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Abstract: Preventive conservation is conductive to the long-term preservation of works of art. In order to realize 

the avoidance of damages in advance, risk management as well as foresighted thinking is required. The application 

of the method of engineering mechanics for preventive conservation is at the very beginning of its development. 

This article is a contribution to this still very young field. Generally, sensitive artworks combine all properties of 

complex mechanical structures. Oil paintings on canvas, for instance, are asymmetric, multiple curvilinear 

structures made of aged anisotropic compound materials with cracks and other damages. Due to their popularity, 

some artworks travel a lot, and during the exhibition and storage, they are always exposed to shocks and vibrations, 

therefore the protection of sensitive paintings is a demanding task, the solution of which requires the 

multidisciplinary cooperation especially in the context of engineering mechanics with its many specializations. 

The subject of the presented research is an artificial aged painting dummy in the simplest conceivable composition. 

This paper aims to describe the mechanical behavior of this test object, which is the basic requirement for the 

development of technological protective measures. The concept of the digital twin, known from Industry 4.0, is 

used to solve this task. This article focuses on the design of a virtual painting dummy that has the same static and 

dynamic behavior as the investigated real test object. Therefore, the deflection of the real dummy in lying position 

as well as the curvature of its standing position without and with dynamic excitations have been measured. The 

advantage of the analytical and Finite Element Analysis (FEA) models presented are their practicability and quick 

realizability at fair correlation. The concept presented offers a potential way to assess and finally reduce the risk 

for original paintings during various transport, exhibition, and storage situations with the help of virtual objects. 

Keywords: Deformation of oil paintings; Consistent plate theory; Finite element analysis; Surface texture of 

paintings; Inhomogeneous pretensioning; Nonlinear vibration behavior; Digital twin concept 

1. Introduction

Since museums are operated on a business level [1], the preservation of works of art or the “cultural capital” is

regarded as the sovereign task of museums [2]. Consequently, further steps need to be made in terms of risk 

management and preventive conservation. Following Industry 4.0 methods and adapting to the needs of works of 

art and the requirements of the cultural heritage sector, the digital twin concept [3] is used in this article as a basis 

for a predictive risk assessment with the option of developing effective protective measures such as customized 

backing board constructions [4] and tailormade transport crate solutions [5]. 

Risk management and the development of protective measure for works of art are fields of the preventive 

conservation which are systematically explained in the handbook of Waentig et al. [6]. The guide [7] provides a 

practical guide of risk management of cultural heritage. The application of the concept of digital twin with the 

methods of engineering mechanics represents a consistent state-of-the-art expansion and science of preventive 

conservation of works of art and museum objects. Measurement and modeling are central to the application of the 

digital twin concept. At the later stage, the condition monitoring ensures constant model-updating and the feedback 
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from the simulations with the virtual object in its virtual environment ensures that the real object is preserved 

sustainably in the long term. The following provides an overview of the state-of-the-art measurements and 

modeling of mechanical behavior and prediction of responses. 

Modeling paintings on textile started in the late 1980s by applying the classical laminate theory [8]. In 2011 and 

2013, dissertations on the simulation of the vibration behavior of oil paintings were published independently. While 

Kracht developed a measurement method to determine high-resolution characteristic vibration modes and 

frequencies as well as investigated the characterization of nonlinear vibrational behavior [9], Chiriboga focused 

on modeling the vibrational behavior of canvas using the finite element method [10]. When modeling the material 

behavior, Chiriboga used the usual mixing rules for compound materials. The modeling basis in both works was 

Mindlin’s plate theory, whereby Kracht already worked out and considered the importance of taking the prestress 

into account. Ten years later, in 2021, further experimental studies on the vibration behavior of oil paintings, 

especially modal nonlinearities, were carried out in the study by Hartlieb [11] and Gao et al. [12]. 

Due to the importance of pre-stress and pre-strain, paintings on textile are considered as a membrane in the 

study of Hornig-Klamroth [13]. Hornig-Klamroth concluded that the stiffness of the paint should not be neglected 

in the modeling. Taking up this advice and based on own experimental experiences, original paintings have been 

modeled as pre-loaded shells according to Mindlin’s theory with isotropic material behavior adapted to measured 

characteristic modes and frequencies by a model-updating in the study of Lipp and Kracht [4, 14]. 

Another important aspect regarding the preservation of works of art is the knowledge about excitation, which is 

the first “Physical Force” in this article. The acquisition of experimental data during shipment and inhouse-

transportation is the subject of many papers. An overview about the research until 2017 is given in the study of 

Kracht and Kletschkowski [15]. Vibration measurements and reduction measures during construction work are 

documented in the study by Higgit et al. [16]. In Baseline limits for allowable vibrations for objects [17], limits 

for allowable vibrations to objects are discussed on base spot tests. A proposal for objectified monitoring of the 

transport of paintings is made in the study by Heinemann et al. [18]. 

Vibration behavior, modeling, monitoring, simulation of forced vibrations, and protective measures are elements 

of the preventive conservation and keys of the digital concept. There is hardly anything else that seems more 

obvious than the application of the methods of engineering mechanics within the framework of the digital twin 

concept for the preservation of works of art and museum objects. Although there is a lot of ambition to standardize 

the terminology across application boundaries, a standard has not been defined yet [19, 20] and the basic concept 

of digital twin modeling has not been changed since 2002. According to Grieves [3] all elements of the digital twin 

concept are shown in Figure 1. 

Figure 1. Elements of virtual twin concept according to “Conceptual Ideal for PLM (Product Life Cycle 

Management)” [3] 

The digital twin concept is a further logical development of the model-updating presented in the study of 

Friswell and Mottershead [21], which was used in the 1990s for model-based parametric system identification [22] 

for applications like the experimental modal testing [23]. While the acquisition of the static and vibrational 

behavior of the real object by the measurement method mentioned in the study [9] has well developed, the design 

of the virtual object is still unclear. 

The experimental investigations in the study [9] turned out that the type of the base model (membrane, plate, 

shell, linear, non-linear) to reproduce the deflection behavior of the real object in the virtual space in out-of plane 

direction is dependent on the ratio between the bending stiffness and the pretension. The studies in the study [9] 

also show that the base model must be able to calculate wrinkling, buckling and non-linear vibration behavior 

depending on the force level of the excitation.  

The next step follows in this article is to consider an artificially aged dummy painting in a simple composition. 

The goal is to design a virtual twin with the same static and dynamic bending behavior as the physical one. 

Therefore, no base model is excluded from the start. The decision for a base model is made from a questionnaire 

completed by a conservator, a-priori knowledge about the material behavior gained from tensile testing and results 

of static and dynamic measurements according to the study [9] as well as detected dominant phenomena. The flow 

of the design process is demonstrated in the chart of Figure 2. 

After collecting all data from the questionnaire, material testing and measurements according to the study [9] in 
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Section 2, first an analytical model based on the consistent plate theory is examined in Section 3.1 of this study. 

The great advantage of the analytical models is their computational efficiency and mathematical accuracy. 

However, local characteristics can only be modeled to a limited extent. Numerical Finite Element Analysis (FEA) 

models can overcome this disadvantage. The investigation to what extent the respective precision and the 

inaccuracies affect the result is carried out in Section 3.2 and 3.3 in this study. The big challenge here is the 

handling of the unknown static state of stress due to the pretension. The model-updating and a more detailed model 

studied in Section 4 and discussed in Section 5 turns out to be the right track. Finally, it is shown that the pretension 

in combination with the bending stiffness as well as the curvature of the painting play the key role. 

 

 
 

Figure 2. Flow chart of the model design process 

 

2. Experimental Investigations 

 

Regardless of the considered base model, the input parameters are always linked to the geometry, the material 

properties, and the boundary conditions [24]. Unlike technical objects, the material and the initial pretension of 

paintings on textile are not designed. The material properties of the natural materials used such as linseed oil, flax 

fiber and pigments are largely unknown, and are subject to research on their drying and aging process. This is to 

be considered against the background that the properties of natural materials are widely scattered and the canvas 

with the paint is deformed in all three spatial directions by the chemical drying process of the paint [9]. Furthermore, 

material changes and damage such as cracks, tears, craquelure, and delamination are the nature of the deterioration 

process.  

Therefore, the material behavior, and the static deformation of each painting must be determined experimentally. 

One of the restorers’ tasks is the logging of the paintings’ condition in a condition report [25] which includes, for 

instance, the mapping of damages, description of the canvas [26, 27], the distortion of the stretcher and the 

treatment like consolidation, cleaning, and re-tensioning, etc.  

The design of the virtual twin of the test object shown in Figure 3 requires the information of the condition and 

additional information related to the mechanics of the painting. Based on the structure of condition, a questionnaire 

has been developed and is completed by a conservator. A selection of the results is presented in Section 2.1. 

Afterwards the industrially glued canvas and the painted canvas of an equivalent painting dummy are documented 

in Section 2.2.  

The static and the vibration behavior of the test object (Figure 3) is determined non-destructively using the 

Kracht test stand [9]. The results are presented in Section 2.3. 

 

2.1 Test Object and Questionnaire 

 

In accordance with study of Kracht [9], with little different materials and making, delamination of the paint test 

objects has been produced. The dummy making and the documentation of the process have been carried out by 

Madeleine Vaudremer, a freelance conservator from Utrecht, Netherlands, in the first half of 2020. The non-
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destructively investigated painting dummy is shown in Figure 3. The cracks and craquelure are documented in 

Appendix B. 

 

 
 

Figure 3. Test object “Blue-White” with two indentations (left), details of craquelure due to indentation (right) 

Photos by D. Hedinger 

 

 
 

 
 

Figure 4. Climate change cycle series for the artificial aging of the test objects 
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The painting layer system is built up with industrial glue and primer as well as Winsor and Newton Oil Painting 

alkyd-based primer (2 layers) followed by 3 layers of Zinc white (Mussini 102 series 2, Schmincke) and Cobalt 

blue light (Mussini 480, series 5, Schmincke). After 6 months of natural drying, the painting dummies have been 

artificially aged in the climate chamber at BSFV Verpackungsinstitut Hamburg. The two logged climate change 

cycle series during artificial aging are shown in Figure 4. 

The questionnaire of the aged painting dummy has been completed by Daniela Hedinger, a freelance restorer, 

and conservator from Stuttgart, Germany: 

The weight of the test object is 835 g, with the stretcher weighting 595 g. The thickness of the stretcher is 1.7 

cm and the width of the bars is 4.3 cm. There is one cross bar in the center of the stretcher, which is made of spruce. 

The tension of the canvas is in a good condition, which means no wrinkling or buckling effects are visible. The 

applied textile is characterized according to Rouba [26] and documented according to Lipinski [27]. The 

parameters are summarized in Appendix A. 

The thickness of the painted canvas has been determined with two fixed-distance triangulation lasers facing 

each other as shown in Figure 5. The lasers and the screen are aligned in such a way that laser beam 1 points 

normally to the surface of the back of the canvas and laser beam 2, to the front of the canvas. The intersections of 

the laser beams with the front and back respectively have the same x- and y-coordinates. The reference basis is 

documented in Figure 3. 

 

 
 

Figure 5. Set-up thickness measurements Photo by K. Kracht 

 

Triangular lasers are distance sensors. The fix distance between the lasers is D, while the distance between the 

back side of the canvas and laser 1 is denoted by d1, and the distance between the front side and laser 2 by d2. The 

thickness of the painted canvas in the given point is calculated with 

 

𝑡𝑐𝑎𝑛𝑣𝑎𝑠 = 𝐷 − (𝑑1 + 𝑑2).  

 

The thickness of the painted canvas was measured at 5 points on each of the blue and white sides. The arithmetic 

mean of the measured thicknesses for the blue side is 3.3 mm and for the white side, 3.5 mm. 

The textile is attached at the tensioning sides of the stretcher using 1 cm long staples. The position and number 

of staples are marked and documented in Appendix A. No tension garlands are detected. 

 

 
 

Figure 6. Set-up tensile testing of canvas strips Photo by K. Kracht 
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2.2 Tensile Testing 

 

Destructive tensile tests cannot be carried out on original valuable paintings. Reference values are necessary for 

a causal model-updating. In the present research, a painting dummy equivalent to the non-destructive investigated 

one has been cut into strips lengthwise and crosswise. With the help of the tensile testing machine (MTS Tytron 

250) from the Chair of Continuum Mechanics and Material Theory, TU Berlin, tensile tests have been carried out 

on 3 samples of the unpainted and the painted canvas: canvas with industrial glue, canvas with white and blue, 

weft as well as warp. The experimental set-up is shown in Figure 6. 

The resulting averaged stress-strain diagrams are shown in Figures 7, 8 and 9. 

A load of approx. 1 N was applied to the test object in the experiment. The effected deformations are so small 

that linear material behavior can be assumed. Furthermore, the painted canvas is modeled as an isotropic material 

as this research focused on the development of an easy-to-apply and efficient solution. Therefore, the Young’s 

modulus is determined by the slope of the tangent to the stress-strain diagram near the origin. The results are: 

• Canvas:   Incline of the warp tangent line 135 N/mm², 

Incline of the weft tangent line 2.1 N/mm², 

• White side:  Incline of the warp tangent line 145 N/mm², 

Incline of the weft tangent line 28.7 N/mm², 

• Blue side: Incline of the warp tangent line 29.9 N/mm², 

Incline of the weft tangent line 340 N/mm². 

From the slopes of the tangents, it can be seen that the immense stiffness increases due to the existence of paint. 

 

 
 

Figure 7. Stress-strain diagram of the canvas with industrial glue 

 

 
 

Figure 8. Stress-strain diagram of the industrial glued canvas with Zinc white 
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Figure 9. Stress-strain diagram of the industrial glued canvas with Zinc white and Cobalt blue 

 

2.3 Measurements of Static and Dynamic Displacement Fields 

 

The investigation of the static displacement field due to gravitation of the standing as well as the lying painting 

dummy and the measurement of the dynamic displacement field due to dynamic forces of the standing test object 

have been carried out with a test stand according to Kracht [9]. The two set-ups are shown in Figure 10. 

 

 
 

Figure 10. Set-ups of the test stand to investigate the displacement fields of the standing (left) and lying (right) 

painting dummy, Photos by K. Kracht 
 

One or three triangular lasers have been used to measure the displacement fields of the painted canvas. The two 

applied laser configurations are shown in Figure 11. 

The motivation of using three lasers is to check experimentally whether unexpected great displacements in in 

plane-direction occur. The results of all measurements with the three-laser configuration show that the values of 

the maximum displacement in both plane-directions are 1% of the maximum displacement amplitude in out-of 

plane direction. Therefore, only the deformations in the much softer out-of plane direction compared to the in the 

plane-direction are considered further. 

The deformations are measured at the frontside of the real canvas at 107x164 positions (107 measurement points 

in x-direction and 167 measurement points in y-direction). The displacement field of the standing painting loaded 

by the gravitation field is shown in Figure 12. The measurement data set is evaluated with the software Wolfram 

Mathematica 12.3.  
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Figure 11. Configuration with one laser (left) and three lasers (right), Photos by K. Kracht 

 

 
 

Figure 12. Displacement field of the standing painting loaded by the gravitation field: 2-D and 3-D (surface plot 

and point plot) representation 

 

The two bulges, the lower right corner of the stretcher twisting by 1mm and the overlapping section in the 

middle of the test object are clearly visible. The displacement field of the lying painting is shown in Figure 13. 

 

 
 

Figure 13. Displacement field of the lying painting loaded by the gravitation field: 2-D and 3-D (surface plot 

and point plot) representation 

 

The two bulges, the twisted lower right corner of the stretcher and the overlap section in the middle of the test 

object are still clearly visible. The maximum deformation shown in Figure 13 is approx. 1.34 mm. The 

investigation of the vibration behavior requires additionally the gravitational field dynamic force to excite the 

painting. Therefore, the elastically supported stretcher is on the backside connected to an electrodynamic shaker 

via a force cell and a stinger. The excitation signal is a sinus sweep from 1 to 64 Hz with a time span of 2 s.  
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Since the nonlinearity check according to Kracht [9] shows a strong dependency on the level of the excitation, 

the following results are therefore only valid for an excitation amplitude of (1±0.1) N. 

The characteristic vibration frequencies are identified by picking the peaks of the amplitude frequency response. 

The amplitude frequency response over all measurements is shown in Figure 14. 

 

 
 

Figure 14. Amplitude frequency response averaged over all measurements 

 

The first peak at 6 Hz is affected by the first natural vibration of the easel. The characteristic vibration modes 

associated to the first characteristic frequencies are shown in Figure 15. 

 

 

 
 

Figure 15. Six of the measured characteristic vibration modes 
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The extremal areas of the measured characteristic eigenmodes are deformed in comparison to the eigenmodes 

calculated with standard membrane or plate theories presented in the study of Leissa and Qatu [28]. 

 

3. Static Deformation of the Lying Painting 

 

This chapter studies the modeling of the deformation field of the lying painting in the earth’s gravitational field. 

It starts with an analytical solution. Although the analytical theory does not allow any modeling details, it is exact 

within the model assumptions and serves as a comparison standard for simple examples. Furthermore, the 

calculation process is very fast. 

Since the analytical solution emerges from the consistent plate theory, which in turn is derived from the exact 

3D continuum theory, the problem with the finite element method (FEM) here, in particular with volume elements 

is consequently solved in Section 3.2. On the one hand, these results are validated with the exact solution of the 

analytical model and, on the other hand, they serve as a comparison standard for the FE-calculations with plate 

elements in Section 3.3. Since the stiffness matrix is unknown, the stiffness is calculated in all three chapters using 

the least squares method. The displacement fields thus calculated are compared with the measured ones (Figure 

13). 

 

3.1 Analytical Calculations 

 

In this Section an analytical model is created for the description of the static behavior of the lying canvas painting. 

The Young’s modulus is inversely determined by using the analytical model and the experimental data acquired 

from the lying painting presented in Section 2.3. The quality of the resulting model is evaluated by comparing its 

deformations with that from the experimental data. 

 

3.1.1 Modeling assumptions 

Contrary to the first impulse to model the canvas painting as membrane, according to reference [13] and the 

findings in Section 2.2, the high bending stiffness due to the existence of paint led to the application of the plate 

theory. The maximum deformation of the lying canvas with an amount of approximately 1.38 mm (Section 2.3) is 

smaller compared to the dimensions of the test object. As a result, the painted canvas is assumed to be linear-elastic 

with only small deformations. Additionally, according to Section 2.1, isotropic material behavior is assumed. 

In order to arrive at an analytical solution, the thickness is assumed to be constant all over the plate. Figure 16 

shows the plate with its geometrical data a as width, b as length, h as height, xi as dimensionalized coordinates and 

ξi=xi/a as dimensionless coordinates. 

 

 
 

Figure 16. Considered plate model and reference basis [29] 

 

Moreover, also the surface loads 𝑔⃗+ and 𝑔⃗− and the volume load 𝑓 (acting on the volume part dV) which 

initially can point in any arbitrary direction are shown, too. The staples on the edges of the plate (appendix A) 

prevent the canvas deforming in x3- and x1- or x2-direction. The painting is just loaded by the gravitational field, 

so the surface loads are zero. The boundary conditions can be summarized as: 

 

𝜉1 = 0,1: 𝜎11 = 0, 𝑢2 = 0, 𝑢3 = 0, (1) 

  

𝜉2 = 0,
𝑏

𝑎
: 𝜎22 = 0, 𝑢1 = 0, 𝑢3 = 0, (2) 
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𝜉3 = ±
ℎ

2𝑎
: 𝜎33 = 0, 𝜎31 = 0, 𝜎32 = 0, (3) 

 

and is called “Klemmschneidenlagerung” (“constraint” simply supported). With σij here the components of the 

stress tensor and with ui the components of the displacement vector are introduced. It should be mentioned that 

when ξ1=0,1, the displacement u1 is zero and when ξ2=0, b/a, the displacement u2 is also zero. The stresses σ11 and 

σ22 are not zero because of the effect of the staples. However, in this Section, these facts are omitted to arrive at an 

analytical solution. Consequently, the determined Young’s modulus is greater than the real one. 

 

3.1.2 Consistent plate theory 

According to the assumptions that the canvas painting is linear-elastic and isotropic, the best mechanical model 

to simulate the deformation of the painted canvas due to its dead weight is the three-dimensional theory of linear 

elasticity [30]. However, the disadvantage of that theory is that it offers an analytical solution only for some special 

cases. On the contrary, plate theories have an increased potential for closed-form analytic solutions.  

With respect to the above mentioned, the most accurate plate theory is the one which is in accordance with the 

three-dimensional theory of linear elasticity (linear 3D theory). According to Kienzler and Schneider [31] and 

Meyer-Coors [32], for the consistent plate theories or original-plate theories this is the case. The latter is even 

directly derived from the linear 3D theory. Starting point of the derivation are the Neumann-boundary conditions 

on the upper and lower face of the plate: 

 

[σ33
𝑜 ]ξ3=

ℎ
2𝑎 = 𝑔̂3

𝑒+, (4) 

  

[σ31
𝑒 ]ξ3=

ℎ
2𝑎 = 𝑔̂1

𝑜+, (5) 

  

[σ32
𝑒 ]ξ3=

ℎ
2𝑎 = 𝑔̂2

𝑜+. (6) 

 

The upper index at the stress components indicates that only the even (e) or odd (o) part is considered. The same 

is valid for the surface loads gi on the right side. Additionally, the hat-symbol (𝑔̂) identifies the dimensionalized 

quantities and the “+” or “–” sign at the right-upper index indicates the location of the load (e.g. “+” means on the 

lower side of the plate (cf. Figure 16)). In general, there should be three conditions on each face. But here the six 

conditions are linear dependent on each other, so only three conditions for both faces are independent. In addition 

to the Neumann-boundary conditions, (4)-(6) are also the equilibrium conditions: 

 
(σ11
𝑜 ),1 + (σ21

𝑜 ),2 + (σ31
𝑒 ),3 = −𝑓1

𝑜𝑎, (7) 

  
(σ12
𝑜 ),1 + (σ22

𝑜 ),2 + (σ32
𝑒 ),3 = −𝑓2

𝑜𝑎, (8) 

  
(σ13
𝑒 ),1 + (σ23

𝑒 ),2 + (σ33
𝑜 ),3 = −𝑓3

𝑒𝑎 (9) 

 

that are needed to derive the original-plate theories. Here, with (•),𝑖 the derivation with respect to ξi is introduced. 

Next, the displacements in the Eqns. (4)-(9) are substituted by their Taylor series with respect to the thickness 

coordinate ξ3: 

 

ui(ξi) = ∑
1

n!
[
𝜕𝑛𝑢𝑖
𝜕𝜏3

𝑛 (ξ1, ξ2, τ3)]
τ3=0⏟              

=:  𝑢𝑛 i(ξ1,ξ2)

∞

n=0

ξ3
n. 

(10) 

 

Subsequently, the modularity of the displacement coefficients is as follows: 

 

𝑢𝑛 𝑖 = 𝑢𝑛 𝑖
0 + 𝑢𝑛 𝑖

2 + 𝑢𝑛 𝑖
4 + 𝑢𝑛 𝑖

6 +…, (11) 

 

which splits the displacement coefficients 𝑢𝑛 𝑖 into the so-called displacement-coefficient parts (DCPs) which 

are inserted in the study by Meyer-Coors [32]. A DCP 𝑢𝑛 𝑖
𝑝
 has the magnitude cp, where 𝑐 =  ℎ/(√12 𝑎) is the 

so-called plate parameter, which describes the thinness of the plate. Based on the powers of c (magnitude), the 

Eqns. (4)-(9) are approximated to finally arrive at the original-plate theories. Exemplarily, the steps from above 

are applied to Eq. (4). It follows:  
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[σ33
𝑜 ]ξ3=

ℎ
2𝑎 = 𝑔̂3

𝑒+, 

⇒  √3cG [
2(1 − ν)

(1 − 2ν)
(2( 𝑢2 3

0 + 𝑢2 𝑖
2 + 𝑢2 𝑖

4) + 12𝑐2( 𝑢4 3
0 + 𝑢4 3

2) + 54𝑐4 𝑢6 3
0)  

+
2ν

1 − 2ν
 (( 𝑢1 1

0 + 𝑢1 1
2 + 𝑢1 1

4)
′
+ 3𝑐2( 𝑢3 1

0 + 𝑢3 1
2)
′
+ 9𝑐4( 𝑢5 1

0)
′

+ ( 𝑢1 2
0 + 𝑢1 2

2 + 𝑢1 2
4)
•
+ 3𝑐2( 𝑢3 2

0 + 𝑢3 2
2)
•
+ 9𝑐4( 𝑢5 2

0)
•
)] = 𝐺𝑔3

𝑒+ 

⇒  c0:  
4(1 − ν)

1 − 2ν
𝑢2 3
0 +

2ν

1 − 2ν
(( 𝑢1 1

0)
′
+ ( 𝑢1 2

0)
•
) = 0 

(12) 

  

⇒  c2:  
4(1 − ν)

1 − 2ν
𝑢2 3
2 + 12𝑐2 𝑢4 3

0 +
2ν

1 − 2ν
(( 𝑢1 1

2)
′
+ 3𝑐2( 𝑢3 1

0)
′
+ ( 𝑢1 2

2)
•
+ 3𝑐2( 𝑢3 2

0)
•
)

= 2
𝑎

ℎ
𝑔3
𝑒+. 

(13) 

 

Here, Hooke’s law is applied with G as Shear modulus, ν as Poisson’s ratio and the two shortcuts (•),1 = (•)
′ 

and (•),2 = (•)
•. 

All equations of the magnitude c2N together build the 𝑁th-order original-plate theory. The resulting PDE systems 

can be reduced to one main PDE (only written in the main variable) and severa l reduction PDEs (written in the 

main and the non-main variables). These PDEs are given in the Appendix B in the first and second order. For more 

details regarding the derivation of the original-plate theories please refer to the study by Kienzler and Schneider 

[31]. 

It turns out that the main PDEs (34) and (41) are equivalent to the classical plate theories of Kirchhoff and 

Reissner, respectively [30]. Therefore, these theories are consistent to the linear 3D theory. This result is not new 

since justifications of Kirchhoff’s and Reissner’s plate theories had already been provided by the study of 

Morgenstern [33] and Paroni et al. [34], respectively. But the advantage of the original-plate theories is that the 

plate theories in arbitrary order (e.g., 10th order) that are automatically in accordance with the linear 3D theory can 

be derived. So, if it’s necessary, the accuracy of the results can be easily increased by using the third-order theory.  

 

3.1.3 Navier’s double-series solution 

To solve the problem given by the boundary conditions of Section 3.1.1 and the PDEs (31)-(41) (Appendix B), 

Navier’s-double-series solution are applied in the following. Accordingly [35], the ansatz: 

 

𝑢0 3
2𝑘 = ∑ 𝑤𝑚𝑛

𝑘

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2) (14) 

 

for the main variables 𝑢0 3
2𝑘 is used. This ansatz satisfies the boundary conditions (1)-(3) automatically. 

The next step is the insertion of (14) into the main PDEs (34) and (41) (Appendix B) to determine the constants 

𝑤𝑚𝑛
0  for the first-order and 𝑤𝑚𝑛

1  for the second-order theory. Therefore, the applied load is represented by its 

double-Fourier series. The only load, i.e. the dead weight, is considered as (piecewise) constant volume load 

𝑓0 3 = 𝜌 g. Here, ρ is the density of the canvas and g is the free-fall acceleration. Since g is a physical constant, 

only ρ needs to be represented by its double Fourier series: 

 

𝑓0 3 = 𝑔 ∑ ρ𝑚𝑛
∞
𝑚,𝑛=1 sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2).  (15) 

 

The constant ρmn can be calculated by the formula: 

 

ρ𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝜌(𝑥, 𝑦) sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2)d𝑥2d𝑥1

𝑏

0

𝑎

0

. (16) 

 

The different densities of the white (ρW) and blue side (ρB) of the canvas painting can be calculated by: 

 

ρ𝑚𝑛
1 = {

0                            for     𝑚 = 0,4,8, . . .
16

𝑚𝑛𝜋2
(ρ𝑊 − ρ𝐵)    for   𝑚=2,6,10,...

  𝑛=1,3,5,7,...

8

𝑚𝑛𝜋2
(ρ𝑊 + ρ𝐵)    for    𝑚=1,3,5,7,...

 𝑛=1,3,5,7,...

    .  (17) 
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Besides this, an averaged density ρ̅ for both sides can be calculated by simplifying Eq. (17) to: 

 

ρ𝑚𝑛
2 = {

0              for     𝑚 = 0,4,8, . . .
16

𝑚𝑛𝜋2
ρ̅    for    𝑚=1,3,5,7,...

 𝑛=1,3,5,7,...

  (18) 

 

In the following, both options are expressed by ρ𝑚𝑛 ∈ {ρ𝑚𝑛
1 , ρ𝑚𝑛

2 }.  

Now, inserting (14) and (15) into (34), and the following: 

 

K ΔΔ(∑ 𝑤𝑚𝑛
0∞

𝑚,𝑛=1 sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2)) = a
3ℎ𝑔 ∑ ρ𝑚𝑛

∞
𝑚,𝑛=1 sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2)  

⇒  𝑤𝑚𝑛
0 =

ℎ𝑎3ρ𝑚𝑛𝑔

𝐾γ𝑚𝑛
4

 
(19) 

 

is obtained. 

It is noted that Δ =
∂2

∂ξ1
2 +

∂2

∂ξ2
2 is the Laplacian, γ𝑚𝑛 = √(𝑚𝜋)

2 + (𝑛𝜋𝛼)2, 𝐾 =
𝐸ℎ3

12(1−ν2)
 is the plate stiffness 

and the coefficient comparison is applied. From the second-order theory, it follows: 

 

KΔΔ(∑ 𝑤𝑚𝑛
1∞

𝑚,𝑛=1 sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2)) =

−
1

10

(24+ν)

(1−ν)
𝑐2𝑎3ℎΔ(𝑔 ∑ ρ𝑚𝑛

∞
𝑚,𝑛=1 sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2))  

⇒  𝑤𝑚𝑛
1 =

1

10

(24+ν)

(1−ν)

ℎ𝑎3c2ρ𝑚𝑛𝑔

𝐾γ𝑚𝑛
2 . 

(20) 

 

With the results of (19) and (20), the two main variables: 

 

𝑢0 3
0 = ∑

ℎ𝑎3ρ𝑚𝑛𝑔

𝐾γ𝑚𝑛
4

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2), (21) 

  

𝑢0 3
2 = ∑

1

10

(24 + ν)

(1 − ν)

ℎ𝑎3c2ρ𝑚𝑛𝑔

𝐾γ𝑚𝑛
2

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2) (22) 

 

can be extracted. If these variables are inserted into the reduction PDEs of Appendix B, the non-main variables 

are the result (cf. Appendix C). With reference to the Eqns. (10) and (11), the complete displacement ansatz for 

the second-order theory is given by: 

 

𝑢1 = 𝑎 (( 𝑢1 1
0 + 𝑢1 1

2)ξ3 + 𝑢3 1
0ξ3
3), 

𝑢2 = 𝑎 (( 𝑢1 2
0 + 𝑢1 2

2)ξ3 + 𝑢3 2
0ξ3
3), 

𝑢3 = 𝑎 (( 𝑢0 3
0 + 𝑢0 3

2) + ( 𝑢2 3
0 + 𝑢2 3

2)ξ3
2 + 𝑢4 3

0ξ3
4). 

(23) 

 

For the first-order theory, only the red-colored DCPs are considered. By inserting the main and non-main 

variables, these displacements can now be calculated. 

 

3.1.4 Calculation of the Young’s modulus 

For the calculation of the Young’s modulus, the computer algebra system (CAS) Mathematica 11.3 is used. 

First, the experimental data, which represent the distance between the laser and the canvas painting in the form of 

x1, x2 and x3 coordinates are imported. In the experiment the canvas painting is suspended, so the boundary points 

of the data form the rigid frame. This not perfectly flat frame is then averaged to a plane. Finally, the distances 

between this plane and the experimental data are the u3 deformations of the canvas painting.  

Next, the displacement ansatz (23) with the inserted main variables (21) and (22) and the inserted non-main 

variables (42)-(50) (Appendix C) is transferred to Mathematica. In accordance with Section 2, the width a equals 

to 400 mm, the length b, 600 mm, the total mass mT, 0.835 kg, the mass of the frame mF, 0.595 kg, the thickness 

of the blue side tB, 3.3 mm and the thickness of the white side tW, 3.5 mm. From these quantities the mass of the 

canvas painting with mP equaling to 0.240 kg is obtained, and the average height h=3.4 mm, the volume of the 

canvas painting VP=816,0 mm3 and the average density ρ̅ = 294.12 kg/m3. For estimating the different densities 

ρW and ρB, the average density is simply scaled with the help of the ratio between the thicknesses tw and 𝑡𝐵 and 

the average height, respectively. E.g., ρ𝑊 = ρ̅
3,5

3,4
= 302.77 kg/m3. The density of the blue side then follows, i.e. 

13



ρB=285.47 kg/m3. Lastly, the free-fall acceleration on earth g is assumed to be 9.81 m/s2 and Poisson’s ratio ν to 

be 0.3. The value of the Poisson’s ratio was chosen based on a numerical pre-study with respect to its influence on 

the results. It could be concluded the influence of changes of the Poisson’s ratio is negligible. 

The next step is to apply the function FindFit from Mathematica to determine the unknown Young’s modulus 

in the plate stiffness K. This function executes the method of least squares with the analytical and experimental 

deformation u3. As a result, the Young’s modulus is calculated which leads to the smallest error between both data. 

To assess the quality of the models or configurations, the absolute values of the differences (Δu3) between the 

experimental and the analytical deformations with the computed Young’s modulus can be determined. 

Additionally, also the arithmetic mean μ and the standard deviation σ of those differences can be calculated. 

In the following five configurations, which are distinguished by the order of the used plate theory, the location 

of the evaluation of the plate theory (ξ3=0 or ξ3=h/(2a)), the consideration of the frame points (to minimize the 

influence of the not perfectly flat frame) and the two different types of densities (17) and (18) are considered. The 

results are presented in Table 1. 
 

Table 1. Results of five configurations of the analytical model 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Order First First First First Second 

Location ξ3 0 0 0 ℎ/(2𝑎) 0 

Frame points Included Included Excluded Included Included 

Loading Const. (ρ̅) Var. (ρ1, ρ2) Var. (ρ1, ρ2) Var. (ρ1, ρ2) Const. (ρ̅) 

𝐸 [MPa] 407.50 407.46 407.45 407.43 407.45 

𝑢3 𝑚𝑎𝑥  [mm] 1.323 1.323 1.323 1.323 1.323 

Δ𝑢3 𝑚𝑎𝑥  [mm] 1.04 1.042 1.042 1.042 1.04 

μ [mm] 0.149 0.149 0.143 0.149 0.149 

σ [mm] 0.128 0.128 0.129 0.128 0.128 

 

Moreover, the maximum displacements of u1 and u2 in terms of model 4 are u1 max=0.018 mm and u2 max=0.013 

mm.  
 

3.1.5 Evaluation 

Comparing with the results represented in Table 1, it can be concluded that none of the modifications (order of 

theory, location, frame points and loading) has a significant influence on the results:  

The Young’s modulus varies negligibly. Hence, the value calculated with the second-order theory (model 5) is 

chosen, so that E equals to 407.45 MPa. Likewise, the maximum difference between the analytical and 

experimental data varies only within a small range around Δu3 max [mm]=1.04 mm. The maximum displacement in 

x3 direction shows no variation and u3 max equals to 1.323 mm. For the mean and standard deviation of the difference, 

the only change is caused by the exclusion of the frame points. As a result, the mean becomes smaller, while the 

standard deviation gets bigger. However, the amounts of these variations are so small that they are negligible. 

Therefore, μ equaling to 0.149 mm and the standard deviation σ being 0.128 mm are set. Additionally, and in 

accordance with Section 2.3, it is mentioned that the displacements u1 and u2 are irrelevant compared with u3. 

All in all, the maximum difference Δu3 max is quite big in relation to u3 max (≈79%). Also, the mean μ yields about 

11% of u3 max. But as we can see in Figure 17, the values from above approximately 0.5 mm originate purely from 

the two indentations. If these irregularities are omitted, the quality of the model will be better. However, deviations 

of about 10% remain. It is concluded that the derived analytical model is recommended to carry out fast rough 

calculations.  
 

 
 

Figure 17. Plot of the displacement differences between the measured field and that analytically calculated one 

14



3.2 Finite Elements Analysis with Volume Elements 

 

The calculations in Section 3.1 have shown that the deviations in the out-of plane direction (u3) are about 10% 

between the measured displacement field and the displacement field calculated with the analytical plate theory for 

the lying painting under static load in the earth gravitational field. Locally, the absolute difference of displacements 

is much higher. To verify the quality and quantity of the analytical solution of the plate theory, the calculations 

should be recalculated using a numerical method, i.e. the finite element method (FEM). It also offers the 

capabilities of a high level of detail in the modeling of the lying painting, if required. With more detailed FE-

models, and compared with the analytic plate theory model, the deviations of the displacement u3 between 

measurement and simulation should be further reduced. 

The tool to create the Finite Element-models (FE-models) is the commercial FEM software package Abaqus 

from Dassault Systêmes. The FE-models are created with the preprocessor (and postprocessor) Abaqus/CAE. The 

implicit solver Abaqus/Standard is used to perform the FE calculations. The evaluation of the results is carried out 

with Abaqus/CAE, too. 

The advantage of Abaqus/CAE is that all modeling and evaluation tasks can be solved by adopting the internal 

modeling functions based on Python instead of the usual keyboard input which enables the automatization of the 

model design and result evaluation. This leads to the acceleration and simultaneous error reduction in the parameter 

studies in this Section. Consequently, in the following the pre- and post-processing is mainly operated using the 

interface of Abaqus/CAE to the programming language Python. 

The canvas with its two different painted sections of equal dimension but different thicknesses (white side: 

hWhite=3.5 mm and blue side: hBlue=3.3 mm, is modeled geometrically in two variants. In the first variant, both 

sections have the same thickness: the mean of both thicknesses (hWhite=hBlue=3.4 mm). The first variant is the basis 

for the FE-models, i.e. model 1 and model 2 and are designed here in this study. These models are created for a 

comparison with the results calculated with the consistent plate theory (Section 3.1), whose analytical solution is 

currently only valid for a constant plate thickness.  

The second variant is defined by considering the thickness difference between the two sections of the painting. 

Therefore, a geometric step is applied. This variant in the study is called model step. An overview of the two 

variants is shown in Figure 18, as mentioned above. In order not to limit the above mentioned modeling freedoms 

by the FEM, both models are created as 3D volume models, meshed with 3-dimensional finite elements. 

The element type used for meshing the volume models is a brick element. The internal code in Abaqus for this 

type of element is C3D20R. It is a 3D continuum element (C; 3D) with 20 nodes (20) and a reduced gaussian 

integration (R). Eight nodes are placed in the corners of the element and the remaining twelve nodes are placed in 

the center of each edge. For description of the element geometry and the deformation of the element a quadratic, 

iso-parametric polynomial approach is used. Due to the simplified geometry of the models of the two variants, 

structured rectangular FE meshes have been generated for all. To check the convergence of the solution of the 

displacement field, the FE models were meshed with different mesh densities in the x-y plane (20x30; 32x48, 

48x72) and with one or two element layers. It is shown that meshing with 32x48 elements and one element layer 

(Figure 18 left) represents a good compromise between accuracy and cost. Thus, in thickness direction, one 

element layer is applied in model 1 as well as in model 2 (Figure 18 top right). In model Step, a second element 

layer is added due to the geometric step at the thicker white section (Figure 18 bottom right). 

 

 
 

Figure 18. FE-model of the rectangular canvas with a structured 3-D mesh on the left (32x48 elements at model 

1 and 2; 32x 48 + 16x48 elements at model Step) and details on the right 
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In accordance with Section 2.2 and 3.1, a linear elastic material model is applied and isotropic material behavior 

is assumed. For this purpose, Hooke’s law implemented in Abaqus is used. Hooke’s law is written in tensor 

notation as follows: 

 

𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙𝜀𝑘𝑙 𝑚𝑖𝑡 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, (24) 

 

where, σij and εkl are each second-order tensors, representing the stresses and the strains. Eijkl is the fourth-order 

elasticity tensor [29]. 

Due to the isotropic material behavior, only the two material parameters Young’s modulus E and Poisson’s ratio 

ν are necessary to complete the elasticity tensor and to describe the relationship between stresses and strains. The 

values for the two parameters are given in Table 2 depending on the different FE-models and their boundary 

conditions. It should be noted that the identical value for Young’s modulus is used for model 1 and model 2 in 

configuration 1. This inaccuracy emerges from the fact that the geometric models mentioned are modeled 

simplistically with an average thickness of the painted canvas. The simplification and the effected inaccuracy are 

conceded to be able to compare results from the FE-simulations with the results from the calculations with the 

consistent plate theory. There, at the current state, only analytical solutions for constant plate thicknesses h and 

constant material parameters E and ν are known.  

The ratio of the Young’s moduli is adjusted in configuration 2 of model 2. Considering the plate theory, the 

correlation of the stiffness of the plate to its thickness leads to the third power. Thus, the ratio of the two Young’s 

moduli for the white and blue section is as follows: 

 
𝐸𝑤ℎ𝑖𝑡𝑒

𝐸𝑏𝑙𝑢𝑒
= (

3.5 mm

3.3 mm
)
3

. (25) 

 

The values for the material parameters and other relevant data for the FE-models are listed in Table 2. In addition 

to the description of the material model with its parameters, further information about the material of the canvas 

is important: the density. As already mentioned in Section 3.1, due to the lack of experimental data, the average 

density ρmean is determined by the ratio of the mass of the painted canvas and its volume. The average density is 

applied in model 1 and model Step. The inaccuracy of model 1 in the mass distribution that is affected by applying 

the same thickness at the white and the blue section is corrected in model 2 with: 

 

𝜌𝑤ℎ𝑖𝑡𝑒 = 𝜌𝑚𝑒𝑎𝑛 ⋅
3.5 mm

3.4 mm
 and 𝜌𝑏𝑙𝑢𝑒 = 𝜌𝑚𝑒𝑎𝑛 ⋅

3.3 mm

3.4 mm
. (26) 

 

The next step is to discuss the boundary conditions with the help of Figure 19, which shows an illustration of 

the canvas with the two areas, one painted in white and one in blue. At four faces of the six ones, the normal 

vectors 𝑛⃗⃗face point in the plane direction of the painting. The red squares at these four faces of the model in Figure 

19 represent positions of the staples at the real object. Here, the distances between the staples are equidistant. Ten 

staples are on each of the short faces and 16 staples are on each of the long faces. The red areas in Figure 19 are 

12.5 mm wide. 

 

 
 

Figure 19. Sketch of the FE-model to explain the boundary conditions that were used 
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The following study includes three variations of the boundary conditions (BC) named A, B and C. The boundary 

conditions are specified by referring to the displacements of the nodes of the finite elements at the four inplane 

faces of the painted canvas. The exemplarily listed boundary conditions below are defined for the face outlined in 

green in Figure 19, which are as follows: 

 

BC A: 𝑢𝑥 = 𝑢𝑧 = 0  for every node of this face, 

BC B: 𝑢𝑥 = 𝑢𝑧 = 0  for every node of this face, 

𝑢𝑦 = 0   for every node of the red areas at this face, 

BC C: 𝑢𝑥 = 𝑢𝑧 = 0  for every node of this face, 

𝑢𝑦 = −0.15 mm   for every node of the red areas at this face, 

(27) 

 

especially a displacement of +0.15 mm in the positive direction of the normal unit vector 𝑛⃗⃗𝑓𝑎𝑐𝑒  for the nodes. 

The boundary condition A is called “Klemmschneidenlagerung”. Only for this boundary condition, the 

analytical solution of the consistent plate theory presented in Section 3.1 is valid. For BC B, the nodes in the 

regions of the staples (red regions) are additionally fixed at their current positions in plane. BC C then is 

constructed in the same way as BC B. It differs from BC B only in a nonzero displacement of the nodes at the 

staples. Here, in positive direction of the normal unit vector of the faces in plane (Figure 19). The displaced nodes 

are then fixed, like at BC B. The values for the prescribed displacements at the short faces are |uy|=0.15 mm and 

at the long faces |ux|=0.1 mm. BC C is used in the FE-models to model a prestressed canvas, like the real ones are. 

The values of the prescribed displacements are estimated from experimental research on canvases [36]. 

To apply the dead weight of the canvas as load to the FE-models, the Earth’s gravity is applied in Abaqus with 

𝑔⃗ = 9.81 ⋅ (0,0, −1)T [m s-2] (Figure 20). Thus, the design of the individual FE-models is almost completed. At 

this state, the determination of the inclination of the canvas edges/frame to the plane of the laser measurement 

system (LMS) is still missing.  

Due to inaccuracies in positioning the canvas in front of the LMS and a stretcher, to which the edges of the 

canvas have been applied, that is not exactly flat, an inclination of the canvas plane to the LMS plane occurred. 

The correct inclination of the canvas plane is the basis for a meaningful comparison of the nodal displacements 

computed with the FEM to the acquired values by the LMS. Thus, the inclination of the canvas plane had to be 

determined mathematically from the measured points at the edges of the canvas.  

To calculate the inclination of the canvas plane, which is represented by the normal unit vector in Figure 20, the 

function Fit from Numerical Recipes (FORTRAN Version) [37] is applied. Fit calculates a straight line through a 

set of data points based on the least squares method. Finally, the results of the FE-models were compared with 

those from the function Fit. The following normal unit vectors are obtained for two variants of the model geometry 

(Figure 18): 

 

Model 1 and Model 2: 

𝑛⃗⃗𝐹𝐸𝑀 = (−1.03𝐸 − 03, −7.96𝐸 − 03,  9.9997𝐸 − 01)
T,  

Model Step: 

𝑛⃗⃗𝐹𝐸𝑀 = (−4.83𝐸 − 03, −7.96𝐸 − 03,  9.9996𝐸 − 01)
T.  

(28) 

 

 
 

Figure 20. Determination of the inclination (𝑛⃗⃗𝐹𝐸𝑀) of the edges of the FE-model by a least squares fit  

 

By applying the values of the normal unit vectors (28), the measured and the computed nodal displacements 

(see Figure 20) are transformed into the deformation direction of the canvas u3. The design of the FE-models is 

thus completed. 

In accordance with Section 2.3 and 3.1, mainly the nodal displacements u3 (Figure 20) are considered. 

Furthermore, the parameter E (Young’s modulus), unknown for the real object, is determined in the FE-simulations 
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by a parameter optimization using the principle of the least squares method, aiming to obtain the same deformation 

behavior of the FE-models like the real canvas. The iterative process of the parameter optimization is created with 

the Function Brent from Numerical Recipes (FORTRAN Version) [37], programmed as Python script and applied 

to the Python interface of Abaqus. 

 

3.2.1 Results and evaluation 

The deformations in the out-of plane direction are measured at the frontside of the real canvas with one 

triangulation laser at 107x164 positions in the LMS plane (x-y plane). To compare the measured values with the 

FE-simulations, these positions of the measurement points are interpolated to the x-y positions of the nodes of a 

FE-model front with its 32x48 finite elements.  

To check the quality of the solutions from the FE-calculations in comparison with those from the analytical 

consistent plate theory, the difference of the nodal displacements:  

 

𝛥𝑢3 = 𝑢3 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝑢3 𝐹𝐸𝑀 (29) 

 

for model 2 config. 1 and boundary condition A (“Klemmschneidenlagerung”) is determined (further model data 

can be found in Table 2). The result Δu3 is shown in Figure 21. To evaluate the magnitude of the values of the 

solution Δu3, it should be mentioned that the deformation of the canvas u3 is always in the interval 𝑢3 ∈
[−0.6,  1.6] [mm]. This is applied to both the measured and the computed data.  

The values of Δu3 in Figure 21 are larger than three orders of magnitude, which are smaller than the values of 

the deformation. It is a negligible deviation. This means that the two different calculation methods lead to almost 

identical results, which was already expected before. 

 

 
 

Figure 21. Comparison of the nodal displacement u3 between the consistent plate theory and the equivalent FE-

simulation by computing the difference Δu3 at Model 2 config.1 

 

 
 

Figure 22. Comparison of the nodal displacement u3 (first row) and the difference Δu3 (second row) between the 

experiment and the FE-simulations considering the three boundary conditions A, B and C as shown in model 2 

config.2 
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The results of the calculations with FE-model 1, model 2 in config.1 and config. 2, as well as model Step are 

compared with the measured values of the LMS to evaluate the models and the measurement data. Exemplary, the 

calculated deformation fields and differences of the deformation fields for the FE-model 2 config. 2 and model 

Step are shown with colored plots in Figures 22 and 23.  

In the first row on the left, the measured displacements, interpolated to the FE nodes, are shown in both figures. 

Further to the right in each case, the calculated nodal displacements for the three boundary conditions A, B and C 

explained above in (27) are presented. In each of the second rows, the differences between experiment and FE-

simulations of the nodal displacements: 

 

𝛥𝑢3 = 𝑢3 𝑒𝑥𝑝𝑡 − 𝑢3 𝐹𝐸𝑀, (30) 

 

are shown. The legends of the Figures 22 and 23 are valid for all the sub figures. Furthermore, the legends of both 

Figures 22 and 23 are identical for a better comparability. 

 

 
 

Figure 23. Comparison of the nodal displacement u3 (first row) and the difference Δu3 (second row) between the 

experiment and the FE-simulations considering the three boundary conditions A, B and C shown at model step 

 

The characteristic data applied to the calculations in this Section is listed in Table 2. These are, on the one hand, 

the material parameters that were required in the FE-simulations such as the thickness of the canvas h, the density 

ρ, the Young’s modulus E and the Poisson’s ratio ν. On the other hand, there are the statistical data, computed for 

the results of the FE-simulations. They include the maximum of the nodal displacements of the canvas, measured 

(u3 max_expt) and calculated (u3 max_FEM). Further, the maximum difference for the nodal displacement between 

measurement and FE-simulation at a node is denoted by Δu3 max. 

Last but not least, the mean value μ and the standard deviation 𝜎 for the difference Δu3 are calculated and 

documented in Table 2. In order to achieve a minimum for the least squares for Δu3, the Young’s modulus was 

iteratively adjusted to an optimum during several FE-simulations with one FE-model. 

If the results of the calculations in the Figures 22 and 23 are compared, taking the data in Table 2 into account, 

it can be concluded that the differences between the FE-model 1, -model 2 config.1 and config.2 are small. In these 

models, the data of model Step deviate slightly by larger values for Δu3 and thus by an approximate 10% higher 

than the standard deviation of σ. This is caused by the geometric step modeled for the white section of the canvas 

to account for the thickness differences of the white and blue sections of the real canvas.  

Comparing the FE-simulations with the measurement, the Figures 22 and 23 show the largest deviation of the 

nodal displacements Δu3 at the positions of the two indentations at the real object. Otherwise, the order of 

magnitude of the deviations is small, but in relation to the deformations of the real canvas they are significant. 

What is interesting is that due to the small deformations of the canvas and the use of the linear theory of elasticity, 

there are no differences between the calculated displacement fields u3 with boundary conditions B (without 

prestress) and C (with prestress). This applies to all FE-models with the uniform thickness h. Even for the Model 

Step the deviations are negligible. 

If the results of the simulation in the condition BC A (“Klemmschneidenlagerung”) is compared with the results 

in other two boundary conditions B and C, the better agreement of the maximum nodal displacements from the 

measurement u3max to those of the calculation u3 maxFEM is noticeable for BC A (see Table 2). This has been the 

result for all models except for the model Step. Therefore, BC B and C match best. 
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Table 2. Results of the FEM-simulations with volume elements 

 

 
Model 1 Model 2 

config. 1 

Model 2 

config. 2 

Model Step 

Parameter Material Data 

ℎ [mm] 3.4 3.4 3.4 3.5 / 3.3 

𝜌 [kg m−3] 294.12 302.77 / 285.47 302.77 / 285.47 294.12 

𝐸 [MPa]  (BC A) 407.45 407.45 445.51 / 373.42 463.28 

𝐸 [MPa]  (BC B) 107.34 107.34 117.33 / 98.35 121.42 

𝐸 [MPa]  (BC C) 107.27 107.27 117.28 / 98.30 122.25 

𝜈 [-] 0.3 0.3 0.3 0.3 

Statistics Boundary Conditions A: 

𝑢3 max _𝑒𝑥𝑝𝑡  [mm] 1.337 1.337 1.337 1.349 

𝑢3 max _FEM [mm] 1.322 1.322 1.328 1.167 

∆𝑢3 𝑚𝑎𝑥[mm] 1.012 1.014 1.004 1.105 

μ [mm] 0.027 0.027 0.027 -0.009 

σ [mm] 0.193 0.193 0.194 0.245 

Statistics Boundary Conditions B: 

𝑢3 max _𝑒𝑥𝑝𝑡  [mm] 1.337 1.337 1.337 1.349 

𝑢3 max _FEM [mm] 1.500 1.500 1.503 1.333 

∆𝑢3 𝑚𝑎𝑥  [mm] 1.143 1.145 1.137 1.222 

μ [mm] 0.094 0.094 0.094 0.046 

σ [mm] 0.226 0.226 0.227 0.262 

Statistics Boundary Conditions C: 

𝑢3max _𝑒𝑥𝑝𝑡  [mm] 1.337 1.337 1.337 1.349 

𝑢3max _FEM [mm] 1.501 1.501 1.503 1.344 

∆𝑢3 𝑚𝑎𝑥[mm] 1.143 1.145 1.137 1.214 

μ [mm] 0.094 0.094 0.094 0.046 

σ [mm] 0.226 0.227 0.227 0.255 

…/… ⇔ white/blue section    

 

For the optimized value in the Young’s modulus, there are large differences between the “soft” boundary 

condition A and the “stiffer” boundary conditions B and C for all FE-models. The ratio of the Young’s moduli is 
𝐸𝐵𝐶𝐴

𝐸𝐵𝐶𝐵
=

𝐸𝐵𝐶𝐴

𝐸𝐵𝐶𝐶
≈ 3.8. The extent to which the optimized Young’s modulus corresponds to the reality remains to be 

clarified. 

As a conclusion, it can be said that very similar results are obtained for the same simple modeling of the canvas 

for the consistent plate theory and the FEM (comparing Table 1 with Table 2). However, compared to the measured 

values of the deformation of the canvas, the relative deviations of the calculations are significant. For this reason, 

a more precise description of the deformation behavior of the canvas requires a higher level of detail in the 

modeling. According to the current state of the consistent plate theory, this can only be achieved with the FEM. 

With modern FEM software, such as Abaqus here, the limits of modeling are greatly extended. This is the big 

advantage of the FEM. The disadvantages are the high cost for the rent of such a software and the time (also cost) 

to spend on such a complex software. 

In contrast, the consistent plate theory can provide a cost-efficient solution. If the general equations [31] are 

known, they can be programmed with a little effort, for example, by the easy-to-learn programming language 

Python which is freeware. If such a calculation program exists with the possibility to declare the relevant 

parameters such as the Young’s modulus via variables, it is possible to calculate the deformation behavior for 

geometrically simply designed canvases with adequate accuracy in a short period of time. Another advantage of 

the consistent plate theory compared to FEM is the analytical instead of the numerical character. This allows the 

simple and exact formulation of derivatives, e.g. to determine extreme values in the deformation of the canvas or 

its location. 

 

3.3 Finite Elements Analysis with Plate Elements 

 

In Section 3.1 and 3.2, it is worked out that the calculated values of the deformation of the canvas differ greatly 

from the measured ones. It is concluded that a more accurate description of the deformation behavior of the canvas 

requires a higher level of detail in the modeling, which can currently only be achieved with FEM. A higher level 

of detail of FE-models for simulating the mechanical behavior means perspectively considering the natural 

curvatures of the painting in the step of geometric modeling. The approximation of thin curved surface structures 

with solid elements can lead to locking effects that cause large errors [38]. Referring to Bischoff [39] the problem 

of transverse shear locking does not persist for plate and shell elements according to the Kirchhoff/Love theory. 

20



Also using higher order trial functions for solid elements can avoid shear lock effects. However, the computing 

time is very long compared to using plate or shell elements. 

The Kirchhoff/Love theory is suitable when the painted canvas with one layer and the initial state curvatures 

and deformations in the instantaneous configurations are small compared to other dimensions [28]. Since the 

painted canvas is only treated as a single-layer model in the context of this article, and referring to Section 2 the 

necessary requirements are also met, the plate and shell theory of Kirchhoff/Love can be applied.  

Looking to the future, the modeling of paintings as a single-layer plate or shell shows a lot of advantages, but 

the multi-layer modeling is also needed to calculate interlaminar tension and to simulate the effects of delamination. 

Therefore, the modeling in this Section will be pursued with a theory that takes shear effects into account, which 

has already been considered in [9] and [10]. Consequently, the shear-flexible plate theory according to Leissa and 

Qatu [28] is applied. In the study of this Section DSQ and DST element formulations of Batoz et al. [40] are used 

in the application of the professional software Siemens PLM LMS Samtech SamcefField V 18. 

As in the Sections 3.1 and 3.2, the modulus of elasticity is calculated backwards with a model-updating applying 

the general-purpose design program Siemens PLM Samtech BOSSquattro [41]. The parameters are adjusted in 

such a way that the maximum deformation of the model corresponds to that measured on the real object. The 

resulting calculated deformation fields are compared with the measured.  

 

3.3.1 Modeling 

The virtual face with the same main dimensions as the real object is divided in 106 elements in x-direction and 

161 elements in y-direction regarding the reference basis shown in Figure 3. Quadrangular elements with four 

integration points are applied.  

In the case, the parameters of the blue and white area are different, and the areas are geometrically modelled as 

separated faces, which are “merged” to one shell with consistent kinematic transition condition between the faces. 

Each section of this shell can be assigned a separate model and material behavior. In accordance with Section 2.1 

here the painted canvas is assumed as one layer made from an isotropic material with linear material behavior. The 

different variations of parameter and type of constraints are combined in configurations. The studied 

configurations are: 

Config. 1: One thickness, one Young’s modulus, one density, one Poisson’s ratio ν=0.3 for both areas of the 

painted canvas, BC A “Klemmschneidenlagerung”, optimization parameter: Young’s modulus, 

Config. 2: One thickness, one Young’s modulus, one density, one Poisson’s ratio ν=0.3, BC: painted canvas is 

fixated at a wooden stretcher, which is modeled as framework with one cross bar. The beams are modeled as line 

elements with a cross section and material data according to Section 2.1 as well as an isotropic material behavior. 

The stretcher is clamped at the four corners. Optimization parameter: Young’s modulus,  

Config. 3: One thickness, one Poisson’s ratio ν=0.3 for both areas of the painted canvas, but different Young’s 

Modulus, different densities, BC A “Klemmschneidenlagerung”, optimization parameter: Young’s moduli. 

Config. 4: One Poisson’s ratio ν=0.3 for both areas of the painted canvas, but different thickness, different 

Young’s Modulus, different densities, BC A “Klemmschneidenlagerung”, optimization parameters: Young’s 

moduli. 

The Young’s moduli are parameterized. These variables are assigned to mesh sections in the epilogue of Samcef 

Fields and imported to Boss quattro as optimization variables. 

 

3.3.2 Results 

The present study is evaluated in accordance with the analysis in Section 3.2. The values of the input and output 

parameters are documented in Table 3. All configurations fulfill the requirements of a linear static analysis. 

Therefore, the module ASEF of Samcef Field is applied. 

 

Table 3. Results of the FEM-simulations with plate elements 

 
 Config. 1 Config. 2 Config. 3 Config. 4 

Parameter Material Data 

ℎ [mm] 3.4 3.4 3.4 3.5/3.3 

𝜌 [𝑘𝑔𝑚−3]  294.12 294.12 302.77 / 285.47 302.77 / 285.47 

𝐸 [MPa]  404.54 124.12 406.76 / 402.74 408.44 / 404.40 

𝜈 [-] 0.3 0.3 0.3 0.3 

Statistics “Klemmschneidenlagerung” 

𝑢3 𝑚𝑎𝑥 𝑒𝑥𝑝𝑡  [mm] 1.337 1.337 1.337 1.337 

𝑢3 𝑚𝑎𝑥 𝐹𝐸𝑀  [mm] 1.337 1.337 1.337 1.338 

…/… ⇔ white/blue section    

 

The differences between the measured and the calculated displacement field of the four configurations are 

shown in Figure 24. 
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Figure 24. Difference between measured and with finite plate elements calculated displacement fields 

 

Both the qualitative appearance of the difference fields and the values are very similar to the results shown in 

Figures 22 and 23 bottom lines. The extremes are noticeable due to the two indentations, the distorted stretcher 

especially the lower right corner (referring to Figure 3), the horizontal lines in the center of the canvas and the 

vertical stripes in the middle of the two edges as well as in the center of the painting. 

 

3.3.3 Evaluation 

Using the plate instead of the volume elements does not cause any change in the quality of the results. The 

differences between the calculated and measured displacement field have remained the same. However, this also 

means that modeling the mechanical behavior of the painted canvas with shell elements is just as legitimate as 

modeling it with volume elements. This knowledge also serves to increase the detail of the modeling based on 

shell elements. 

 

4. Virtual Painting Design 

 

The extremes of the field deviations between the measured and calculated displacement fields in Figure 24 show 

similarities to Figure 12 which is the deformation field of the standing real object. Since 1.) the load acts on the 

standing painting almost exclusively in the inplane direction and 2.) neither in Section 2.1 nor in Section 2.3, is 

wrinkle or buckling behavior determined. It can be assumed that the deformation field in Figure 12 is the initial 

configuration in the out-of plane direction of the considered problem, the deformation of the lying painting.  

If this initial configuration is assumed to be the basic deformation field of the painted canvas (before loaded in 

out-of plane direction by the gravitation), this is contained in the measured deformation field of the lying canvas 

(Figure 13). Since the initial deformation is not included in the calculation models, it must be subtracted from the 

measured deformation field of the lying test object. The corrected measured deformation field of the lying painted 

canvas is shown in Figure 25. 

The corrected displacement field shows the characteristics of a lying canvas under its dead weight as expected. 

Obviously, the deviation of the displacement field of the lying painting from the expected is affected by the initial 

state of displacement caused by the natural deformation of the painting and the distortion of the stretcher. The 

correction of the displacement field also reveals a new value for the maximum displacement of 1.6 mm instead of 

the previously considered 1.34 mm. 

Consequently, the result in Figure 24 needs to be corrected, too. Consequently, the difference between the 

corrected measurement result and the in Section 3.3 calculated displacement fields is to be generated. The result 

is shown in Figure 26. 
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Figure 25. Difference of the measured displacement fields of the lying and standing painting (Left: 2D Plot, 

Center: 3D Surface Plot, Right: 3D Point Plot) 

 

 
 

Figure 26. Difference between the corrected measured displacement fields and those calculated with finite plate 

elements  

 

The values, especially the distance between the minimum and maximum, are smaller as expected.  

Beside this positive finding, the plots in Figure 26 demonstrate the consequence that in contrast to Section 3.1 

and 3.2, the uneven positioning of the painting dummy caused by the suspension (Figure 10 right) is not corrected 

in this Section. This means that the displacement fields include a rotation around the diagonal from the top white 

to the bottom blue corner (Figure 3).  

Additionally, in the 3D point plot of Figure 25, grooves appear particularly clearly at the points where the canvas 

is attached to the stretcher frame with the help of staples. Furthermore, as in Section 3.1.1, the calculated Young’s 

modulus for model 2 that supports the canvas with a wooden stretcher (Table 4) is much smaller compared to other 

examples. The decrease of the value for the Young’s modulus is also effected by boundary condition B and C in 

Section 3.2 (Table 2). These boundary conditions respect the clamping with staples and the prescribed 

displacement at the staples’ position. The pre-stretching of the canvas and the resulting pre-tension has a share in 

the stiffness matrix, as with the loading of a disc. The pre-strain leads to a coupling problem between the disc and 

the plate [35]. 

As a conclusion, the position of the staples and a prescribed displacement of the canvas at these points need to 

be considered in a more detailed model. The position of the staples is documented in Appendix A, but there are no 

values for the pre-tension or pre-stretching of the canvas. The only clue is the fact in Section 2.1 that there are no 

tension garlands, i.e. the pre-stretching of the canvas must be small. Since there are no exact values, the pre-strain 

is included as the optimization parameters “prescribed displacements” in the model update. A further level of 

modeling depth relates to the curvature, that is the initial field of deformation of the standing painting. Referring 

to equation 7.8 on p. 278 in Vibrations of Continuous Systems [28], the curvature influences the stiffness of the 

shell, too. 
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In accordance with Sections 2.1 and 3, the painted canvas is assumed as one layer made from an isotropic 

material with linear material behavior. The studied configurations are: 

Config. 5: Even rectangular face, one thickness, one Young’s modulus, one density, one Poisson’s ratio  ν=0.3 

for both areas of the painted canvas, boundary condition C, optimization parameter: Young’s modulus, prescribed 

displacements in x- and y-direction, 

Config. 6: Even rectangular face, one Poisson’s ratio ν=0.3 for both areas of the painted canvas, but different 

thicknesses, different Young’s Moduli, different densities for each section, boundary condition C, optimization 

parameters: Young’s moduli, prescribed displacements in x- and y-direction, 

Config. 7: Initial deformation field of standing painting (Figure 12), one Poisson’s ratio ν=0.3 for both areas of 

the painted canvas, but different thicknesses, different Young’s Moduli, different densities for each section, 

boundary condition C, optimization parameters: Young’s moduli, prescribed displacements in x- and y-direction. 

Shallow shell formulations provide for the consideration of the pretension and the curvature [28]. Therefore, in 

the study of this Section shell element formulations of Hughes [42] are used in the application of the professional 

software Siemens PLM LMS Samtech SamcefField V 18, especially the modules Mecano. 

The virtual face in config. 5 and 6 has the same main dimensions as the real object. According to Section 2.3 

the virtual face is divided in 106 elements in x-direction and 161 elements in y-direction, regarding the reference 

basis shown in Figure 3. Quadrangular and triangular elements are applied. 

Instead of designing a geometry model, in config. 7 the mesh with quadrangular elements is directly generated 

with the program Wolfram Mathematica 12.3. In accordance with the Bacon programming language a dat-file 

containing the table with the x and y coordinates of the mesh entities and the corresponding measured displacement 

in out-of plane direction of the standing painting is generated and imported to SamcefField. 

In all configurations, the edges of the virtual surface or the imported mesh are divided into sections to define 

the positions of the staples. The points between two edge sections are each already automatically meshed. The 

boundary condition A (“Klemmschneidenlagerung”) is applied to the edge sections between the staple points, 

while the constraints of the points are the prescribed displacements in in plane direction normal to the edge. This 

procedure is advantageous compared to vertices that are fixed to the virtual face. The variant with the vertices 

leads to numerical instabilities. 

In order to respect nonlinearities effected by the pretension and the considered initial curvature of the standing 

painted canvas, the implicit nonlinear solver of the module Mecano is used. For this purpose, the acceleration 

g=9.81 m/s² is applied to the models in configuration 5 as constant load and in the configurations 6 and 7 the 

linearly increasing load over time, which has reached the value g=9.81 m/s² at t=0.5 s. Then, the time integration 

between 0≤t≤1 s is carried out.  

The model-updating processes are operated with the general-purpose design program Siemens PLM Samtech 

BOSSquattro. The target is the maximum deformation of 1.6 mm in z-direction (Figure 3) according to the 

corrected measured displacement field of the lying painting (Figure 25). Depending on the configuration, the 

variables to be adjusted are the Young’s moduli and/or the prescribed displacements at the staples’ points. For the 

Model-Updating, definition ranges for the optimization variables must be specified. These are listed in Table 4. 

 

Table 4. Definition ranges for the optimization variables 

 
 Young’ modulus (white area) Young’ modulus (blue area) Presscr. displ. 

 x-direction 

Presscr. displ.  

y-direction 

Lower bound 20 MPa 20 MPa 0.01 mm 0.005 mm 

Upper bound 145 MPa 340 MPa 1 mm 0.5 mm 

 

The values for the Young’s moduli are based on the tangent slopes to the stress-strain graphs (Section 2.2), for 

the prescribed displacements on the fact that no tension garlands are visible (Section 2.1). The values for the 

prescribed displacements in the x-direction are greater than those in the y-direction because the canvas was first 

stretched over the two long sides of the stretcher (along the y-direction according to Figure 3). The main stress is 

therefore orthogonal, which means in the x-direction. 

The final set of values of each configuration and the definition of the direction of the prescribed displacements 

are documented in Table 5. 

Table 5 shows that different values are permitted for the prescribed displacement per edge. Along the edges, the 

prescribed displacement is assumed to be constant. The algebraic sign rule of the prescribed displacements is 

defined in the figure of Table 5. 

The difference displacement fields resulting from the corrected measured displacement field of the lying 

painting (Figure 25) and the calculated displacement field of config. 5 to 7 with the final sets of data listed in Table 

6 are shown in Figure 27. 

It is noted that the displacement fields shown in Figure 27 are greatly different from those of the configurations 

in Figure 26. This means that the parameters pre-strain and curvature have a comparatively large influence on the 

local deformations.  
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Since the displacement fields shown in Figure 27 include a rotation around the diagonal from the top white to 

the bottom blue corner (Figure 3), ideally, the corners normal to that diagonal have opposite extreme values, while 

the displacement of this diagonal is ZERO (turquoise). Config. 7, parameter set 1, meets these requirements best. 

 

Table 5. Final set of values for the configurations 5 to 7/parameter set1 

 
 Config. 5 Config. 6 Config. 7 

 

ℎ [mm] 3.4 3.5 / 3.3 3.5 / 3.3 

𝜌 [𝑘𝑔𝑚−3]  
294.12 302.77 / 

285.47 

302.77 / 

285.47 

𝐸 [MPa]  26.68 24.90 / 

20.75 

34.6 / 

20.33 

𝜈 [-] 0.3 0.3 0.3 

Prescr. displ. +x-

direc. [mm] 

0.3375 0.4150 0.359 

Prescr. displ.-x-

direc. [mm] 

-0.3394 -0.4150 -0.35 

Prescr. displ. +y-

direc. [mm] 

0.2123 0.2078 0.29 

Prescr. displ.-y-

direc. [mm] 

-0.2124 -0.2078 -0.095 

𝑢3𝑚𝑎𝑥 𝑒𝑥𝑝𝑡  [mm] 1.6 1.6 1.6 

𝑢3𝑚𝑎𝑥 𝐹𝐸𝑀  [mm] 1.6 1.6 1.61 

1st natural frequency 

[Hz] 

15.38 15.27 15.37 

…/… ⇔ white/blue section    

 

 
 

Figure 27. Difference between the corrected measured displacement fields with finite shell elements as well 

as the final set of values of calculated displacement fields 

 

The static quantities according to Table 3, mean, root of the mean of the squares, variance and standard deviation, 

are shown in Figure 28. Values are calculated either per column (left) or per row (right). This can be seen from the 

abscissa values in the diagrams. The statistic values are calculated for 106 columns and 161 rows. 

Overall, it can be stated that the difference fields calculated in rows vary much more than those evaluated in 

columns. The diagrams show that configuration 7 has the smallest mean values in the difference field in both the 

column and row directions. However, configuration 5 has the smallest standard deviations and variances. The 

result should be further improved. To be continued, the most promising base modeling, that is, the one considering 

configuration 7 will be introduced.  
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Figure 28. Statistic values of the displacements ∆u3 of the plots in Figure 27 (left: column-by-column, right: 

row-by-row) 

 

One possibility of reducing the magnitude of the difference field is to further adapt the model to the 

measurements. On the one hand, this can be achieved via the parameter values and, on the other hand, via the 

model itself and the considered parameters therein (the type of dependencies, the material model, etc.). However, 

the basic idea is always the adjustment of the measurement data. 

In these studies, in addition to the static deflection of the standing and lying painting due to its dead weight, the 

characteristic vibration modes and vibration frequencies of the standing painting are determined from the response 

of the test object to a sine sweep excitation with an amplitude in the frequency ranging from 1 to 64 Hz. The reason 

for this is that further indirect knowledge about the required stiffness matrix can be generated by including the 

dynamic behavior. 

The first natural frequency of the configurations 5 to 7 is documented in Table 6. The calculated values between 

15.27 Hz and 15.38 Hz are 1.5 times higher than the measured first characteristic frequency in the amount of 10 

Hz (Figure 15). Further measured characteristic vibration frequencies and those with config 7/parameter set 1 are 

listed in Table 6. 
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Table 6. Measured and calculated (config. 7/parameter set 1) characteristic vibration frequencies  

(n. m.:=not measured) 

 
No. 1 2 3 4 5 6 7 

Measurement 10.0 Hz 12.0 Hz 16.5 Hz 20.0 Hz 27.5 Hz 32.0 Hz 34.0 Hz 

FEA-calc. 15.4 Hz 20.4 Hz 27.9 Hz 30.1 Hz 34.3 Hz 37.9 Hz 40.9 Hz 

No. 8 9 10 11 12 13 14 

Measurement 39.0 Hz 44.0 Hz 57.0 Hz 59.5 Hz 63.5 Hz n. m. n. m. 

FEA-calc. 48.8 Hz 49.9 Hz 50.6 Hz 52.9 Hz 59.1 Hz 63.0 Hz 64.1 Hz 

No. 15 16 17 18 19 20 21 

Measurement n. m. n. m. n. m. n. m. n. m. n. m. n. m. 

FEA-calc. 68.2 Hz 73.0 Hz 77.0 Hz 78.4 Hz 80.4 Hz 83.3 Hz 92.1 Hz 

 

 
 

Figure 29. 6th measured and 8th calculated characteristic vibration mode of config. 7/parameter set 1 with 

𝑓𝐹𝐸𝐴8
𝐶𝑜𝑛𝑓𝑖𝑔7 𝑃𝑆⁄ 1

= 48.8 Hz 

 

 
 

Figure 30. 11th measured and 21st calculated characteristic vibration mode of config. 7/parameter set 1 with 

𝑓𝐹𝐸𝑀21
𝐶𝑜𝑛𝑓𝑖𝑔7 𝑃𝑆⁄ 1

= 92.1 Hz 

 

The large deviation of the calculated values from the measured ones runs through the entire frequency range 

from 1 Hz to about 100 Hz. The vibration modes associated with the characteristic frequencies highlighted in gray 

are shown in Figures 29 and 30. When comparing the vibration modes, it should be noted that 𝑤𝑀𝐸𝐴𝑆𝑖  results 
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from the distance measurement perpendicular to the canvas plane, with the laser beam hitting the painting surface 

at an angle deviating from 90 degrees due to the imperfect suspension and the distortion of the frame. In addition, 

there are deviations caused by the roughness of the painting’s surface. Therefore, also the calculated displacement 

fields in x- and y-direction are shown in the following Figures 29 and 30. 

Additionally, the deformations in the x- and y-directions are relevant with 10% of the deformation in the z-

direction for the characteristic higher-order vibration modes. 

The comparison of the measured and calculated modes shows that there is agreement in principle with regard 

to the number and position of the extremes. But there are deviations in the form of the extrema. 

It is now up to us to discuss whether these deviations are relevant and if so, where they come from and how 

they are likely to be remedied. 

 

5. Discussion 

 

Both the characteristic frequencies and the associated vibration modes show large deviations. These deviations 

need to be minimized. The fact is that there are many influencing parameters and great uncertainties in their 

determination. An optimum is an optimum the specific search process and depends for instance on the starting 

value. Another parameter set, which also causes 1.6 mm static maximum deformation, is listed in Table 7. The 

characteristic vibration modes that are associated with the frequencies from Figures 29 and 30 and calculated with 

parameter set 2 are shown in Figures 31 and 32. 

 

Table 7. Parameter set 1 and 2 of configuration 7 

 
 Config. 7 

Parameter set 
1  

(as in Table 6) 

2 

ℎ [mm] 3.5 / 3.3 3.5 / 3.3 

𝜌 [𝑘𝑔𝑚−3]  302.77 / 285.47 302.77 / 285.47 

𝐸 [MPa]  34.6 / 20.33 42.2 / 12.5 

𝜈 [-] 0.3 0.3 

Prescr. displ. +x-direc. [mm] 0.359 0.53 

Prescr. displ.-x-direc. [mm] -0.35 -0.43 

Prescr. displ. +y-direc. [mm] 0.29 0.21 

Prescr. displ.-y-direc. [mm] -0.095 -0.12 

𝑢3 𝑚𝑎𝑥 𝑒𝑥𝑝𝑡  [mm] 1.6 1.6 

𝑢3 𝑚𝑎𝑥 𝐹𝐸𝑀  [mm] 1.61 1.61 

1st natural frequency [Hz] 15.37 15.37 

…/… ⇔ white/blue section  

 

 
 

Figure 31. The 6th measured, and 9th calculated characteristic vibration mode of config. 7/parameter set 2 with 

𝑓𝐹𝐸𝐴9
𝐶𝑜𝑛𝑓𝑖𝑔7 𝑃𝑆⁄ 2

equalling to 47.9 Hz 
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Figure 32. The 11th measured and 23rd calculated characteristic vibration mode of config. 7/parameter set 2 with 

𝑓𝐹𝐸𝐴23
𝐶𝑜𝑛𝑓𝑖𝑔7 𝑃𝑆⁄ 2

 equalling to 87.9 Hz 

 

Both exemplary eigenmodes are much more like the measured deflection shapes than those of parameter set 1 

(Figures 29 and 30) as well as the associated vibration frequencies are also closer to the corresponding measured 

frequencies. The reason for this is just the new parameter set, which is listed in Table 7.  

The difference between the Young’s moduli and the values of the prescribed displacement of parameter set 2 is 

much greater than that between the Young’s moduli and the values of the prescribed displacement of parameter 

set 1. This leads to the conclusion that the characteristic vibration modes are strongly dependent on the pre-strain 

of the canvas. Furthermore, it can be concluded that if the characteristic vibration mode is identical to the measured, 

the associated characteristic frequency is correct. An extended model-updating can be derived from this. 

 

6. Conclusions 

 

Paintings on textile in museums are subject to the principle of preventive conservation. In order to prevent 

damage caused by physical, and in particular, mechanical forces in advance, methods from engineering mechanics 

are adopted in this article as part of the concept of the digital twin. The goal of this paper is to develop a virtual 

object that has the same static properties as the real painting dummy examined. Due to the lack of knowledge 

about pre-strain and undeveloped material models, the stiffness matrix is unknown. 

With an analytical solution based on the consistent plate theory, the deformation fields can be calculated 

efficiently depending on various parameters, but the sought Young’s modulus is far too high because the pre-

strains cannot be considered. 

A study with the volume elements has shown that the FEM can figure out solutions that are almost as exact as 

analytical models. Although pre-stretching of the canvas is considered, the finding follows that further modeling 

depth is necessary. 

In order to avoid numerical errors in the modeling, it is shown in a further step that the modeling with plate and 

shell elements is also adequate. The studies with shell elements also show that both the initial static deformation 

of the painted canvas and the location of the pre-stretched areas of the textile must be taken into account. 

Satisfactory results are obtained with these details, but it turns out that the characteristic frequencies are too high, 

and the details of the associated vibration modes do not match those measured. It is shown that with more than 

one set of parameters for Young’s modulus and pre-strain the finding follows that the measured maximum 

displacement of the lying painting can be calculated. The calculated parameter sets based on the model-updating 

aimed to reproduce the maximum deflection of the canvas depend on the initial values. However, it could be shown 

that if, in addition to the maximum deformation of the painting, the congruence of characteristic vibration modes 

is required, the associated characteristic vibration frequencies are also approximated to the measured ones. This 

leads to an extended model-update. 

Whether this procedure is sufficient to design a virtual twin must be examined in subsequent scientific work. If 

this is not the case, the model must be built in detail and also in a more complex manner, considering more precise 

material models, more detailed pre-strain, more precise two-dimensional determination of the painting in terms of 

its thickness and nonlinearities. 
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Appendix  

 

A Questionnaire 

 

 
Documentation of cracks and craquelure of the test object 
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1. Dimensions, textile and stretching edges  

 

 Height: 60.2 cm, Width: 40.2 cm, Thickness: 

1.8 mm 

Textile from one fabric web 

2. Weave (according to tensile testing) 

 Selvedge: non existing 

V: Warp vertical  

H: Weft horizontal 

3. Fiber analysis  

 Type V: Flax [Report, Vaudremer] 

H: Flax [Report, Vaudremer] 

Twist 

Mean of 10 

measurements 

V: 69.01° 

H: 66.32° 

Z 

Z 

4. Texture Texture detail, scale: 2 x 2 cm 

 Plain weave [Report, Vaudremer] Texture pattern: 

 

 

 

Vertical yarn 

Horizontal yarn 5. Yarn density 

 V: 21 warp yarns/cm²           

H: 22 weft yarns/cm² 

Mean of 10 measurements 

 Yarn 

thickness 

in mm 

V 0.23 0.33 0.24 0.33 0.23 0.31 0.21 0.31 0.34 0.22 0.14 0.30 0.32 0.26 0.29 0.27 

H 0.39 0.39 0.37 0.23 0.26 0.52 0.34 0.48 0.40 0.48 0.42 0.43 0.30 0.46 0.37 0.39 

 Textile filling 

in % acc. B.J.Rouba 

AH   = 56.7 %  

AV   = 85.8 % 

AHV = 93.85 % 

 

Analysis of structure of the test object canvas 
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Left tensioning side, 

paint layer right hand 

side  

Right tensioning side, 

paint layer left hand 

side 

Top tensioning side, 

paint layer right hand 

side 

Lower tensioning side, 

paint layer left hand side 

 

Position and number of staples 
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B Main and reduction PDEs 

 

For the first-order original-plate theory, we obtain the reduction PDEs 

 

𝑢1 1
0 = −( 𝑢0 3

0)
′
, (31) 

 

𝑢1 2
0 = −( 𝑢0 3

0)
•
, (32) 

 

𝑢2 3
0 =

ν

2(1 − ν)
Δ 𝑢0 3

0 (33) 

 

and the main PDE 

 

KΔΔ 𝑢0 3
0 = a3 (ℎ 𝑓0 3 + 2ĝ3

e+ +
ℎ

𝑎
((𝑔̂1

o+)′ + (𝑔̂2
o+)•)). (34) 

 

For the second-order original-plate theory, we obtain the reduction PDEs 

 

𝑢1 1
2 = 𝑔1

𝑜+ − ( 𝑢0 3
2)
′
−

3

1 − ν
c2(Δ 𝑢0 3

0)
′
, (35) 

 

𝑢1 2
2 = 𝑔2

𝑜+ − ( 𝑢0 3
2)
•
−

3

1 − 𝜈
𝑐2(Δ 𝑢0 3

0)
•
, (36) 

 

𝑢2 3
2 =

𝜈

2(1 − ν)
Δ 𝑢0 3

2 +
1 + 4𝜈

4(1 − ν)2
𝑐2ΔΔ 𝑢0 3

0 +
1

8(1 − ν)
((𝑔1

𝑜+)′ + (𝑔2
𝑜+)• + 2

𝑎

ℎ
𝑔3
𝑒+) (37) 

 

𝑢3 1
0 =

1

6

2 − 𝜈

(1 − 𝜈)
(Δ 𝑢0 3

0)
′
 (38) 

  

𝑢3 2
0 =

1

6

2 − 𝜈

(1 − 𝜈)
(Δ 𝑢0 3

0)
•
 (39) 

  

𝑢4 3
0 = −

1

24

1 + ν

(1 − ν)
ΔΔ 𝑢0 3

0 (40) 

 

and the main PDE: 

 

KΔΔ 𝑢0 3
2 = a3 (−

3

5

(8 − 3ν)

(1 − ν)
𝑐2Δĝ3

e+ + 𝑐2ℎ (( 𝑓1 1 )
′
+ ( 𝑓1 2 )

•
) + 𝑐2ℎ 𝑓2 3

−
1

10

(4 + ν)

(1 − ν)
𝑐2
ℎ

𝑎
((Δ 𝑔̂1

o+)′ + (Δ 𝑔̂2
o+)•) −

1

10

(24 + ν)

(1 − ν)
𝑐2ℎΔ 𝑓0 3 ) 

(41) 

 

C Solutions of the reduction PDEs 

 

For the first-order original-plate theory, we obtain the reduction PDEs 

 

𝑢1 1
0 = −

ℎ𝑎3𝑔

𝐾
∑ (𝑚𝜋)

ρ𝑚𝑛
γ𝑚𝑛
4

∞

𝑚,𝑛=1

cos(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2), (42) 

 

𝑢1 1
0 = −

ℎ𝑎3𝑔

𝐾
∑ (𝑛𝜋𝛼)

ρ𝑚𝑛
γ𝑚𝑛
4

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) cos(𝑛𝜋𝛼ξ2), (43) 

  

𝑢2 3
0 = −

ν

2(1 − ν)

ℎ𝑎3𝑔

𝐾
∑

ρ𝑚𝑛
γ𝑚𝑛
2

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2). (44) 
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For the second-order original-plate theory, we obtain the reduction PDEs 

𝑢1 1
2 =

1

10

(6 − ν)

(1 − ν)

ℎ𝑎3𝑐2𝑔

𝐾
∑ (𝑚𝜋)

ρ𝑚𝑛
γ𝑚𝑛
2

∞

𝑚,𝑛=1

cos(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2), (45) 

𝑢1 2
2 =

1

10

(6 − ν)

(1 − ν)

ℎ𝑎3𝑐2𝑔

𝐾
∑ (𝑛𝜋𝛼)

ρ𝑚𝑛
γ𝑚𝑛
2

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) cos(𝑛𝜋𝛼ξ2), (46) 

𝑢2 3
2 =

1

20

(5 + ν)

(1 − ν)

ℎ𝑎3𝑐2𝑔

𝐾
∑ ρ𝑚𝑛

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2), (47) 

𝑢3 1
0 = −

1

6

(2 − ν)

(1 − ν)

ℎ𝑎3𝑔

𝐾
∑ (𝑚𝜋)

ρ𝑚𝑛
γ𝑚𝑛
2

∞

𝑚,𝑛=1

cos(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2), (48) 

𝑢3 2
0 = −

1

6

(2 − ν)

(1 − ν)

ℎ𝑎3𝑔

𝐾
∑ (𝑛𝜋𝛼)

ρ𝑚𝑛
γ𝑚𝑛
2

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) cos(𝑛𝜋𝛼ξ2), (49) 

𝑢4 3
0 = −

1

24

(1 + ν)

(1 − ν)

ℎ𝑎3𝑔

𝐾
∑ ρ𝑚𝑛

∞

𝑚,𝑛=1

sin(𝑚𝜋ξ1) sin(𝑛𝜋𝛼ξ2). (50) 
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