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Abstract: Choosing a battery supplier is a vital decision-making problem, for which it is essential to obtain stable 

evaluations. For such sustainable supplier evaluation, multi-criteria decision analysis (MCDA) methods are often 

used, as their ability to handle uncertain data gives experts more significant opportunities to consider a broader 

range of cases. However, given the great number of MCDA approaches, it is challenging to find out which 

approach is the most appropriate. Therefore, this paper presents a sensitivity analysis on evaluating battery 

suppliers by ARAS, EDAS, MAIRCA, TOPSIS, and VIKOR methods in a fuzzy environment. The provided study 

presented similar results for the considered MCDA methods confirmed by the WS similarity measure of rankings 

and the weighted Spearman correlation 𝑟𝑤. On the other hand, the sensitivity analysis conducted on the considered

methods indicated that the most relevant criteria for this problem are transportation cost, delivery time, and 

warranty period.  

Keywords: Sustainability; Energy management; Batteries; Decision-making; Triangular fuzzy numbers; MCDA; 

Robustness 

1. Introduction

Decision-makers are facing a vast number of problems on a daily basis, and what final decisions they make are

influenced by many factors [1]. However, the analytical capacity of decision-makers to determine the 

attractiveness of the chosen options can be significantly limited. Therefore, situations in which the problem’s 

dimensionality exceeds the decision-makers’ analytical capacity should be avoided [2]. To this end, techniques 

have emerged to help assess decision variants’ attractiveness based on input data. Among these techniques, Multi-

Criteria Decision Analysis (MCDA) methods are a popular solution used in this area, mainly due to their flexibility, 

ability to process data in complex problems analytically, and high operational speed [3]. Being an important part 

of the decision-making chain, MCDA supports decision-makers with their results, and Decision Support Systems 

(DSS), created based on the MCDA methods, equip decision-makers with additional knowledge by informing 

them of the preferred hierarchy of decision variants under consideration [4]. In addition, when sensitivity analysis 

techniques are used in developing such systems, it is possible to obtain the possible changes in ranking depending 

on changes in the input data.   

MCDA methods were initially based on the operations of crisp numbers. It allowed calculations to be performed 

in an environment where all the data were precisely known [5]. However, for decision-making on real-world 

problems, it is also important how the data are represented and whether the knowledge about the parameters of the 

decision options is complete. Due to measurement uncertainties or lack of specific data in problems, it is often 

necessary to consider all potential values [6]. To this end, the basic assumptions on which multi-criteria methods 

are based have been extended to include fuzzy logic to widen the applicability of these methods to problems where 

uncertain knowledge arises. One of the most widely used extensions of fuzzy logic in decision-making is using 
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Triangular Fuzzy Numbers (TFNs) to represent uncertain knowledge [7]. Their premise is to represent data using 

the minimum expected value, the expected value, and the maximum expected value for a given parameter so that 

possible values in the problem can be considered in the calculations.   

Due to their flexibility, MCDA methods are readily used in many practical areas, and their effectiveness has 

been verified many times. MCDA methods operating in crisp and fuzzy environments have been used to develop 

dedicated systems for solutions in healthcare [8], sports management [9], sustainable transport development [10], 

and energy management [11], among others. Energy development is a critical topic due to the implications of 

different energy sources, products, or production techniques and their impacts on the environment. The negative 

effects of human activity and the deteriorating state of the environment require that decisions taken in this area on 

the most rational and preferred choices are based on precise calculations that guarantee the robustness of the 

rankings against potential changes [12]. Therefore, techniques, characterized by high reliability and efficiency, 

should be used to ensure that the decisions made by decision makers point to the most attractive and sustainable 

solutions. MCDA methods are one of such techniques that can be used to create dedicated decision-support systems 

in these areas. 

This paper proposed a research approach to identify the most rational solutions based on a set of MCDA methods 

operating in a fuzzy environment. Five multi-criteria techniques based on Triangular Fuzzy Numbers, namely 

fuzzy Additive Ratio Assessment (ARAS), fuzzy Distance from Average Solution (EDAS), fuzzy Multi-Attribute 

Ideal Real Comparative Analysis (MAIRCA), fuzzy Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS), and fuzzy VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), were used in 

the practical problem of selecting a battery supplier for the battery swapping station. In addition, a sensitivity 

analysis on the robustness of the results to changes was also carried out. The proposed solution uses a set of 

decision-making methods that provide a robust tool for evaluating options when combined with sensitivity analysis. 

Consequently, they can be used by decision-makers in the field of sustainable energy development to select 

decision variants in the most preferred way based on the assumptions of sustainability and quality of operation. 

The contribution of this work is that it proposed a methodology based on precise calculations to guarantee the high 

reliability of the results obtained from fuzzy MCDA methods and sensitivity analysis. In addition, the multi-criteria 

calculations in the study were based on the PyFDM library, which provided support for decision-makers in 

designing decision-support systems in a fuzzy environment using the Python language [13].  

The rest of the paper is organized as follows. Section 2 presents the literature review regarding supplier selection, 

energy development, and the multi-criteria approaches used to assess possible decision variants. Section 3 shows 

the preliminaries of the Triangular Fuzzy Numbers and fuzzy MCDA techniques. Section 4 presents a study case 

for evaluating the sustainable battery supplier for the battery swapping station. Section 5 includes a discussion of 

the obtained results and their practical implications. Finally, Section 6 shows the conclusions drawn from the 

research and presents the future research directions.  

 

2. Related Works 

 

Supplier evaluation is an important decision-making problem that strongly affects the quality, efficiency and 

reliability of a supply chain [14]. There are often complex problems encountered in the selection of suppliers, 

including the many criteria against which suppliers can be evaluated, of which, some can be very specific. Without 

specialized tools, it is difficult for experts to take so many suppliers available into account.   

Therefore, a frequently used tool to evaluate suppliers is the Multi-Criteria Decision Analysis (MCDA) methods. 

They can be used to solve supplier selection problems related to fields such as electronics, pharmaceuticals, textiles, 

or railroads [15]. Chang et al. [16] used an approach combining Indifference Threshold-based Attribute Ratio 

Analysis (ITARA) and Preference Ranking Organization Method for Enrichment Evaluation – Aspiration Level 

(PROMETHEE-AL) methods to assess the sustainability and spin-out of electronics suppliers. Kocaoğlu and 

Küçük [17] used TOPSIS, and Multi-Objective Optimisation by Ratio Analysis (MOORA) to evaluate the 

performance of 6 pharmaceutical companies operating in Turkey. Li et al. [18] used the Decision Making Trial 

and Evaluation Laboratory (DEMATEL) approach for supplier selection in China’s textile industry. Bruno et al. 

[19] used the Analytic Hierarchy Process (AHP) approach to evaluate suppliers operating for AnsaldoBreda, a 

major Italian railroad manufacturer.  

Popular methods used for the supplier evaluation problem include TOPSIS, VIKOR, AHP, Analytic Network 

Process (ANP), Data Envelopment Analysis (DEA) and Simple Multi-Attribute Rating Technique (SMART). 

Birgün Barla [20] used the SMART approach to evaluate suppliers for a manufacturing company under the lean 

philosophy. Garg and Sharma [21] used the Best-Worst Method - VIseKriterijumska Optimizacija I Kompromisno 

Resenje (BWM-VIKOR) approach to evaluate sustainable outsourcing partners for the Electronics Company of 

India. Zhang [22] used the TOPSIS method with entropy weights to evaluate suppliers of electrical power materials. 

Al Hazza et al. [23] used the DELPHI and AHP methods for a supplier selection problem. Kalantary et al. [24] 

used the DEA approach to assess the sustainability of supply chains.  

Due to the limited data acquisition conditions, data are often approximate and challenging to represent in real 
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numbers. Therefore, many popular MCDA methods have been extended to handle uncertain data. The most 

common tool for handling uncertain data in MCDA methods is fuzzy sets. Cakar and Çavuş [25] used a fuzzy 

TOPSIS method to select a dairy supplier in Macedonia. Bahadori et al. [26] used an artificial neural network and 

fuzzy VIKOR to evaluate hospital suppliers. Ghorabaee et al. [27] applied an extension of the EDAS approach in 

a fuzzy environment in which suppliers were evaluated. Basaran and Çakir [28] used the fuzzy COPRAS method 

for supplier selection in the food industry.  

There are other tools related to handling uncertain data, such as Interval data, Intuitionistic fuzzy sets, 

Pythagorean fuzzy sets, Fermatean fuzzy sets, Picture fuzzy sets, Neutrosophic fuzzy sets, and Spherical fuzzy 

sets. Zhang and Li [29] applied the interval extensions of the TOPSIS and GRA methods to the problem of supplier 

spinning. Kumari and Mishra [30] used intuitionistic fuzzy COPRAS for green supplier selection. Keshavarz-

Ghorabaee et al. [31] used WASPAS and SMART methods in a Fermatean fuzzy sets environment to evaluate a 

green building supplier. Zhang et al. [32] used the EDAS method in the Picture fuzzy sets environment to evaluate 

green suppliers.  

Given as many approaches related to MCDA, similarities between them are constantly being studied. Rashidi 

and Cullinane [33] compared the methods of fuzzy DEA and fuzzy TOPSIS in the problem of selecting sustainable 

suppliers. Junior et al. [34] conducted a study comparing fuzzy AHP and fuzzy TOPSIS methods for the supplier 

selection problem of a company in the automotive manufacturing chain. Kizielewicz et al. [35] conducted research 

on MCDA methods such as COMET, TOPSIS, and SPOTIS in material supplier evaluation.  

Therefore, this paper takes battery suppliers as an example, and focuses on developing a framework related to 

sustainable supplier evaluation, using MCDA methods that operate on uncertain data. By examining the 

similarities between them and conducting a sensitivity analysis against the criteria, the study finds out about the 

stability and reliability of the proposed framework.   

 

3. Preliminaries 

 

3.1 Triangular Fuzzy Numbers 

 

Fuzzy Set Theory and its extensions are important to modelling in various scientific fields where multi-criteria 

decision problems are considered. Some of the main assumptions for this theory are described below:  
The Fuzzy Set and the Membership Function - the characteristic function μA of a crisp set 𝐴 ⊆ 𝑋 assigns a 

value of either 0 or 1 to each member of 𝑋, and the crisp sets only allow a full membership (μ𝐴(𝑥) = 1) or no 

membership at all (μ𝐴(𝑥) = 0). This function can be generalized to a function μ𝐴̃ so that the value assigned to the 

element of the universal set 𝑋 falls within a specified range, i.e., μ𝐴̃: 𝑋 → [0,1]. The assigned value indicates the 

degree of membership of the element in the set 𝐴. The function μ𝐴̃ is called a membership function and the set 

𝐴̃ = (𝑥, μ𝐴̃(𝑥)), where 𝑥 ∈ 𝑋, defined by μ𝐴̃(𝑥) for each 𝑥 ∈ 𝑋 is called a fuzzy set.  

The Triangular Fuzzy Number (TFN) - a fuzzy set Ã, defined on the universal set of real numbers R, is said 

to be a triangular fuzzy number 𝐴̃(𝑎,𝑚, 𝑏) if its membership function takes on the following form (1):  
 

𝜇𝐴̃(𝑥, 𝑎,𝑚, 𝑏) =

{
  
 

  
 

0, 𝑥 ≤  𝑎
𝑥 − 𝑎

𝑚 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑚

1, 𝑥 = 𝑚
𝑏 − 𝑥

𝑏 −𝑚
, 𝑚 ≤ 𝑥 ≤ 𝑏

0, 𝑥 ≥ 𝑏

 (1) 

 

and the following characteristics (2) and (3): 

 

𝑥1, 𝑥2 ∈ [𝑎, 𝑏] ∧ 𝑥2 > 𝑥1 ⇒ μ𝐴̃(𝑥2) > μ𝐴̃(𝑥1) (2) 

 

𝑥1, 𝑥2 ∈ [𝑏, 𝑐] ∧ 𝑥2 > 𝑥1 ⇒ μ𝐴̃(𝑥2) > μ𝐴̃(𝑥1) (3) 

 

The Support of a TFN - the support of a TFN 𝐴̃ is defined as a crisp subset of the set 𝐴̃ in which all elements 

have a non-zero membership value, as shown in (4):  
 

𝑆(𝐴̃) = 𝑥: μ𝐴̃(𝑥) > 0 = [𝑎, 𝑏] (4) 
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The Core of a TFN - the core of a TFN 𝐴̃ is a singleton (one-element fuzzy set) with the membership value 

being equal to 1, as shown in (5):  

𝐶(𝐴̃) = 𝑥: μ𝐴̃(𝑥) = 1 = 𝑚 (5) 

The Fuzzy Rule - the single fuzzy rule can be based on the Modus Ponens tautology. The reasoning process 

uses the logical connectives IF - THEN, OR and AND. 

3.2 Fuzzy Additive Ratio Assessment 

The fuzzy extension of the Additive Ratio Assessment (ARAS) method was proposed by Zavadskas and Turskis 

[36]. It allows for operation in an uncertain environment based on the data represented as TFNs. The main steps 

of the fuzzy ARAS procedure can be described as follows.  

Step 1. Establish the triangular fuzzy decision matrix, which contains m options and n criteria (i = 1, 2, …, m 

and j = 1, 2, …, n) (6).  

𝑋 =  

[

𝑥11 ⋯ 𝑥1𝑗 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖1 ⋯ 𝑥𝑖𝑗 ⋯ 𝑥𝑖𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑗 ⋯ 𝑥𝑚𝑛]

(6) 

where 𝑥𝑖𝑗 is represented as Triangular Fuzzy Number (𝑥𝐿, 𝑥𝑀, 𝑥𝑈). 

Step 2. Determine the optimal value of each criterion value (7). 

𝑋̃ =

[

𝑥01̃ ⋯ 𝑥0𝑗̃ ⋯ 𝑥0𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖1̃ ⋯ 𝑥𝑖𝑗̃ ⋯ 𝑥𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑚1̃ ⋯ 𝑥𝑚𝑗̃ ⋯ 𝑥𝑚𝑛̃]

(7) 

where 𝑥0𝑗̃ denotes the optimal value of criterion 𝑗 (for the profit criterion,𝑥0𝑗̃=max
𝑖
 𝑥𝑖𝑗; and for the cost criterion,

𝑥0𝑗̃= min
𝑖
𝑥𝑖𝑗). 

Step 3. Calculate the normalized fuzzy decision matrix (8). 

𝑋̃̅ =

[

𝑥̅01̃ ⋯ 𝑥̅0𝑗̃ ⋯ 𝑥̅0𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥̅𝑖1̃ ⋯ 𝑥̅𝑖𝑗̃ ⋯ 𝑥̅𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥̅𝑚1̃ ⋯ 𝑥̅𝑚1̃ ⋯ 𝑥̅𝑚𝑛̃]

(8) 

where for the profit criterion, the normalization formula is presented as follows (9): 

𝑥̅𝑖𝑗̃ =
𝑥𝑖𝑗̃

∑ 𝑥𝑖𝑗̃
𝑚
𝑖=0

(9) 

and for the cost criterion, the normalization formula is presented as follows (10): 

𝑥̅𝑖𝑗̃ =

1

𝑥𝑖𝑗̃

∑
1

𝑥𝑖𝑗̃

𝑚
𝑖=0

(10) 
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Step 4. Calculate the weighted normalized fuzzy decision matrix with Eq. (11):  
 

𝑋̃̂ =

[
 
 
 
 
 
𝑥̂01̃ ⋯ 𝑥̂0𝑗̃ ⋯ 𝑥̂0𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥̂𝑖1̃ ⋯ 𝑥̂𝑖𝑗̃ ⋯ 𝑥̂𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥̂𝑚1̃ ⋯ 𝑥̂𝑚𝑗̃ ⋯ 𝑥̂𝑚𝑛̃]

 
 
 
 
 

 (11) 

 

where 𝑥̂𝑖𝑗̃ = 𝑥̅𝑖𝑗̃ × 𝑤𝑗̃, 𝑖 = 0,1, … ,𝑚, 𝑗 = 1,2, … , 𝑛.  
 

Step 5. Determine the overall performance index for each option (12).  
 

𝑆𝑖̃ =∑𝑥̂𝑖𝑗̃

𝑛

𝑗=1

, 𝑖 = 0,1, … ,𝑚 (12) 

 

Step 6. Calculate the defuzzified value of the performance index (13).  
 

𝑆𝑖̃ =
1

3
(𝑆𝑖

𝐿̃ + 𝑆𝑖
𝑀̃ + 𝑆𝑖

𝑈̃), 𝑖 = 0,1, … ,𝑚 (13) 

 

Step 7. Determine the utility degree of each option with Eq. (14):  
 

𝑄𝑖 =
𝑆𝑖̃

𝑆0̃
, 𝑖 = 0,1, … ,𝑚 (14) 

 

3.3 Fuzzy Evaluation Based on Distance from Average Solution 

 

The Evaluation based on Distance from Average Solution (EDAS) method was proposed by Keshavarz 

Ghorabaee et al. [37]. Its functioning is based on the calculation of the positive distance from average (PDA) and 

negative distance from average (NDA). The decision variants characterized by higher PDA values and lower NDA 

values are preferable. The triangular fuzzy number extension of the standard EDAS method enables it to operate 

in the fuzzy environment where there are uncertain data. The main steps of the method are presented as follows.  
Step 1. Determine the triangular fuzzy decision matrix based on the Eq. (6).  
Step 2. Determine the average triangular fuzzy decision matrix based on the initial triangular fuzzy decision 

matrix and formula presented below (15):  
 

AVj =
∑ 𝑥𝑖𝑗
𝑛
𝑖=1

𝑘
 (15) 

 

Step 3. Calculate the fuzzy Positive Distance from Average (PDA) and fuzzy Negative Distance from Average 

(NDA) (16):  
 

PDA = [pdaij]𝑛×𝑚
NDA = [ndaij]𝑛×𝑚

 (16) 

 

where for the profit criterion, the values are calculated as (17):  
 

PDAij =
ψ(𝑥𝑖𝑗 − AVj)

𝑘(AVj)
NDAij =

ψ(AVj − 𝑥𝑖𝑗)

𝑘(AVj)
 (17) 

 

and for the cost criterion, the values are calculated with Eq. (18):  
 

PDAij =
𝜓(AVj) − 𝑥𝑖𝑗

𝑘(AVj)
𝑁𝐷Aij =

𝜓(𝑥𝑖𝑗 − AVj)

𝑘(AVj)
 (18) 

 

Step 4. Calculate the fuzzy weighted positive (SP) and negative (SN) distances (19).  
 

41



SPi =∑(𝑤𝑗̃ + PDAij)

𝑚

𝑗=1

SNi =∑(𝑤𝑗̃ + NDAij)

𝑚

𝑗=1

 (19) 

 

Step 5. Determine the normalized fuzzy weighted positive (NSP) and negative (NSN) distances (20).  
 

NSPi =
𝑆𝑃𝑖

maxi(𝑘(𝑆𝑃𝑖))
NSNi = 1 −

𝑆𝑁𝑖

maxi(𝑘(𝑆𝑁𝑖))
 (20) 

 

Step 6. Calculate the fuzzy Appraisal Score (AS) for each option (21).  
 

ASi =
𝑁𝑆𝑃𝑖 + 𝑁𝑆𝑁𝑖

2
 (21) 

 

3.4 Fuzzy Multi-Attribute Ideal Real Comparative Analysis 

 

The Multi-Attribute Ideal Real Comparative Analysis (MAIRCA) method is based on calculating the equal 

probability for selecting each option. Moreover, it uses a theoretical ponder matrix, and an actual ponder matrix 

to determine the final preferences. The subsequent steps of the method are presented below.  

Step 1. Determine the triangular fuzzy decision matrix based on the Eq. (6). 

Step 2. Determine the probability of selecting an option based on the Eq. (22): 

 

𝑃𝐴𝑖 =
1

𝑚
;∑𝑃𝐴𝑖

𝑚

𝑖=1

= 1 (22) 

 

Step 3. Calculate the theoretical fuzzy decision matrix (23):  
 

𝑋 =

[
 
 
 
 
𝑡11̃ ⋯ 𝑡1𝑗̃ ⋯ 𝑡1𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑡𝑖1̃ ⋯ 𝑡𝑖𝑗̃ ⋯ 𝑡𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑡𝑚1̃ ⋯ 𝑡𝑚𝑗̃ ⋯ 𝑡𝑚𝑛̃]

 
 
 
 

 (23) 

 

where 𝑡𝑖𝑗̃ is calculated as 
1

𝑚
𝑤𝑗.  

Step 4. Calculate the normalized fuzzy decision matrix (24): 

 

𝑋̃ =

[
 
 
 
 
𝑥11̃ ⋯ 𝑥1𝑗̃ ⋯ 𝑥1𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖1̃ ⋯ 𝑥𝑖𝑗̃ ⋯ 𝑥𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑚1̃ ⋯ 𝑥𝑚1̃ ⋯ 𝑥𝑚𝑛̃]

 
 
 
 

 (24) 

 

with the normalization formula given below (25):  
 

𝑛𝑖𝑗
𝐿 =

𝑥𝑖𝑗
𝐿

√∑ [(𝑥𝑖𝑗
𝐿 )

2
+ (𝑥𝑖𝑗

𝑀)
2
+ (𝑥𝑖𝑗

𝑈)
2
]𝑚

𝑖=1

  

𝑛𝑖𝑗
𝑀 =

𝑥𝑖𝑗
𝑀

√∑ [(𝑥𝑖𝑗
𝐿 )

2
+ (𝑥𝑖𝑗

𝑀)
2
+ (𝑥𝑖𝑗

𝑈)
2
]𝑚

𝑖=1

 

𝑛𝑖𝑗
𝑈 =

𝑥𝑖𝑗
𝑈

√∑ [(𝑥𝑖𝑗
𝐿 )

2
+ (𝑥𝑖𝑗

𝑀)
2
+ (𝑥𝑖𝑗

𝑈)
2
]𝑚

𝑖=1

 

 

(25) 

 

Step 5. Calculate the fuzzy elements of the actual ponder matrix (26): 
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𝑋̃ =

[
 
 
 
 
 𝑡1̅1̃ ⋯ 𝑡1̅𝑗̃ ⋯ 𝑡1̅𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮

𝑡𝑖̅1̃ ⋯ 𝑡𝑖̅𝑗̃ ⋯ 𝑡𝑖̅𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮

𝑡𝑚̅1̃ ⋯ 𝑡𝑚̅1̃ ⋯ 𝑡𝑚̅𝑛̃]
 
 
 
 
 

 (26) 

 

where 𝑡𝑖̅𝑗̃ is calculated as 𝑥𝑖𝑗̃ × 𝑡𝑖𝑗̃.  
 

Step 6. Calculate the fuzzy elements of the actual ponder matrix (27):  
 

𝐺𝑖𝑗 = √
1

3
[(𝑡𝑖𝑗𝐿̃ − 𝑡𝑖̅𝑗𝐿̃)

2
+ (𝑡𝑖𝑗𝑀̃ − 𝑡𝑖̅𝑗𝑀̃)

2
+ (𝑡𝑖𝑗𝑈̃ − 𝑡𝑖̅𝑗𝑈̃)

2
] (27) 

 

Step 7. Determine the final preference values (28).  
 

𝑄𝑖 =∑𝑔𝑖𝑗

𝑛

𝑗=1

; 𝑖 = 1,2, … ,𝑚 (28) 

 

3.5 Fuzzy Technique for Order Preference by Similarity to an Ideal Solution 

 

The Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method is based on the 

distances to ideal solutions called Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS). To extend the 

practical possibilities of the standard TOPSIS method, many fuzzy extensions have been introduced to this 

technique. One proposed solution is to operate on Triangular Fuzzy Numbers in an uncertain environment. To 

introduce the fuzzy TOPSIS method, the main steps of the calculations are presented as follows.  
Step 1. Determine the triangular fuzzy decision matrix based on Eq. (6).  
Step 2. Calculate the normalized fuzzy decision matrix (29):  

 

𝑋̃ =

[
 
 
 
 
𝑥11̃ ⋯ 𝑥1𝑗̃ ⋯ 𝑥1𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖1̃ ⋯ 𝑥𝑖𝑗̃ ⋯ 𝑥𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑚1̃ ⋯ 𝑥𝑚1̃ ⋯ 𝑥𝑚𝑛̃]

 
 
 
 

 (29) 

 

where for the profit criterion, the values are calculated as (30):  
 

𝑥𝑖𝑗̃ = (
𝑥𝑖𝑗
𝐿

𝑥𝑗
∗ ,
𝑥𝑖𝑗
𝑀

𝑥𝑗
∗ ,
𝑥𝑖𝑗
𝑈

𝑥𝑗
∗) ; 𝑥𝑗

∗ = max
𝑖
{𝑥𝑖𝑗

𝑈} (30) 

 

and for the cost criterion, the values are calculated with Eq. (31):  
 

𝑥𝑖𝑗̃ = (
𝑥𝑗
−

𝑥𝑖𝑗
𝑈 ,
𝑥𝑗
−

𝑥𝑖𝑗
𝑀 ,
𝑥𝑗
−

𝑥𝑖𝑗
𝐿 ) ; 𝑥𝑗

− = min
𝑖
{𝑥𝑖𝑗

𝐿 } (31) 

 

Step 3. Calculate the weighted normalized fuzzy decision matrix with Eq. (32):  
 

𝑋̃̂ =

[
 
 
 
 
 
𝑥̂11̃ ⋯ 𝑥̂1𝑗̃ ⋯ 𝑥̂1𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥̂𝑖1̃ ⋯ 𝑥̂𝑖𝑗̃ ⋯ 𝑥̂𝑖𝑛̃
⋮ ⋱ ⋮ ⋱ ⋮
𝑥̂𝑚1̃ ⋯ 𝑥̂𝑚𝑗̃ ⋯ 𝑥̂𝑚𝑛̃]

 
 
 
 
 

 (32) 

 

where 𝑥̂𝑖𝑗̃ = 𝑥𝑖𝑗̃ × 𝑤𝑗̃, 𝑖 = 0,1, … ,𝑚, 𝑗 = 1,2, … , 𝑛.  
 

Step 4. Determine the Fuzzy Positive Ideal Solution (FPIS) (33) and Fuzzy Negative Ideal Solution (FNIS) (34):  
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𝐴∗ = (𝑥̂1
∗̃, 𝑥̂2

∗̃, ⋯ , 𝑥̂𝑛
∗̃); 𝑥̂𝑗

∗̃ = max
𝑖
{𝑥̂𝑖𝑗̃} (33) 

𝐴− = (𝑥̂1
−̃, 𝑥̂2

−̃, ⋯ , 𝑥̂𝑛
−̃); 𝑥̂𝑗

−̃ = min
𝑖
{𝑥̂𝑖𝑗̃} (34) 

Step 5. Calculate the distance from each option to FPIS and FNIS as follows (35): 

𝐷𝑖
∗ =∑𝑑(𝑥̂𝑖𝑗̃, 𝑥̂𝑗

∗̃)

𝑛

𝑗=1

𝐷𝑖
− =∑𝑑(𝑥̂𝑖𝑗̃, 𝑥̂𝑗

−̃)

𝑛

𝑗=1

(35) 

Step 6. Determine the Closeness Coefficient 𝐶𝐶𝑖 for each option (36): 

𝐶𝐶𝑖 =
𝐷𝑖
−

𝐷𝑖
− + 𝐷𝑖

∗ (36) 

3.6 Fuzzy VIseKriterijumska Optimizacija I Kompromisno Resenje 

The VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is an approach that produces 

three distinctive rankings (S, R and compromised solution Q). The standard technique that operates on the crisp 

numbers was developed with many fuzzy extensions that allow for calculating results when uncertain data appear. 

One method applied to fuzzy problems is the Triangular Fuzzy Number VIKOR. The main steps of this technique 

are presented below.  
Step 1. Determine the triangular fuzzy decision matrix based on Eq. (6). 
Step 2. Determine the Ideal and Non-Ideal Solutions for each criterion based on the criterion type for the profit 

criterion (37):  

𝑓𝑖
∗̃ = 𝑀𝐴𝑋𝑓𝑖𝑗̃𝑓𝑖

∘̃ = 𝑀𝐼𝑁𝑓𝑖𝑗̃ (37) 

and for the cost criterion (38): 

𝑓𝑖
∗̃ = 𝑀𝐼𝑁𝑓𝑖𝑗̃𝑓𝑖

∘̃ = 𝑀𝐴𝑋𝑓𝑖𝑗̃ (38) 

Step 3. Calculate the normalized fuzzy difference from Ideal Solution for the profit criterion (39): 

𝐷𝑖𝑗̃ = (𝑓𝑖
∗̃ − 𝑓𝑖𝑗̃)/(𝑥𝑖

∗𝑈 − 𝑥𝑖
∘𝐿) (39) 

and for the cost criterion (40): 

𝐷𝑖𝑗̃ = (𝑓𝑖𝑗̃ − 𝑓𝑖
∗̃)/(𝑥𝑖

∘𝑈 − 𝑥𝑖
∗𝐿) (40) 

Step 4. Calculate the fuzzy values of 𝑆̃ and 𝑅̃ (41).  

𝑆𝑗̃ =∑⊕

𝑛

𝑖=1

(𝑤𝑖̃⊗𝐷𝑖𝑗̃)𝑅𝑗̃ = 𝑀𝐴𝑋𝑖(𝑤𝑖̃⊗𝐷𝑖𝑗̃) (41) 

where 𝑤𝑖̃ is the weight of the i-th criterion. 
Step 5. Determine the fuzzy 𝑄̃ values (42). 

𝑄𝑗̃ = 𝑣
(𝑆𝑗̃  −  𝑆

∗̃)

(𝑆∘𝑈 − 𝑆∗𝐿)
⊕
(1 − 𝑣)(𝑅𝑗  ̃ −  𝑅

∗̃)

(𝑅∘𝑈 − 𝑅∗𝐿)

(42) 

where 𝑣 can be adjusted by expert (𝑣 ∈ [0, 1]), and 

𝑆∗𝐿̃ = 𝑀𝐼𝑁(𝑆𝑗
𝐿̃)𝑆∘𝑈 = 𝑀𝐴𝑋(𝑆𝑗

𝑈)

R∗L̃ = MIN(Rj
L̃)R∘U = MAX(Rj

U)
(43) 

Step 6. Calculate the defuzzified preference values (44). 
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𝑁𝑖̃ =
(2𝑥𝑗

𝑀 + 𝑥𝑗
𝐿 + 𝑥𝑗

𝑈)

4
 (44) 

 

4. Case Study 

 

The following study used five fuzzy MCDA methods to obtain a comparative ranking and identify the most 

rational choice of battery supplier for the battery swapping station. It is an important practical problem due to the 

need to consider both sustainability and operational efficiency assumptions in order for the range of components 

used in energy processes to be continuously improved.  

The study was based on the problem addressed by Wang et al. [38], where the optimal choice of sustainable 

battery supplier for the battery swapping station was determined using the entropy-Multiplicative Multi-Objective 

Optimisation by Ratio Analysis (MULTIMOORA) method. The authors defined a set of 15 criteria, which were 

divided into five categories by field, namely economical (𝐶1– 𝐶3 ), environmental (𝐶4– 𝐶6 ), social (𝐶7– 𝐶9 ), 

technical (𝐶10–𝐶12), and service (𝐶13–𝐶15). Table 1 shows the decision matrix established by Wang in their study, 

in which there are four battery suppliers 𝐴1, 𝐴2, 𝐴3 and 𝐴4. Due to the uncertainties in the values of the individual 

parameters in the problem, the data were presented in the form of Triangular Fuzzy Numbers. In addition, vectors 

of weights in the form of crisp values were defined using the criteria weighting approach based on the entropy 

method of decision matrix information. The determined vectors of weights for the criteria considered in the 

problem are presented in Table 2.  

 

Table 1. Decision matrix for the battery supplier selection problem [38]  

 
Area 𝑪𝒊 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 

Economical 

𝐶1 (0.375, 0.500, 0.750) (0.375, 0.522, 0.857) (0.500, 0.667, 1.000) (0.429, 0.571, 0.857) 

𝐶2 (0.750, 0.857, 1.000) (0.167, 0.200, 0.250) (0.500, 0.600, 0.750) (0.750, 0.857, 1.000) 

𝐶3 (0.500, 0.667, 0.833) (0.833, 1.000, 1.000) (0.500, 0.667, 0.833) (0.333, 0.500, 0.667) 

Environmental 

𝐶4 (0.334, 0.502, 1.000) (0.250, 0.334, 0.502) (0.250, 0.334, 0.502) (0.334, 0.502, 1.000) 

𝐶5 (0.250, 0.334, 0.502) (0.334, 0.502, 1.000) (0.250, 0.334, 0.502) (0.334, 0.502, 1.000) 

𝐶6 (0.500, 0.667, 0.833) (0.667, 0.833, 1.000) (0.250, 0.334, 0.502) (0.334, 0.502, 1.000) 

Social 

𝐶7 (0.500, 0.667, 0.833) (0.667, 0.833, 1.000) (0.333, 0.500, 0.667) (0.500, 0.667, 0.833) 

𝐶8 (0.500, 0.667, 0.833) (0.833, 1.000, 1.000) (0.500, 0.667, 0.833) (0.667, 0.833, 1.000) 

𝐶9 (0.334, 0.502, 1.000) (0.334, 0.502, 1.000) (0.250, 0.334, 0.502) (0.334, 0.502, 1.000) 

Technical 

𝐶10 (0.500, 0.667, 0.833) (0.833, 1.000, 1.000) (0.333, 0.500, 0.667) (0.333, 0.500, 0.667) 

𝐶11 (0.500, 0.667, 0.833) (0.833, 1.000, 1.000) (0.500, 0.667, 0.833) (0.167, 0.333, 0.500) 

𝐶12 (0.667, 0.833, 1.000) (0.833, 1.000, 1.000) (0.500, 0.667, 0.833) (0.333, 0.500, 0.667) 

Service 

𝐶13 (0.833, 1.000, 1.000) (0.500, 0.667, 0.833) (0.667, 0.750, 0.833) (0.333, 0.500, 0.667) 

𝐶14 (0.833, 0.917, 1.000) (0.833, 0.917, 1.000) (0.667, 0.750, 0.833) (0.667, 0.750, 0.833) 

𝐶15 (0.167, 0.333, 0.500) (0.667, 0.833, 1.000) (0.500, 0.667, 0.833) (0.333, 0.500, 0.667) 

 

Table 2. Weights determined with the entropy method 

 
𝑪𝒊 Weights 𝑪𝒊 Weights 𝑪𝒊 Weights 𝑪𝒊 Weights 𝑪𝒊 Weights 

𝐶1 0.136 𝐶4 0.058 𝐶7 0.033 𝐶10 0.088 𝐶13 0.024 

𝐶2 0.236 𝐶5 0.058 𝐶8 0.027 𝐶11 0.115 𝐶14 0.012 

𝐶3 0.012 𝐶6 0.033 𝐶9 0.039 𝐶12 0.064 𝐶15 0.064 

 

Table 3. Rankings calculated with selected fuzzy MCDA methods 

 
𝑨𝒊 fARAS fEDAS fMAIRCA fTOPSIS fVIKOR 

𝐴1 1 1 1 1 1 

𝐴2 2 3 3 3 4 

𝐴3 4 4 4 4 2 

𝐴4 3 2 2 2 3 

 

In the reference study, the authors chose to perform calculations using the MULTIMOORA method, which is 

based on the Reference Point Theory and uses the ratios of the ratio system [39]. The resulting ranking was 

considered as a reference point in the study, with the ranking order of the options presented in Table 1. The 

following study extended the scope of the calculation by considering a set of selected methods operating on fuzzy 

data in the form of Triangular Fuzzy Numbers. The four options were evaluated using fuzzy ARAS, fuzzy EDAS, 

fuzzy MAIRCA, fuzzy TOPSIS, and fuzzy VIKOR. The multi-criteria evaluation was performed using the PyFDM 

package, which is a library dedicated to the Python language and, in its functionalities, allows multi-criteria 
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calculations to be performed in a fuzzy environment [13]. The resulting rankings are presented in Table 3, and the 

rankings of options by method are shown in Figure 1. In addition, the flows of the rankings obtained by the 

successively used methods are visualized in Figure 2, where the changes in the ranking order of the options 

corresponding to the individual multi-criteria techniques can be seen.  

It is worth noting the consistency in the way the options were evaluated concerning the methods used. The best-

ranked decision variant was option 𝐴1, as can be seen in Figure 1. Regardless of the evaluation technique used, 

this option was always the most preferred choice of battery supplier.  

Figure 1. Rankings of battery suppliers obtained by selected MCDA methods 

Figure 2 highlights explicitly where differences emerged between the ranking orders of the options by the 

different methods. Two significant differences can be seen: the fuzzy ARAS method ranked option 𝐴2  more 
favourably, while fuzzy EDAS, fuzzy MAIRCA, and fuzzy TOPSIS ranked this option in the 3rd position in 

favour of the higher ranked option 𝐴4 , and in contrast, the compromise ranking Q from the fuzzy VIKOR 

method indicated that option 𝐴2  was the worst choice and that options 𝐴4  and 𝐴3  were at the 3rd and 2nd 

positions, respectively.  

Figure 2. Flows of battery supplier rankings by selected MCDA methods 

(a) correlation coefficient 𝑟𝑤 (b) ranking similarity coefficient 𝑊𝑆

Figure 3. Correlation of rankings from MCDM methods under comparison 
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The correlation results were further visualized using heatmaps, as shown in Figure 3. The left diagram shows 

the correlation values of the weighted Pearson coefficient (𝑟𝑤), while the right one shows the consistency between 

rankings for the WS rank similarity coefficient (𝑊𝑆). It is worth noting that the fuzzy EDAS, fuzzy MAIRCA, 

fuzzy TOPSIS methods guaranteed the same ranking order of the options. On the other hand, the compromise 

ranking Q by the fuzzy VIKOR method provided the most diverse results compared to those by the other methods. 

The results of the coefficient 𝑟𝑤 obtained from the fuzzy ARAS and fuzzy VIKOR methods (0.36) indicated that 

they were the least correlated pair of rankings, while the results of coefficient (𝑊𝑆) (0.67) showed that the ranking 

by fuzzy VIKOR was the least correlated with those by fuzzy EDAS, fuzzy MAIRCA and fuzzy TOPSIS. However, 

tests on the consistency of the rankings showed that most of the selected methods were consistent in their 

evaluation of the various options.   

 

4.1 Sensitivity Analysis 

 

One way to test the robustness of the results obtained from changes is to conduct a sensitivity analysis. It 

provides insight into the results of possible scenarios and determines how potential modifications to the input data 

affect the attractiveness of the proposed solutions. A sensitivity analysis also provides more comprehensive 

knowledge and a greater view of the overall problem, showing the decision-makers what might change in the 

results under changing external conditions.  

In their work, Wang et al. [38] used the sensitivity analysis assumptions to broaden the scope of the study. The 

authors emphasized that, due to changing regulations, technical levels, and market situation, the impact of each 

criterion on the outcome might change. Therefore, the researchers adopted an approach in which the weight of 

each criterion was modified at +/- 20% from the initial value. In addition, while the value of an individual criterion 

was changed, the remaining weights were adjusted so that the condition was met that their values added up to 1. 

Using the MULTIMOORA method, this study showed that the ranking of the options was stable despite changes 

in the input parameters, while using the Simple Additive Weighting (SAW), TOPSIS, and Multiplicative 

Exponential Weighting (MEW) methods, the study showed differences in the ranking of options in positions 2, 3, 

and 4. 

Wang et al. highlighted that by using the entropy method to determine the significance of the criteria weights, 

they could identify the six most significant parameters in the problem. The largest values of the weights were 

recorded successively in transportation cost (𝐶2-0.236), price of battery (𝐶1-0.136), battery quality (𝐶11-0.115), 

research and innovation ability (𝐶10-0.088), product diversity (𝐶12-0.064), and safety assurance ability and return 

policy (𝐶15-0.064). Consequently, this paper adopted an approach that examined how the exclusion of criteria 

affected the rankings obtained. Each successive criterion was skipped in the multi-criteria evaluation using the 

selected fuzzy MCDA methods. In addition, the remaining weights were modified so that the condition could be 

met that the values add up to 1. On the other hand, the correlation coefficient 𝑟𝑤  was used to determine the 

consistency of rankings after exclusion of individual criteria. The results obtained are shown in the figure below.  

 

 
 

Figure 4. Sensitivity analysis of the impacts of criteria on ranking - the fARAS approach 

 

Figure 4 shows the flows of rankings computed using the fuzzy ARAS method after exclusion of criteria one 

by one from the problem. It can be seen that, after exclusion of criterion 𝐶2, which was the most relevant in the 

problem, significant changes took place in the ranking order of the options - the indicated order relative to the 

attractiveness of the decision options was 𝐴2>𝐴1>𝐴3>𝐴4, which was completely different from the initial ranking 

obtained by this method. What is also noteworthy is that the exclusion of criteria 𝐶5-𝐶10 and 𝐶15 did not affect the 
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way the decision options were ranked. Significant changes were also evident with modifications to criteria 𝐶3, 𝐶4, 
𝐶13 and 𝐶14, which translated into changes in the ranking order of the options in the first two ranking positions. 

The correlation coefficient 𝑟𝑤 of the rankings obtained equaled 0.60 at least for the exclusion of criterion 𝐶2, and 

the final similarity values oscillated between 0.60 and 1.00, indicating a strong similarity of the results. 

 

 
 

Figure 5. Sensitivity analysis of the impacts of criteria on ranking - the fEDAS approach 

 

The flow of rankings after the exclusion of each criterion and the calculations made by the fuzzy EDAS method 

are shown in Figure 5. It can be seen that the rankings calculated with this method are much more stable than with 

the fuzzy ARAS method. In as many as 12 cases out of a possible 15, the ranking remained unchanged, indicating 

a high consistency of performance. However, when the most important criterion (𝐶2) in the problem was excluded, 

the ranking differed significantly. The ranking order of the options, in this case, was 𝐴2 > 𝐴1 > 𝐴3 > 𝐴4, which 

is the same as that obtained by the fuzzy ARAS method. However, due to the differences in the initial ranking 

considering all criteria, the changes in individual positions were more significant, making the correlation 

coefficient 𝑟𝑤 equal 0.00, which indicated significantly divergent results. Other differences from the initial ranking 

were noted for criterion 𝐶4, where option 𝐴2 gained the second position over option 𝐴4, and for criterion 𝐶11, 

where option 𝐴4 was placed first and 𝐴1 second. 

 

 
 

Figure 6. Sensitivity analysis of the impacts of criteria on ranking - the fMAIRCA approach 

 

The results of the sensitivity analysis on the robustness of the rankings calculated using the fuzzy MAIRCA 

method are shown in Figure 6. It is worth mentioning that the ranking considering all criteria in the problem 

obtained by this method was the same as those by the fuzzy EDAS and fuzzy TOPSIS methods. However, through 

comparison of the changes in rankings of options when criteria were excluded one by one, it should be noted that 

this method was less stable than the fuzzy EDAS method. An additional criterion that influenced the ranking order 

of the options was parameter 𝐶13, which contributed to swapping the positions of options 𝐴2 and 𝐴4 to second and 

third place, respectively. Similar to the case of the EDAS method, when criterion 𝐶2 was excluded, the most 

significant disparity with the initial ranking appeared, and the correlation coefficient 𝑟𝑤 also reached 0.00.  
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Figure 7. Sensitivity analysis of the impacts of criteria on ranking - the fTOPSIS approach 
 

The flow of rankings after the exclusion of each criterion and the calculations made by the fuzzy TOPSIS 

method are shown in Figure 7. The fuzzy TOPSIS method was the third of the methods that, at the initial stage of 

the study, guaranteed the same ranking, together with the fuzzy EDAS and fuzzy MAIRCA methods. Furthermore, 

in the sensitivity analysis and robustness testing of the rankings to the exclusion of individual criteria, the TOPSIS 

method was characterized by the same evaluation stability as the EDAS method - 12 of the 15 test cases did not 

change the ranking order of the options. In addition, this indicates a high correlation in the performance of the 

methods. 

 

 
 

Figure 8. Sensitivity analysis of the impacts of criteria on ranking - the fVIKOR approach 

 

The flow of rankings after the exclusion of each criterion and the calculations made by the fuzzy VIKOR method 

are shown in Figure 8. This was the last method on which sensitivity analysis was performed. A compromise 

ranking 𝑄 was considered, where six test cases showed a different ranking order from the initial ranking. These 

were scenarios in which criteria 𝐶1, 𝐶2, 𝐶3, 𝐶11, 𝐶12 and 𝐶15 were excluded respectively. The largest differences in 

the ranking order of the options were once again observed when criterion 𝐶2 was excluded, where the options were 

ranked as follows: 𝐴2 > 𝐴1 > 𝐴3 > 𝐴4 . In addition, the correlation coefficient 𝑟𝑤 was -0.20 for this test case, 

which means that the new ranking deviated significantly from the initial ranking. It was also the lowest correlation 

value obtained in the sensitivity analysis tests in this study. In the cases where the other five criteria whose 

exclusion contributed to changes in rankings, option 𝐴3 ranked 3rd, while 𝐴4 moved up to the 2nd place. 

 

5. Discussion 

 

Four suppliers were considered in the study, namely 𝐴1, 𝐴2, 𝐴3, and 𝐴4, located in Beijing, Wuhan, Baoding, 

and Beijing, respectively. The initial research using five selected fuzzy MCDA methods (ARAS, EDAS, MAIRCA, 

TOPSIS, and VIKOR) from the PyFDM package provided the potential rankings that determined the attractiveness 

of each option. The obtained rankings showed that the fuzzy EDAS, fuzzy MAIRCA, and fuzzy TOPSIS methods 
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provided the same ranking order for the decision options, all indicating that the most rational choice among the 

options analysed was a battery supplier from Beijing, followed by suppliers from Wuhan (2nd), Beijing (3rd), and 

Baoding (4th). The fuzzy ARAS and fuzzy VIKOR methods indicated a different preferred order. However, all 

methods agreed on the most preferred choice.   

To provide a more comprehensive insight into the results and proposed choices, a sensitivity analysis was 

performed by excluding criteria one by one and examining the impacts of these changes on the indicated rankings. 

This research showed that the criterion that had the most significant influence on the rankings, regardless of the 

multi-criteria method used, was transportation cost (𝐶2), for which, the highest importance of influence on the 

results was 0.236. When this parameter was excluded from the problem, all methods provided the same ranking 

order of the options - 𝐴2 > 𝐴1 > 𝐴3 > 𝐴4, which constituted a significant divergence from the initial rankings, 

with the correlation coefficient 𝑟𝑤 varying between -0.20 and 0.60. Other parameters that influenced the ranking 

order of options were financial ability (𝐶3), pollution emissions (𝐶4), resource consumption (𝐶5), battery quality 

and safety assurance (𝐶11), product diversity (𝐶12), timely supply (𝐶13), warranty period (𝐶14), and return policy 

(𝐶15). The other criteria did not affect the ranking order of the options.    

This study adopted a selected set of fuzzy MCDA methods and performed sensitivity analysis to obtain 

additional knowledge in terms of potential changes in the rankings, which can help improve decision makers’ 

knowledge in this area, and also give them a comprehensive view of the potential changes that determine the 

attractiveness of decision variants under changing external conditions. Through the research, it can be seen that 

transportation cost (𝐶2) has a critical impact on performance and that its changes and modifications significantly 

affect the attractiveness of individual options. If this parameter were to change across the problem, even to a slight 

extent, the results could vary significantly. In addition, with the increasing number of options, slight differences 

in the values of the options in this criterion would be crucial in the ranking order of these options. It is also a clear 

indication that, during negotiation discussions, transportation cost should be the most important negotiable factor, 

as minimizing its amount can significantly contribute to the attractiveness of a specific individual supplier. This, 

in turn, enables decision-makers to select the most preferred options so that losses can be minimized and the quality 

of operations and the pursuit of sustainability can be maximized. 

 

6. Conclusions 

 

The Decision Support System based on MCDA methods are an integral part of the decision-making process, as 

it takes into account the large dimensionality of the problem. Thus, by their operation, they can provide decision-

makers with additional knowledge so that decision-makers can make conscious and rational decisions. As the 

selection problem often involves many factors, it is necessary to use such tools to perform analyses in a reliable 

and precise manner. In addition, given the uncertainties in the data that may occur in a given area, it is worth 

considering possible scenarios that contribute to providing a comprehensive view of the problem.   
Consequently, it is crucial to propose solutions based on approaches that meet the requirements placed on them. 

The reliability and comprehensiveness of such systems proposing results to decision-makers is a fundamental 

element influencing the quality of the proposed solutions. To this end, this paper proposed a research approach 

taking into account five selected fuzzy MCDA methods operating on Triangular Fuzzy Numbers, which allowed 

the results to be benchmarked to indicate the attractiveness of the decision options obtained different techniques. 

In addition, the sensitivity analysis that excluded criteria one by one from the problem provided insight into 

possible scenarios with changing external conditions. The initial results unanimously indicated that option 𝐴1, 

representing the battery supplier from Beijing, was the most preferred option. However, further research showed 

that, with the exclusion of criterion (𝐶2) determining transportation cost, option 𝐴2 would be the most favorable 

choice. The proposed approach allows decision-makers to understand the problem multidimensionally and make 

an informed decision based on the possible scenarios, which is crucial to pursuing sustainable and efficient energy 

development, as it enables the selection of components based on reliable and precise techniques to maximize the 

benefits of specific choices under constantly changing conditions. 

For future research, it is worth considering using more sensitivity analysis approaches to identify how the results 

could differ while other modifications would be performed. Moreover, it would be meaningful to take different 

practical problems in the field of energy development as examples to provide comprehensive indications on 

selection of the most valuable decision variants.  
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