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Abstract: In the global economy, plastics are considered a versatile and ubiquitous material. It can reach to marine ecosystems through diverse channels, such as road runoff, wastewater pathways, and improper waste management. 

Therefore,  rapid  mitigation  and  reduction  are  required  for  this  ever-growing  problem.  The  marine  habitats  are believed to be the highest emitters and absorbers of O2 and CO2 respectively. As such, every day, the prominence of managing the litter in the ocean is growing effectively and efficiently. One of the most significant challenges in oceanography is creating a comprehensive meshless algorithm to handle the mathematical representation of waste plastic management in the ocean. This research dedicates to studying the dynamics of waste plastic management model governed by a mathematical representation depending on three components viz. Waste plastic (W), Marine litter (M) and Recycling of debris (R), i.e., WMR model. In this regard, an unsupervised machine learning approach, namely  Mexican  Hat  Wavelet  Neural  Network  (MhWNN)  refined  by  the  efficient  Limited-memory  Broyden–

Fletcher–Goldfarb–Shanno algorithm (L-BFGS), i.e., MhWNN-LBFGS model has been implemented for handling the non-linear phenomena of WMR models. Besides, the obtained solution is  meshfree and compared with the state-of-art numerical result to establish the precision of the MhWNN-LBFGS model. Furthermore, different global statistical measures (MAPE, TIC, RMSE, and ENSE) have been computed at twenty testing points to validate the stability of the proposed algorithm. 
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1. Introduction

Plastic contamination has spread across a wide swath of the ocean due to its lightness and solidness properties. 

From zooplankton to cetaceans, marine mega fauna suffers a direct and fatal consequence of plastic contamination. 

Every  year,  thousands  of  seabirds,  seals,  turtles  and  other  marine  reptiles  are  being  killed  through  ingestion, entrapment  and  being  entangled  in  plastic.  The  lower  trophic-level  lives  and  their  predators  in  aquatic environments are being affected by consuming diligent natural toxins adhering to plastic. The presence of drifting plastics,  extending  from  huge  abandoned  nets,  docks  and  cruises  that  carry  fish,  green  growth,  and  microbial networks to non-local districts, further exacerbates these consequences [1]. So, the management of waste plastic in the ocean has received increased attention in recent years from researchers around the world as well as from different  activists  and  government  bodies.  Ocean  plastic  pollution  was  specifically  mentioned  in  high-level agreements like the Berlin declaration in 2013 and the resolution of G7 Leaders in 2015 [2]. EU legislation also passed an amendment, notably the  Marine Strategy Framework Directive, which helped move this issue up the international agenda [3]. Despite different oceanographic models, there is no  one size fits all methodology to waste management  of  the  ocean.  To  reduce,  recycle,  and  clean  up  waste  plastic,  different  strategies  have  been  used around the world. When these strategies are supplemented by the science-driven mathematical model, they may be most effective. However, machine learning (ML), in particular neural techniques, has shown its potential by https://doi.org/10.56578/jemse020104 
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surpassing human levels of accuracy for simulating complex phenomena related to oceanography. 

Artificial intelligence (AI) has been a subject of intense media hype in the 21st century. Different branches of AI i.e. machine learning, deep learning, and ANN come up in many articles, irrespective of field. A wide-scale application of various phenomena in machine translation, non-linear pattern recognition, medical diagnosis, image processing, robotics, and speech & face detection, are well described by ANN [4,  5]. As ANN becomes widespread and integrated with human-centric applications and algorithms, so the focus has returned to explainability. Over the last two decades, the implementation of ANN has sprung up for solving different types of differential, integral, and algebraic equations. It is often characterized as being a black box. That is, the closed-form of neural solution is available to predict the value at any testing point of the given domain. 

Although NN has the universal approximation power, it still has some shortcomings as it fails to define the local features such as jumps in the objective function, discontinuities in curvature, local minima and slow learning rate 

[6]. As such, an alternative neural network model based on the combination of some particular wavelet kernels and feed-forward neural networks, namely, the wavelet neural networks (WNN), has been proposed. It seems to be an effective and strong approximate model for universal functions. Additionally, the learning rate of the WNN 

is relatively faster than conventional NN. 

Optimizers are algorithms or methods used to minimize the loss function. It changes the attributes of a neural network, such as weights and biases. A good number of optimization algorithms have emerged during the last few years as remarkable advances both in application areas and research. It can be classified as derivative-based or derivative-free. The most common technique for optimizing a function is using derivative-based algorithms. In this regard, some potential derivative-based optimization algorithms are gradient descent (GD), conjugate gradient (CG),  stochastic  gradient  descent  (SGD)  and  Limited-memory  Broyden-Fletcher-Goldfarb-Shanno  (L-BFGS). 

The derivative-based optimization algorithms are more stable when compared to the derivative-free optimization algorithms [7]. 

The objective of this article is to illustrate the Mexican Hat Wavelet Neural Network with L-BFGS optimization algorithm for simulating the recycling procedure of waste plastic in the Ocean. The non-linear form of waste plastic management  model  of  the  Ocean  is  represented  by  three  elements:  Waste  plastic  (W),  Marine  litter  (M)  and Recycling  of  debris  (R),  i.e.,  WMR  model.  In  this  regard,  various  instances  have  been  discussed,  and  neural predictions have been made at testing points. As the proposed neural method is meshfree so after training of the network, we can find the solution at any point inside the given domain of the DE. 

The rest of our contribution can be outlined as follows: in Section 2, a literature review is presented. Section 3 

presents the preliminaries of WMR model and architecture of MhWNN for the sake of completeness. In Section 4, the formulation of MhWNN-LBFGS algorithm to solve WMR model is discussed. In Section 5, two cases of WMR  model  have  been  investigated  to  verify  the  effectiveness  of  the  MhWNN  -LBFGS  model.  Finally,  the conclusions are drawn in Section 6. 

2. Related Studies

In  1943,  Warren  S.  McCulloch  and  Walter  Pits  proposed  neuron  activities  that  merged  the  studies  of neurophysiology and mathematical logic. In their historical paper [8], they developed the first elementary model of ANN, in which neurons were escorted by the "all-or-none" process. It brings revolution in the field of AI and attracts researchers to work on it. 

In a pioneering work, Alizadeh and Kavianpour [9] developed a wavelet-ANN model for accurate predictions of dissolved oxygen, temperature and salinity in the Pacific Ocean. Chen et al. deployed a pre-clustering ANN 

model, using different components of sea-surface wind speed to estimate the mixed-layer depth in the Indian Ocean 

[10]. For speed and accurate detection of deep-sea debris, Xue et al. proposed a deep NN model [11]. Nuwairan et al.  [12]  developed  a  supervised  neural  network  to  simulate  the  waste  plastic  management  model  of  ocean. 

Motivated by the above considerations, it is natural to propose a new and efficient ANN algorithm to understand the  dynamical  behaviour of waste  plastics  management  in  ocean.  In  this  work,  we  have  designed  an  advanced neural model by combining the properties of mexican hat wavelet basic along with the L-BFGS training algorithm, viz. MhWNN-LBFGS for the study of non-linear phenomena of the WMR model. 

ANN has been convincingly used in the field of differential equation (DE) in the past couple of years after Lee and Kang [13] developed a novel Hopfield neural network model to find the solution of first-order DE. In 1998, Lagaris et al. [14] employed the concept of an unconstrained optimization problem and proposed a trial solution for DE with regular boundaries that satisfies the given boundary and initial conditions. However, some researchers have  developed  different  ODE  and  PDE  solvers  for  DE  with  specific  properties.  For  instance,  Lie  symmetry differential equations [15], fractional differential equations [16], fuzzy differential equations [17], and singularly perturbed  differential  equations  [18].  In  another  approach,  symplectic  artificial  neural  network  model  using curriculum learning has been investigated by Sahoo and Chakraverty [19]. In  this regard, a few more potential models  are  the  spherical  gas cloud  model  by  Ahmad  et  al.  [20],  Legendre  artificial  neural  network  method  by Verma  and  Kumar  [16],  etc.  Nonetheless,  these  methods  are  associated  with  problems  with  well-defined boundaries. 
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As per the literature, the advantages of NN are further strengthened with the addition of some particular types of wavelets. As it overcomes the drawbacks of NN and converts it into an efficient technique for universal function approximation.  WNN  has  been  extensively  used  by  researchers  and  scientists  in  different  fields  such  as  fault diagnosis  [21],  daily  pan  evaporation  [22],  energy  price  forecasting  [23],  industrial  robot  manipulators  [24], Adaptive PID controller design [25], etc. 

In order to explore the solution of fractional differential equations, Sabir et al. introduced a fractional Meyer wavelet  neural  network  model  to  solve  nonlinear  singular  fractional  Lane–Emden  systems  [26].  Tan  et  al.  [6] 

investigated solutions of PDE using an unsupervised WNN model with meta-heuristic algorithm. Wu et al. [27] 

proposed a WNN with the structure 1×N×1 to find the numerical solution of fractional differential equations. These literatures stimulate the authors to investigate different wavelet kernels as an alternative, reliable, efficient, and robust computing paradigm for solving non-linear phenomena of the oceanographic WMR model. 

The innovative insights of the MhWNN-LBFGS model are summarized as below: 

  A novel multilayer framework namely Mexican Hat Wavelet Neural Network has been designed under the Jupyter notebook environment. 

  Neural simulation of the non-linear waste plastic management model of the Ocean i.e., WMR model has been demonstrated by using the proposed algorithm. 

  The resilience of MhWNN-LBFGS model is observed by comparing the obtained simulation results with RK4 method. 

  In addition, different global statistical measures (MAPE, TIC, RMSE, and ENSE) have been calculated at testing points to validate the stability of the proposed algorithm. 

  An unsupervised training algorithm ensures that the MhWNN-LBFGS is a powerful tool to predict the solution of any other non-linear system of equations. 



3. Preliminaries 



In this section, an overview of the waste plastic management WMR model and architecture of the multilayer Mexican Hat Wavelet Neural Network has been discussed. 



3.1 Overview of WMR Model 



The WMR model is represented via three components, i.e., Waste plastic W(γ) Marine litter M(γ) and Recycling of debris R(γ) which construct a non-linear WMR system as shown below [12]:   



W(γ) = αR(γ)-βW(γ)-ηM(γ)W(γ)+ b, W(a = λ , 

1 )

1

M(γ)=ηM(γ)W(γ)-δM(γ), 

M(a = λ , 

2 )

2

(1) 

R

 (γ)=βW(γ) + δM(γ)-(α +θ)R(γ). 

R (a = λ , 

3 )

3





where, α is the rate of recycled waste to regenerate new waste, β is the rate of waste to be recycled directly, η 

denotes the rate of waste to enter into the marine,  𝑏̄  is the new waste rate to be reproduced, δ is the marine litter rate to recycle, and θ stands for the recycled waste rate to be lost. 



3.2 Architecture of Mexican Hat Wavelet Neural Network (MhWNN) ANN is a branch of artificial intelligence (AI) that mimics the training process of the human brain to predict patterns from given historical data. Neural networks are processing devices of mathematical algorithms that can be implemented by computer languages. 

Wavelet is a ‘small wave’ function written as  𝜓(𝛾) ∈ 𝐿2(𝑅)  with the property, 





ψ

 (γ)dγ=0 

(2) 

-



and centred in the neighbourhood of 0. Wavelet transform has time-frequency localization property where as NN 

has  self-adaptive,  fault  tolerance,  robustness,  and  strong  inference  ability.  The  network  topology  of  a  wavelet neural network is very similar to a feed-forward multi-layer neural network. The hidden layer consists of wavelet neurons commonly known as wavelons, whose activation functions are drawn from a wavelet basis. In accordance with some learning algorithms, the translation and dilation of the wavelets along with the weights are updated. 

The mother wavelet is made up of two factors viz. translation and the dilation  ci, where  i  denotes the  i th wavelet 

[28] and is written as: 

63

[image: Image 7]



( )

1

 −  d 

=

 

,  c  , 

0  d   R  

(3) 

 c

  c 

 i



As such, the following theorem is stated in the literature regarding the properties and rate of convergence of WNN. 

Theorem 1.  The WNN has  L 2 and universal function approximation properties [29]. 



Proof of Theorem 1.  For the proof of Theorem 1 see Ref. [29] by Zhang et al. 

In this work, the Mexican Hat mother wavelet function is used as wavelet basis which can be denoted as 





=



(4) 

 Mexicanhat

(1− )2 2

− / 2

 e

. 



Mexican Hat mother wavelet is obtained from Gaussian function by applying the Laplacian operator and it is a continuously differentiable wavelet. Figure 1 shows graphical representation of the Mexican Hat wavelet. 

The output of MhWNN is defined as   
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where,  μi,j is the weights from the input unit  i to the hidden unit  j,  bj is the bias and  𝜐⃗  is the trainable parameters. 





 

Figure 1.  Mexican hat mother wavelet function 



4. Modeling of Mexican Hat Wavelet Neural Network for WMR Model This section explains the formation of the proposed MhWNN-LBFGS technique to solve the WMR model as an unconstrained problem. 

An autonomous system of WMR model can be written in matrix form as: 
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First  the  governing  equation  (Eq.  (1))  will  be  transferred  into  an  approximate  solution,  as  a  combination  of initial/boundary conditions, a user-defined mathematical expression, and MhWNN-LBFGS output. Therefore, we have 
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where,  the  first  term   λi,i=1,2,3  satisfies  the  initial  condition  of  the  given  WMR  model  without  adjustable parameters and second term is the neural output. For the given input  𝛾 ∈ 𝑅𝑛, the unknown function  𝑤𝑛𝑛(𝛾, 𝜐⃗𝑡) in the second part of approximate solution is denoted by 
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where,  𝑧

𝑛

𝑥

𝑗 = ∑

𝜇

𝑖=1

𝑖,𝑗𝛾𝑖 + 𝑏𝑗, 𝜇𝑖,𝑗  and  𝑤𝑗 , 𝑥 = 𝑤, 𝑚, 𝑟  represent the weights from the input unit  i to the hidden unit  j and the hidden unit  j to the output unit respectively,  bj is the bias and  k denotes the number of neurons. 

Let us denote the output of the third hidden layer as   





 wnn ( ,) = (

   

 i ), 

(9) 



where,  𝛰(𝛾𝑖) = [𝑜1(𝛾𝑖), 𝑜2(𝛾𝑖), . . . , 𝑜𝑘(𝛾𝑖)]𝑇 ∈ 𝑅𝑘×1.  Then  Ο( γi) can be obtained from 
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Let us take the output matrix of the last hidden layer A and the weight vector  ω as follows: 
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Now define the block matrix E of the following form 
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Then the above matrix can be compactly written as 



 E ( )  W =  

(11) 



It may be noted that as the trainable parameters such as, weights and biases are fixed arbitrarily generated values, so  E( γ) depends only on training points  γ. 

In the next step, a training algorithm is employed to tune the adjustable parameters of MhWNN-LBFGS, which is embedded in the approximate solution. The MhWNN-LBFGS is trained to predict the solutions of WMR for any testing point inside the given domain by unsupervised learning, where the parameters are updated to minimise the objective function. In order to, find the objective function, we may need to calculate the gradient of the network 𝑤𝑛𝑛(𝛾, 𝜐⃗), that can be computed as follows: 
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where,  δ is order of derivative. Differentiate Eq. (7) 
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By using the gradient of the approximate solutions and for the given problem, the objective function can be formulated as follows: 
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On  the  other  hand,  we  uniformly  adopt  L-BFGS  as  optimizer  with  a  learning  rate  0.01  to  find  the  optimal 66
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parameter.  L-BFGS  is  a  potential  optimization  technique  based  from  the  Quasi-Newton  family  that  is  widely employed in the field of deep learning. L-BFGS is same as BFGS except for the hessian matrix updation. As the training  methodologies  of  the  neural  network  are  often  iterative;  so,  we  need  to  designate  a  starting  point  for iterations. Therefore, in our investigation, initial weights have been generated randomly and set to small numbers in [-1,1]\{0}. The graphical abstract of MhWNN-LBFGS for solving WMR model is presented in Figure 2.  





Figure 2.  Framework of unsupervised MhWNN-LBFGS algorithm for solving the WMR model 5. Simulation Results and Discussions 



In  order  to  manifest  that  the  presented  MhWNN-LBFGS  algorithm  is  promising,  we  have  addressed  two problems  for  simulations  in  this  section.  The  performances  have  been  studied  in  terms  of  statistical  measures between present results and traditional numerical results. All of the neural results in the following examples are implemented  in  the  Jupyter  notebook  environment  using  Python  3.0.  For  both  cases,  authors  have  trained  the 67

network for 1,000 epochs. However, after selecting the basic framework, hyperparameter tuning has been done to select the optimal number of hidden layers and the number of nodes in each hidden layer. The accuracy of the proposed  MhWNN-LBFGS  algorithm  has  been  shown  in  the  tables  and  graphs.  Different  global  statistical measures  (NSE,  MAPE,  TIC,  and  RMSE)  are  evaluated,  for  convergence  analysis  of  MhWNN-LBFGS  model which is defined as below [30] 
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Problem 1 Here we  have considered a non-linear WMR model by substituting the values of  α=0.4,  β=0.21, η=0.75,  𝑏̄=0.36,  δ=0.5,  θ=0.05,  ai=0,  λ 1=2,  λ 2=1.5, and  λ 3=1 in Eq. (1) [12]   
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In order to apply the MhWNN-LBFGS algorithm let us reformulate the above problem into an approximation solution: 
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Problem 2 In the second case we have considered another non-linear WMR model by putting the values of α=0.4,  β=0.21,  η=0.75,  𝑏̄=0.96,  δ=0.5,  θ=0.05,  ai=0,  λ 1=2,  λ 2=1.5, and  λ 3=1. Then Eq. (1) becomes [12]   
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Accordingly, the neural approximation solution is written as 
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Figure 3.  Learning curves showing the result of training loss vs validation loss during the training process of MhWNN-LBFGS with respect to epochs (Problem 1) 





 

Figure 4. Learning curves showing the result of training loss vs validation loss during training process of MhWNN-LBFGS with respect to epochs (Problem 2) 



A multi-layer neural network has been constructed with a single input, single output, and three hidden layers, such that each hidden layers are set to contain 16 neurons. In addition, L-BFGS optimizer has been used to update the  parameters  in  these  test  problems  with  a  learning  rate  0.01.  Then  the  network  has  been  trained  for  100 

equidistant points from t=0 sec to t=2 sec. During the training of model, we track the learning performance of each epoch  through  training  loss  and  validating  loss.  The  training  and  validation  loss  for  the  aforementioned  two problems for 1000 epochs (last 100 epochs are depicted in subfigures) are presented in Figures 3 and 4. In other words, the validation loss in these figures represents the evolution of the network’s capability for solving the WMR 

model. These are the values of the training and validation data set output by the loss function Eq. (14) for each epoch.  Training  and  validation  loss  both  continue  to  decrease  throughout  the  learning  process,  showing  the robustness of the model. 

In order to, show the effectiveness of the neural algorithm, it is vital to compare the neural results obtained by the proposed algorithms with the existing results at different testing points. Moreover, to compare the proposed MhWNN-LBFGS algorithm with the conventional methods we also run RK4 algorithms and obtained the results at 20 different testing points. The forecasted data are graphically portrayed in the plots that illustrate the reliability and consistency of MhWNN-LBFGS. Experimental studies were reported in two subsections. First, the results of 69

[image: Image 11]

[image: Image 12]

the proposed MhWNN-LBFGS algorithms were compared with classical results. Then statistical measures were reported for convergence analysis. Figures 5 and 6 compare the neural solutions obtained by using the proposed algorithm with the existing numerical solutions of WMR system for both problems. From the figures, it can be observed that the neural results are exactly matching with the numerical results. Tables 1 and 2 present the neural results of WMR models for all two problems at testing points  𝛾 ∈ [0,2], 𝛥𝛾 = 0.1. 

In order to find the precision level, the absolute error (AE) values are delineated in Figures 7 and 8.  From the box plots, we can observe that AE of Waste, Marine and Recycle lies in the range 3.8E-05 to 2.8E-04, 3.2E-05 to 5.5E-04 and 3.6E-05 to 4.4E-04 for Problem 1 and 3.4E-05 to 3.5E-04, 4.5E-06 to 4.2E-04 and 2.7E-05 to 2.6E-04 for Problem 2 respectively. One may decipher that the mode of AE values for  W( γ),  M( γ), and  R( γ) classes lie in neighbourhoods of 2E-04 and 1E-04 for Problem-1 and Problem-2 respectively. These AE values demonstrate the efficacy of the designed algorithm MhWNN-LBFGS for solving the proposed system. 







Figure 5. Plot of RK4 solution and MhWNN-LBFGS solution of WMR Model (Problem 1) 

 

 

Figure 6.  Plot of RK4 solution and MhWNN-LBFGS solution of WMR Model (Problem 2) 70
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Figure 7.  Box plot of Absolute error between MhWNN-LBFGS solution and RK4 solution (Problem 1) Figure 8.  Box plot of Absolute error between MhWNN-LBFGS solution and RK4 solution (Problem 2) 



 

 

 

 

Figure 9. Performance indices based on statistical 

Figure 10. Performance indices based on statistical 

measures MSE, TIC and RMSE to solve the WMR 
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The outcomes of the performances based on statistical measures in terms of TIC, ENSE, and MSE are plotted in Figures 9 and 10 for the WMR non-linear system. The bar graph illustrations are used to visualize the trend of the errors. For a clear vision of values, we have presented the errors in (-log) form. It may be noted that the TIC 

operator magnitude for  W( γ),  M( γ), and  R( γ) lies in 6E-05 to 9E-05 and 2E-05 to 5E-05 for Problem 1 and Problem 2. Similarly, the ENSE value lies in 1E-06 to 9E-08 and the mean performance of RMSE lies in the neighbourhood of 1E-04. Moreover, the comparison of operators MAE and MAPE is shown in Tables 3 and 4. From tables, it is clearly seen that the obtained MAE errors lie in the close vicinity of 1E-04 for both cases. Whereas the MAPE 

varies from 1E-05 to 1E-04. 

So one can evidently observe that all these global statistical measures (MAPE, TIC, RMSE, and ENSE) are close to 0, so it indicates the correctness, precision and efficacy of the MhWNN-LBFGS model. 

It is well known that after training the neural model, it can be utilized as a black box to obtain numerical results for any arbitrary points in the given domain. In this experiment, we have considered three hidden layers with 16 

neurons in each hidden layer for modeling the network. One may consider more hidden layers to construct a neural model. However, by increasing the number of hidden layers and by training a network for a long time, it loses its capacity to generalize. 



Table 1. MhWNN-LBFGS solution for WMR model at testing points for  𝛾 ∈ [0,2], 𝛥𝛾 = 0.1  (Problem 1) Testing points ( γ)    Waste  W( γ)    Marine  M( γ)    Recycle  R( γ)   

0.0 

2.000000 

1.500000 

1.000000 

0.1 

1.812748 

1.646334 

1.072439 

0.2 

1.635189 

1.781877 

1.144149 

0.3 

1.471149 

1.903975 

1.215662 

0.4 

1.323093 

2.010936 

1.286773 

0.5 

1.192037 

2.101978 

1.356870 

0.6 

1.077988 

2.177128 

1.425292 

0.7 

0.980389 

2.237094 

1.491580 

0.8 

0.898324 

2.283139 

1.555530 

0.9 

0.830553 

2.316925 

1.617091 

1.0 

0.775548 

2.340338 

1.676230 

1.1 

0.731594 

2.355293 

1.732853 

1.2 

0.696961 

2.363548 

1.786828 

1.3 

0.670068 

2.366582 

1.838041 

1.4 

0.649599 

2.365555 

1.886455 

1.5 

0.634526 

2.361362 

1.932129 

1.6 

0.624049 

2.354745 

1.975207 

1.7 

0.617471 

2.346405 

2.015875 

1.8 

0.614074 

2.337080 

2.054313 

1.9 

0.613043 

2.327554 

2.090632 

2.0 

0.613484 

2.318619 

2.124825 



Table 2. MhWNN-LBFGS solution for WMR model at testing points for  𝛾 ∈ [0,2], 𝛥𝛾 = 0.1  (Problem 2) 



Testing points ( γ)    Waste  W( γ) 

Marine  M( γ) 

Recycle  R( γ) 

0.0 

2.000000 

1.500000 

1.000000 

0.1 

1.868125 

1.649759 

1.072964 

0.2 

1.737978 

1.796453 

1.146895 

0.3 

1.611849 

1.937415 

1.222118 

0.4 

1.492405 

2.070328 

1.298350 

0.5 

1.381929 

2.193418 

1.375096 

0.6 

1.281914 

2.305565 

1.451913 

0.7 

1.193058 

2.406309 

1.528507 

0.8 

1.115460 

2.495781 

1.604685 

0.9 

1.048818 

2.574578 

1.680259 

1.0 

0.992523 

2.643625 

1.754987 

1.1 

0.945709 

2.704036 

1.828586 

1.2 

0.907320 

2.757009 

1.900787 

1.3 

0.876230 

2.803739 

1.971407 

1.4 

0.851378 

2.845357 

2.040378 

1.5 

0.831843 

2.882893 

2.107744 

1.6 

0.816849 

2.917246 

2.173612 

1.7 

0.805692 

2.949172 

2.238081 

1.8 

0.797651 

2.979268 

2.301173 

1.9 

0.791944 

3.007966 

2.362765 

2.0 

0.787732 

3.035539 

2.422549 
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Table 3. Error values of waste, marine and recycle at testing points for (Problem-1) 



MAE 

1.6562380952381668 E-04 

2.2793714285719777 E-04 

1.9516619047618304 E-04 

MAPE 

2.0698206226719160 E-04 

1.0256963610789712 E-04 

1.2201287228477674 E-04 



Table 4. Error values of waste, marine and recycle at testing points for (Problem-2) MAE 

1.1274571428569284 E-04  1.1430809523808409 E-04  1.2962142857148295 E-04 

MAPE  1.0470961564736848 E-04  4.3931601159521410 E-05  7.8345688953517170 E-05 



6. Conclusion 



The present work shows the application of neural techniques for simulating waste plastic management of ocean in order to conserve marine ecosystems. The advantages of this proposed method are examined by solving different cases which describe various phenomena in oceanography. The values of statistical measures that are very close to 0, confirms the reliability and correctness of MhWNN-LBFGS. The excellent agreement between the neural results  and  traditional  numerical  methods  shows  that  the  newly  developed  MhWNN-LBFGS  algorithm  is extremely accurate for simulating the non-linear WMR model. 

The ML algorithm addressed in this article is generic and can be useful for solving relevant problems emerging in various other engineering applications such as, epidemic model [31], fuzzy space-fractional tele-graph model 

[32], fractional order coupled wave equations [33], astrophysics model [34], etc. 
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Abstract: In the global economy, plastics are considered a versatile and ubiquitous material. It can reach to marine
ecosystems through diverse channels, such as road runoff, wastewater pathways, and improper waste management.
Therefore, rapid mitigation and reduction are required for this ever-growing problem. The marine habitats are
believed to be the highest emitters and absorbers of O> and CO> respectively. As such, every day, the prominence
of managing the litter in the ocean is growing effectively and efficiently. One of the most significant challenges in
oceanography is creating a comprehensive meshless algorithm to handle the mathematical representation of waste
plastic management in the ocean. This research dedicates to studying the dynamics of waste plastic management
model governed by a mathematical representation depending on three components viz. Waste plastic (W), Marine
litter (M) and Recycling of debris (R), i.c., WMR model. In this regard, an unsupervised machine learning approach,
namely Mexican Hat Wavelet Neural Network (MyWNN) refined by the efficient Limited-memory Broyden—
Fletcher-Goldfarb-Shanno algorithm (L-BFGS), i.e., MyWNN-LBFGS model has been implemented for handling
the non-linear phenomena of WMR models. Besides, the obtained solution is meshfree and compared with the
state-of-art numerical result to establish the precision of the MyWNN-LBFGS model. Furthermore, different global
statistical measures (MAPE, TIC, RMSE, and ENSE) have been computed at twenty testing points to validate the
stability of the proposed algorithm.

Keywords: Wavelet neural network; Mexican hat wavelet; Meshle:
Unsupervised

: Waste plastic management; WMR model;

1. Introduction

Plastic contamination has spread across a wide swath of the ocean due to its lightness and solidness properties.
From zooplankton to cetaceans, marine mega fauna suffers a direct and fatal consequence of plastic contamination.
Every year, thousands of seabirds, seals, turtles and other marine reptiles are being killed through ingestion,
entrapment and being entangled in plastic. The lower trophic-level lives and their predators in aquatic
environments are being affected by consuming diligent natural toxins adhering to plastic. The presence of drifting
plastics, extending from huge abandoned nets, docks and cruises that carry fish, green growth, and microbial
networks to non-local districts, further exacerbates these consequences [1]. So, the management of waste plastic
in the ocean has received increased attention in recent years from researchers around the world as well as from
different activists and government bodies. Ocean plastic pollution was specifically mentioned in high-level
agreements like the Berlin declaration in 2013 and the resolution of G7 Leaders in 2015 [2]. EU legislation also
passed an amendment, notably the Marine Strategy Framework Directive, which helped move this issue up the
international agenda [3]. Despite different oceanographic models, there is no one size fits all methodology to waste
management of the ocean. To reduce, recycle, and clean up waste plastic, different strategies have been used
around the world. When these strategies are supplemented by the science-driven mathematical model, they may
be most effective. However, machine learning (ML), in particular neural techniques, has shown its potential by
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