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Abstract: Innovative lightweight smart structures incorporating piezoelectric material-based active elements, both as
sensors and actuators, have been identified to present manifold advantages over traditional passive systems. Such
structures have become intrinsically integrated into smart mechatronic systems, necessitating advanced design, testing,
and control techniques. Real-time simulation of shell-type deformable objects, especially when employing the finite
element method for non-linear analysis and control, has been challenging due to the extensive computational demand.
Presented herein is an efficacious implementation leveraging machine learning with the isogeometric finite element
formulation. This implementation focuses on shell-like smart mechatronic structures crafted from composite laminates
comprising piezoelectric layers, which are characterised by electro-mechanical coupling. The foundation for the
shell kinematics is derived from the Mindlin-Reissner assumptions, effectively incorporating transverse shear effects.
While the inclusion of machine learning facilitates real-time efficient operations, the isogeometric finite element
analysis (FEA) introduces pronounced advantages over conventional finite element method (FEM), also serving as a
valuable source of offline data crucial for the training phases of machine learning algorithms. A piezo-laminated
semicircular arch has been analysed to exemplify the effectiveness and performance of the presented methodology.
Explorations into further machine learning techniques and intelligent control schemes are also contemplated.

Keywords: Machine learning, Isogeometric analysis (IGA), Laminated structure, Smart mechatronic systems,
Piezoelectric shells, Intelligent control

1 Introduction
Modern architectural constructs are meticulously designed to serve specific functions. In this endeavour, a

preference for lightweight structures is observed, and this inclination has been facilitated by the advent of advanced
fibre-reinforced composite materials. Such materials not only enhance the weight-to-stiffness ratio of these structures
but also contribute to a reduction in operational costs. The incorporation of intricate multifunctional materials,
including piezoelectric substances and shape memory alloys, further augments structural capabilities. By introducing
these active elements, structures are rendered adaptive, often earning them the moniker of “smart.” These smart
structures, rather than passively conforming to deformations, actively adapt to prevailing conditions. These adaptive
frameworks comprise components for structural monitoring (sensors), signal processing (controllers), and those
influencing structural behaviour (actuators).

Concurrent advancements in mechatronics and intelligent materials have led to the birth of intelligent mechatronic
systems. These systems amalgamate the principles of intelligent structures with mechatronic applications. Designing,
testing, and controlling these sophisticated systems requires the integration of advanced finite element methods and
computational intelligence.

Khan et al. [1] explored the intersection of machine learning and smart structures by leveraging a deep learning
framework to detect delamination in smart composite laminates using low-frequency structural vibration responses.
A convolutional neural network (CNN) was employed to autonomously extract features from spectrograms, and
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impressive accuracies were achieved in differentiating between healthy and compromised laminates. In a parallel
vein, Badarinath et al. [2] introduced a method that amalgamated machine learning algorithms with FEA, aiming to
optimise maintenance schedules in mechanical systems. Machine learning regression models, particularly artificial
neural networks (ANN), were deployed and demonstrated precise predictions of time-varying stress distributions
and mechanical states, thereby enhancing operational safety and efficiency. Perfetto et al. [3] furthered this fusion
by integrating machine learning models with FEA, leading to the creation of a wave-based ANN. This ANN, once
trained with Finite Element Method data, displayed remarkable precision in detecting damage within aluminium and
composite plates.

Piezoelectric active thin-walled structures have attracted significant attention in recent academic discourses.
Central to this discussion is the search for precise numerical tools adept at modelling and simulating these structures.
A noteworthy contribution in this field was presented in the study [4], where an isogeometric finite element formulation
was tailored for composite laminated shells embedded with piezoelectric layers exhibiting electro-mechanical coupling.
Another pivotal study [5] examined IGA, a nuanced subset of FEA, in the context of active composite laminates
integrating piezoelectric layers. IGA, by harnessing the direct representation capabilities of Non-Uniform Rational
B-Splines (NURBS) from computer-aided design (CAD), obviates the need for geometric approximations and mesh
generation. As a result, enhanced analytical precision and efficiency are attained. The formulated isogeometric shell,
based on the Reissner-Mindlin kinematic model, facilitates active behaviours through its electro-mechanical coupling
capabilities.

Further insights into the expansive FEM landscape were provided in the study [6], emphasizing real-time
simulations of deformable shell structures. Neural networks were utilized for the real-time prediction of thin-walled
structural behaviours within FEM models, marrying offline FEM computations with real-time neural network
estimations. Consequently, rapid generation of displacements under specific loads was achieved. These neural
networks, when trained using data reflecting the mechanical responses of materials, prove invaluable for stress and
displacement estimations, thus providing pivotal insights for design and optimisation processes [7–9].

A profound integration of machine learning techniques with IGA emerges as a salient objective of the discourse.
Neural networks trained with data sourced from the FEM—representing structural displacement and voltage responses
to applied forces—promise swifter, more accessible results extraction. This potential integration offers intriguing
prospects for piezostructures, particularly piezoelectric laminated shells, merging active piezoelectric materials with
conventional structural components [10, 11].

The core aspiration of this discourse is to forge a system adept at simulating real-time behaviours in piezoelectric
shell structures. Central to this vision is the seamless amalgamation of the Isogeometric Finite Element Method
with machine learning methodologies, primarily ANN. In the proposed schematic, the neural network expedites the
retrieval of essential results for stipulated loads. Training is undertaken using raw numerical outputs from the IGA
method, effectively mapping the structure’s displacement and sensor voltage trajectories under applied load dynamics.

The subsequent sections of this exposition are organised thusly: Section 2 delineates the modelling of the shell
structure via nonlinear FEM analysis. Section 3 proposes a machine learning-augmented isogeometric FEA of smart
piezoelectric shells. Insights and avenues for further research are explored in Section 4, with conclusions drawn in
Section 5.

2 Methodology
2.1 Isogeometric Shell Formulation and FEA for Shell Structure Modelling

Understanding the behaviour of thin-walled structures is pivotal when aiming to simplify their complex three-
dimensional characteristics into a two-dimensional representation. Such simplifications have been demonstrated to
enable more efficient representations and analyses of these structures [12]. Thin-walled structures are acknowledged
to accommodate various configurations, including those exhibiting irregular curvatures, a facet often referred to as a
“general shape”. Regardless of the nature of the applied loads, these structures invariably undergo both membrane
strains—alterations in shape due to forces parallel to the surface—and flexural strains, the changes resulting from
bending forces [12].

When these thin-walled structures comprise composite laminates, the adoption of two-dimensional theories
that factor in transverse shear strains and stresses becomes indispensable. Such considerations cover changes in
configuration and the internal forces that appear perpendicular to the plane of the structure. To provide a precise
depiction of the behaviour of these structures, incorporating these aspects into modelling is deemed necessary. One
notable theory frequently applied in this context is the First-order Shear Deformation Theory (FSDT). This theory,
rooted in the Mindlin-Reissner kinematical assumptions, posits that transverse shear strains and stresses maintain
consistency across the structure’s thickness. Such an assumption has been identified to simplify the structure’s
mathematical modelling, thus aiding in straightforward analyses and predictions of its diverse responses [13].

In the domain of IGA, the model’s geometry is described through functions, with NURBS being prominent, a
technique often adopted in CAD processes. By utilising the same functions to detail both geometry and solution field,
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a seamless integration between the CAD model and FEA is ensured.
A NURBS curve is defined by a combination of control points and a knot vector. While the control points

delineate the curve’s shape, the knot vector ascertains the points and nature of the curve’s bends. The subsequent
mesh is generated by segmenting the curve into elements, a division determined by the knots. The underlying basis
for NURBS functions is the Cox-de Boor recursion formula, an established technique for delineating such curves.

• for degree 0:

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(1)

• for degree p > 0:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1, p−1(ξ) (2)

In the realm of IGA, NURBS basis functions have been articulated as:

C(ξ) =

∑n
i=0 Ni, p(ξ)wiPi∑n
i=0 Ni, p(ξ)wi

=

n∑
i=0

Ri, p(ξ)Pi, a ≤ ξ ≤ b (3)

where, wi represents the weights associated with the control points. This mathematical expression plays a pivotal role
in ensuring the robust integration between CAD geometry and FEA. An integral step of this integration, driven by
IGA, revolves around the meshing process. The initial number of elements along each axis can be described as:

ne = (n− p)(m− q) (4)

Here, m and n denote the count of control points or basic functions across the ξ and η axes respectively, with p
and q defining their respective degrees.

To facilitate the creation of a mesh for two or three-dimensional models, NURBS surfaces or volumes, defined by
a control polygon with constituent points Pi, are employed. The role of these points is instrumental in deducing and
visualising the surface within a physical space as opposed to the parameter space governed by parameters ξ and η, as
illustrated in Figure 1.

Figure 1. Illustrating the intricate relationship between indexical, parametric, and physical spaces in IGA
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The control points are systematically arranged into a grid formation. Knot vectors, in turn, are delineated in each
grid direction. The foundational mesh can be modified using a spectrum of techniques. The h-refinement process is
identified to add knots to the knot vectors, whereas p-refinement elevates the degree of the basic functions. Conversely,
k-refinement merges both methods, initially enhancing the basic functions’ degree followed by the addition of a novel
knot to the knot vectors. This consolidated approach primarily aims at refining the continuity at element boundaries
through concurrent adjustments to the basic functions’ degree and mesh density.

For heightened computational efficiency and accuracy, segmentation of the overarching NURBS into smaller
constructs, termed as ‘elements’, is executed. This segmentation task involves the translation of element boundaries
from the parameter space to the physical domain, giving rise to segments of the NURBS surface. The demarcated
elements fall within defined half-open intervals, exemplified by ξ ∈ [ξi, ξi+1) and η ∈ [ηi, ηj+1).

Vectors normal to the reference surface at the control polygon points must be identified for the construction of a
finite element model employing the isogeometric approach with shell elements [14]. Contrary to traditional finite
element methods where nodes are posited on the reference surface, in IGA, a majority of control polygon points are
observed off the reference surface, devoid of a singular projection onto it. Among the methodologies devised to
pinpoint the normal vector to the reference surface at a control polygon point, the Closest Point Projection has been
reported. This technique determines the minimal distance between the control polygon point and the reference surface,
typically harnessing iterative methodologies like the Newton-Raphson process. Upon discovery of the projection
point, an orthonormalized coordinate system is subsequently established [4].

Furthermore, the Exact Basis Systems Calculation method is often leveraged. This approach capitalises on the fact
that the reference surface’s normal vectors can be ascertained at integration points through two avenues: either via
the position vector’s derivative with respect to the variable ξ or η, or through interpolation over the control polygon
points’ normal vector. Such a procedure culminates in a system of (p + 1)(q + 1) equations for every component
of all element control points. However, it has been observed that as the degree of the basic functions escalates, the
complexity of the normal vector calculation also witnesses an augmentation.

2.2 Nonlinear Analysis of Piezo-Laminated Semicircular Arch
An evaluation was conducted on a piezoelectric laminated semi-cylindrical shell, as depicted in Figure 2, to assess

the efficacy of the proposed machine learning approach and to draw comparisons with results from direct FEM of
varied formulations [15]. The structure under consideration is distinguished by its central metallic layer, which acts as
a core. Sandwiching this metallic core are two piezoelectric (PZT) layers, affixed to its external and internal surfaces.

Figure 2. Schematic representation of the piezoelectric laminated semi-cylindrical shell

Dimensional assessments revealed that the core metallic layer possesses a thickness of 5.842 mm. The core’s
material properties were characterised by a Young’s modulus of 68.95× 103 and a Poisson’s ratio of 0.3. Adjacent
to this central layer, the piezoelectric layers were identified, each demonstrating a thickness of 0.254 mm. The
characterisation of these layers revealed a Young’s modulus of 63 × 103, a Poisson’s ratio of 0.3, a piezoelectric
constant e31 (identical to e32) of 16.11× 10−6, and a dielectric constant of 1.65× 10−11.

From an examination of boundary conditions, it was noted that one straight edge of the semi-cylindrical shell is
restrained, while its opposite edge remains unrestrained. A force, with magnitudes described in various studies to lie
between 100N and 200N, is exerted vertically on this unrestrained edge, instigating deformation. Close observation was
conducted on the displacements, particularly at the unrestrained edge, in both radial and circumferential orientations.
Furthermore, the intrinsic piezoelectric nature of the external layers meant that an induced electrical potential was
detected upon the application of the force, with the values being documented for subsequent comparative evaluations.

In efforts to model the behaviour of this laminated structure, varied computational methods have been employed
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across studies. For instance, Zhang [16] leveraged a discretization method with 1×10 elements in the relevant
directions. Another model [17] consisted of 160 triangular elements, whereas in the study [4], a NURBS model,
utilising quadratic base functions, was employed with a defined count of elements in both width and hoop orientations.

It was discerned that the forces, which emerge from piezoelectric coupling and are influenced by it, are contingent
upon the structural configuration. The new increment of actuating bending moments was deduced from the
piezoelectric coupling stiffness matrix, integrated over the extant structural configuration. Both the intensity and
directionality of the induced loads depend on the current configuration and are termed as follower forces. Given the
follower nature of these forces or moments, minuscule increments in the electric voltage became requisite. Some
approaches viewed the scenario as solely mechanical, disregarding follower type loads.

In the domain of nonlinear analysis regarding the piezoelectric laminated semi-cylindrical shell element, when
juxtaposed with the innovative isogeometric method, discrepancies between computations with ACShell9 and NURBS
finite elements were found to be minimal, with variations of approximately 0.1% [4].

3 Machine Learning Integrated Isogeometric FEA of Intelligent Piezoelectric Shells
To address the challenges presented by the robust analysis capabilities of the FEM and to optimise the computation

time required, an integration of the nonlinear isogeometric FEM with a standard feed-forward, back-propagation
multilayer perceptron (MLP) has been proposed. This integration facilitates a machine learning-based isogeometric
FEA.

For the analysed case of a piezoelectric laminated semi-cylindrical shell, as illustrated in Figure 2, an ANN
mirroring the isogeometric FEA was designed. Its purpose was to predict three primary outputs: displacement in the
radial direction, displacement in the hoop direction, and sensor voltage. Predictions were made based on two input
variables: the magnitude of the applied force and its point of application along the arch of the shell (with the force
directed vertically upwards).

The architecture of this network was strategically chosen to capture the complex, non-linear relationship between
the force variables and the consequent structural behaviours. Initialisation of the neural network involved the
specification of three hidden layers, each containing ten neurons, as depicted in Figure 3.

Figure 3. Feed-forward MLP with 2 input variables, 3 hidden layers with 10 neurons each, and 3 output variables

This chosen architecture was determined to strike a balance between the complexity of the model and the risk of
overfitting, taking the input parameters into account [18]. The Scaled Conjugate Gradient (SCG) back-propagation
algorithm, a variant of the Conjugate Gradient (CG) method, was employed for network training. The SCG algorithm
enhanced the CG method by infusing a scaling factor into the update rule, aiding in step size modification contingent
on the curvature of the error surface. The mathematical representation for the update rule of the SCG algorithm is as
follows:

p(k + 1) = −g(k + 1) + β(k) ∗ p(k) (5)

where, p(k) signifies the search direction at iteration k, g(k) is the gradient at iteration k, and β(k) is a scaling factor
determined by the curvature of the error surface [19].
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The utilised dataset comprised 150 data entries, each containing two input variables (force intensity and application
point) and three target outcomes: radial displacement, hoop displacement, and sensor voltage. These outcomes were
meticulously obtained through NURBS FEA. The activation functions were selected, with ReLU being deployed in
the hidden layers due to its efficiency and ability to introduce non-linearities. Simultaneously, a linear activation
function was adopted in the output layer, considering the continuous nature of the target variable.

Hyperparameters were judiciously configured, setting a learning rate of 0.001 to foster consistent convergence and
extending training over 200 epochs, ensuring a balance between learning capability and overfitting risk. Given the
dataset’s size, a batch size of 5 was deemed optimal to balance stability and convergence rate. The Adam optimizer
was employed, renowned for its adaptability, especially with smaller datasets. With the regression task in mind, the
Mean Squared Error (MSE) was chosen as the loss function. The addition of L2 regularization, with a coefficient of
0.01, coupled with He initialization for the initial weights, further enhanced training robustness.

Data segmentation occurred randomly into training, validation, and testing sets. The training set, encompassing
70% of the data, was presented to the neural network during training phases, adjusting the network based on estimation
errors. The validation set, 15% of the data, evaluated network generalization throughout training, halting the process
when generalization ceased to improve. In contrast, the test set, also 15% of the data, remained untouched during
training, providing an independent performance measure of the neural network post-training.

Lastly, performance metrics such as the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE)
were employed on the validation set, yielding critical insights into the model’s capacity for generalization. With
meticulous implementation, this strategy offers a tailored MLP fitting the dataset and problem nuances.

4 Comparative Analysis and Prospective Research Directions
Upon juxtaposition of results derived from the ANN simulations with findings from prior studies depicted in

Figure 4, a significant alignment was observed with the data presented by Zhang [16], as well as with results previously
documented in studies [4, 17]. Remarkably, discrepancies of merely 0.01% were identified when contrasting the trained
model with the NURBS finite analysis method. Such minimal divergence underscores the impressive concordance
between the two methods. Further, the inherent parallel processing capability of the neural network ensures expedited
execution during the application phase. This swift functionality renders the system amenable for real-time operations
and potential integrations within isogeometric FEM loop simulations, thereby serving as a crucial component within
the control loop. The proposed machine learning integration of isogeometric FEM for intelligent structures is posited
as a pivotal avenue for future investigations.

Figure 4. Comparing the analysis of the sensor voltage of the inner piezolayer and the displacement of the free arc
edge tip in the radial and hoop directions
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For an exhaustive appraisal, consideration of supplementary analytical techniques is advocated. The incorporation
of cross-validation might be pivotal in discerning the model’s robustness across varied data subsets, ensuring that its
efficacy isn’t disproportionately contingent on the demarcation of training and validation data. Furthermore, residual
analysis could be instrumental in pinpointing systematic deviations in model predictions, potentially unearthing
biases or latent issues within the model structure. An amalgamation of these evaluative tools, inclusive of correlation
coefficient assessment, could proffer a multifaceted comprehension of the model’s aptness for the designated
assignment.

Whilst the current machine learning paradigm adeptly navigates intricate non-linear associations, its opaqueness
might label it as a “black box” model. Prospective investigations could delve into methodologies aimed at enhancing
model transparency, such as scrutinising the weightage of individual predictors in influencing outcomes. Gaining a
deeper understanding of influential variables might unearth invaluable insights into intrinsic physical mechanisms,
subsequently guiding strategic design or control implementations.

In light of the data’s complexity, there is an impetus to extrapolate the findings of this study towards more advanced
frameworks such as deep learning architectures. Such an extension could potentially bolster predictive accuracy while
affording a more granular insight into the nuanced interrelationships embedded within the dataset [20].

5 Conclusion and Implications
In the investigation at hand, the feasibility of amalgamating machine learning techniques, notably MLP ANN,

with isogeometric FEA for the meticulous and expedient examination of smart piezoelectric shell structures was
elucidated. The advanced approach, as demonstrated, capitalises on the merits of both paradigms: it harnesses the
computational agility and real-time functionality of machine learning and melds it with the intricate and precise
modelling prowess inherent to isogeometric FEA.

The ensuing results, centred around a simply supported plate endowed with piezoelectric layers, have compellingly
shown the proficiency of the ANN in discerning the multifaceted, non-linear interplay among active force, shell
deflection, and output sensor voltage. Evaluation of the network’s efficacy was undertaken via a correlation coefficient
(R) metric, shedding light on a discernable alignment between the prognosticated and verifiable values. Such findings
suggest that the MLP possesses the capability to anticipate voltage fluctuations and deflections—both radial and hoop
in nature—requisite for reinstating the arc to its primordial configuration, contingent on the magnitude and locus of
the imposed force.

Yet, while the inherent power of the ANN in real-time predication of the behaviour of smart piezoelectric shell
structures cannot be understated, its modus operandi echoes the opaqueness of a “black box” model. Subsequent
studies may be inclined towards augmenting the model’s transparency, potentially by probing into the salience of
individual predictors in rendering outcomes. Such explorations could unearth pivotal insights into intrinsic physical
mechanisms, thus refining design and modulatory blueprints for intelligent mechatronic infrastructures. It is essential
that the resilience of this novel method be ascertained through diversified case analyses and myriad shell structure
archetypes. Both cross-validation and residual scrutiny might be pivotal for a rounded critique of the model’s aptness.

Given sustained evolution and rigorous validation, the emergent machine learning-centric methodology for
examining active piezoelectric shells might indeed revolutionise the ideation, experimentation, and modus operandi of
advanced mechatronic systems, catalysing the inception of supremely efficient and state-of-the-art smart constructs.
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