations, we define the linear 

expectation attached to the 

observation as ( )
1

p

i i

i

x x 
=

=  

Parameters (β1, …, βp) to be 

estimated are equivalent to  

Source: Guillaume (2010) 
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The parameters of the generalized linear model are estimated using maximum likelihood. After determining the 

density function 𝑓𝜃,𝜙, the logarithm of the likelihood can be written for the observations i by assuming that all 

observations have the same weight. 

 

( ) ( )
( )( )

( ),, , ln ,
i

i i i

Y b
l l Y f c Y 

 
  



−
= = = +  (13) 

 

To find an estimate of 𝜃̂ and 𝜙̂, the logarithm of plausibility must be maximized; to do this we use iterative 

methods of maximization; we know that the estimator by maximum plausibility follows a normal asymptotic 

distribution and write: 

 

( ) ( )( )
1

0, Tn N X WX  
−

−     

 

where, 

 

( )1, , nW diag W W=  

 

and 

 

( )

2

1 i
i

i i

W
V



 

 
=  

 

 

 

So, we estimate W from 𝛽̂ then we write W*= W(𝛽̂), after that, we deduce: 

 

( ) ( )20,
i

i in N

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where, 
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From this formula, we determine 𝑞1−
𝛼

2
 the degree quantile (1 −

𝛼

2
)  of the natural law, and hence the 

confidence interval with (1-α) degree, for component number i of β is: 
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The confidence interval for ηi and μi are given as follows: 
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With 

 

i = 𝑋𝑖(𝑋𝑇𝑊∗𝑋)−1𝑋𝑖
𝑇

 
(18) 
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3.2.2 Generalized linear model fit and likelihood testing 

In linear regression, we perform model fit tests from the sum of the residuals, while in generalized linear models 

we theoretically focus on Pearson and plausibility tests. To do this, we define the so-called model deviation as 

well as the Pearson statistic. 

Estimating β with 𝛽̂ using plausibility function allows us to obtain a maximization of plausibility for each 

observation, either by inference 𝛽̂ or by implication 𝜇𝑖̂: 

 

( ) ( ), ,i il Y Y b cte     = − +  (19) 

 

( ) ( ) ( ) ( ) ( )( )1 1
, , ' 'i i i il Y Y b b b cte    

− −
 = − +  (20) 

 

If the model is good, the expectation 𝜇𝑖̂ of the model corresponds to Yi (where is the average Yi under the 

hypothesis of multiple observations such as X = Xi). For a saturated model, we can calculate the logarithm of 

maximum likelihood as follows: 

 

( ) ( ) ( ) ( ) ( )( )1 1
' 'sature i i i il Y Y b Y b b Y cte
− −

 = − +  (21) 

 

We define the model deviation, which measures the deviation between the plausibility of the model compared 

to the corresponding saturated model. 

 

( ) ( )( )
1

2 , , 0
n

sature i i

i

D l Y l Y  
=

= −   (22) 

 

We define standard deviation D* as D* = D/ϕ, and we say that the model is more favorable when the deviation 

is close to zero, we use this result to test the reliability of the model, presented as a null hypothesis H0: A model 

with p significant explanatory variables.  

However, in practice, according to the hypothesis H0, asymptotically D* follows the Chi-squared law with a n-

p degree of freedom. We say that a model is significant at  risk if the value D*is less than or equal to the tabular 

value of the Chi-squared law at 𝜒𝑛−𝑝
2 (1 − 𝛼). 

However, this test is not effective in the case of binary variables that do not follow a Chi-squared distribution, 

in which case we resort to the Hosmer-Lemershow test, which is based on dividing 𝜇𝑖̂ the rank ascending into 

categories g (often). The statistic used approximates the Chi-squared law with a degree of freedom g: 
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*
1 1
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g

i k ki

k k k k

y m
C

m



 

=

=
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=

−


  (23) 

With 𝑚𝑘
∗ (𝑐𝑘) the number of heterogeneous observations in the class k, and 𝜇𝑘̅̅ ̅ = ∑

𝑚𝑖

𝑚𝑘
∗ 𝜇𝑖̂

𝑐𝑘

𝑖=1
, where mi is the 

number of observations in the class k. 

We also know the Pearson statistic and it is often called the generalized Pearson's Chi-squared: 
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2
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1 var
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ii

i
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y




=

+
=

 
(24) 

 

If the distribution is normal and the link function is the same (identic), this statistic corresponds to the sum of 

squares of residuals (SCR).  

To compare two models, we calculate the difference between their deviation D = D2 - D1, which follows a Chi-

squared distribution with a degree of freedom p1 - p2 where p1 and p2 are the number of features in the first and 

second models, respectively. 

There are also two other criteria for differentiating between models, AIC and BIC: The idea behind these two 

criteria is that the greater the plausibility of the model, the greater the logarithm of plausibility, which makes the 

model better. The relationships are given as follows: 
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( )

2 2

2 log

AIC p

BIC p n

= − +

= − +
 (25) 

 

where, p is the number of estimated parameters, and n is the number of observations. 

 

3.2.3 AFDM mixed analysis 

The variables in this study are a combination of quantitative and qualitative variables, and we use what is known 

as AFDM (Pagès, 2004). 

 

 
 

Figure 1. AFDM table 
Source: Author’s elaboration using R software 

 

Therefore, we are now going to highlight a factor analysis of the mixed data using all the variables. Since the 

full study is quite large, we will not review all the results, but only focus on the most significant and important 

ones. Furthermore, we will not go into the details of results similar to those obtained in the multivariate component 

analysis example. We will begin by performing an AFDM on a table containing all the affected individuals, defined 

by all the explanatory variables. We will refer to the table in question as TabAFDM and list the names of the 

variables used below. 

> names(TabAFDM) 

[1] "Agec"      "B.M"       "ageV"      "puissance" "Nb"        "sinistre"  

[7] "Type"      "sexe"      "garantie"  "usage" 

 

The first six variables are quantitative variables, while the next four are qualitative variables.  

Therefore, the output of the statistical program R will be through the following commands. 

From the Figure 1, we can deduce several pieces of information. Firstly, we notice that the variables usage and 

garantie are correlated, so to improve the factor analysis and reduce noise, it is necessary to keep one of them, 

usage, as the dependent variable. 

Next, to further express the variables, we categorize quantitative variables into qualitative variables (categories), 

which facilitates joint analyses. We rely on Charpentier (2013) and Ghali (2002) for our categorization. 

The R outputs are as shown in Figure 2. 

We may infer a great deal of information from the graph. First, we observe that the variables b-m, ageV, and 

usage are correlated. Because the agencies of the same organization are independent of one another, b-m can be 

removed from the study because it frequently fails to capture the true value of the reward and penalty coefficient, 

that is, it lacks memory. While usage clearly affects the number of losses, we keep the variable ageV since it has 

a higher effect on the amount of losses; the younger the automobile, the more guarantees and compensation. 

The final representation of the factor analysis is as above, showing the independence between the variables. 
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Figure 2. Categorizing quantitative variables into qualitative variables 
Source: Author’s elaboration using R software 

 

4. Results and Discussion 

 

The number of losses model in this article is the Poisson model because both the ZIP and ZINB models were 

not effective under the collected data. After entering the data and using the commands in the R program, an error 

showed up, and the commands used were as follows. 

For the ZIP model, as shown in Figure 3. 

 

 
 

Figure 3. The number of losses model for ZIP model 
Source: Author’s elaboration using R software 

 

First section (Count model coefficients): The relationship between the variables and the number of non-zero 

accidents: 

Usage auto-ecol, tax has a strong positive effect, meaning that using vehicles for commercial purposes increases 

the expected number of accidents. 

SexeM indicates that men have a higher probability of the number of accidents compared to women. 

Second section (zero-inflation model coefficients): Variables that affect the probability of zero-inflation: 

B.M = -5.24778 shows a significant effect in reducing the likelihood of inflating the zero values, which means 

that this category explains most of the non-zero values. Agec and PageV have a relatively weak effect. 
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With AIC value = 738.2736. 

For the ZINB model, as shown in Figure 4. 

 

> zeroinfl(Nb~Agec + ageV + B.M + usage + puissance + Type + sexe , data = data1, na.action=na.omit, dist = 

"poisson") 

 

 
 

Figure 4. The number of losses model for ZINB model 
Source: Author’s elaboration using R software 

 

With AIC value = 740.2736. 

For the negative binomial model, the outputs are as following Figure 5. 

 

 
 

Figure 5. The number of losses using negative binomial model 
Source: Author’s elaboration using R software 

 

To select only the variables that are most representative of the model, using the ‘step’ function as following 

Figure 6. 

 

 
 

Figure 6. Representative variables of the model 
Source: Author’s elaboration using R software 
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To test the fit of the model and the explanatory variables, we used the function ‘drop1’ as following Figure 7. 

 

 
 

Figure 7. Fit test of the explanatory variables 
Source: Author’s elaboration using R software 

 

The test shows that each of the variables B.M., sexe, the variables of the model, are significant at the 0.1% risk 

degree. 

We summarize the Poisson model as following Figure 8. 

Created using the command in R: 

 

 
 

Figure 8. Poisson model 
Source: Author’s elaboration using R software 

 

To select the most representative variables, we use the ‘step’ function as following Figure 9. 

 

 
 

Figure 9. Representative variables selection 
Source: Author’s elaboration using R software 
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To test the fit of the model and the explanatory variables, we used the function ‘drop1’ as following Figure 10. 

 

 
 

Figure 10. Fit testing of the explanatory variables 
Source: Author’s elaboration using R software 

 

In Figure 11, the test shows that each of the variables in the model is significant with a probability of error.  

Compare the two models. 

 

 
 

Figure 11. Anova test 
Source: Author’s elaboration using R software 

 

As can be shown, the probability value (Pr(Chi)) is not less than 0.05 because it does not appear. We get to the 

conclusion that there is little statistical support for the idea that the more intricate model (Model 2) offers a 

noticeably better match than the more straightforward model (Model 1). We can choose the Poisson model as a 

marginal model by comparing the AIC criterion for all models, which takes the values of 735 in the Poisson model, 

734.3 in the negative binomial model, 740.2736 in the ZINB model, and 738.2736 in the ZIP model. 

 

( )      

   

   

log 2.075939 0.000423 ageC 0.020861 ageV 0.853752 B.M         

               0.84184 usage. auto-ecol, taxi 0.012544 usage. commerce  

               0.749382 usage. TPV 0.545594 usage. V.sp?cieux 

        

 = − − − +

+ +

+ +

            0.003964 puissance  +0.260767 Type.type2 +0.790881 sexe.sexeM+

 

 

where,  represents the average number of accidents  = E(N). 

Explanation: For the variable AgeC, each one-year change in the age of the driver leads to an inverse change in 

the logarithm of the number of accidents with a value of 0.000423. Also, if the driver is male, this increases the 

value of the logarithm of the expected number of accidents by 0.790881. 

Let us assume, for example, that the values for the independent variables are as follows in Table 3. 

 

Table 3. An illustration of an application model 

 
Variable Value 

Agec 30 

ageV 5 

B.M 1 

Usage “fonctionnaire” 

puissance 7 

Type “type1” 

sexe “M” 
Source: Author’s elaboration 
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( )log 2.075939 0.000423 30 0.020861 5 0.853752 1

              0.189162 1 0.003964 7 +0.790881 1

          0.331391

 = − −  −  + 

+  +  

= −

 

 

The expected value of (number of incidents or cases) based on the input values is about 0.718. 

 

5. Conclusions 

 

This work highlights the need for a rigorous statistical technique, particularly GLM, in simulating auto accidents. 

This methodology can help insurance companies improve their risk management and underwriting processes. The 

results of this study can serve as a basis for more research and the development of policies aimed at reducing the 

number of traffic accidents in Algeria.  

This study shows that the company's pricing mechanism is non-deterministic since other factors affect the price 

process. Based on the findings, the general model that was recommended as being most suitable for the business 

under study (SAA) is the Poisson model as a marginal model. 
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