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Abstract: In the realm of smart vehicle navigation, both in known and unknown environments, the crucial
aspects encompass the vehicle’s localization using an array of technologies such as GPS, cameras, vision systems,
laser, and ultrasonic sensors. This process is pivotal for effective motion planning within the vehicle’s free
configuration space, enabling it to adeptly avoid obstacles. The focal point of such navigation systems lies
in devising a path from an initial to a target configuration, striving to minimize the path length and the time
taken, while simultaneously circumventing obstacles. The application of metaheuristic algorithms has been
pivotal in this regard. These algorithms, characterized by their ability to exploit initial solutions and explore the
environment for feasible pathways, have been extensively utilized. A significant body of research in robotics and
automation has focused on evaluating the efficacy of population-based algorithms including Genetic Algorithm
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Firefly Algorithm (FA), and Whale
Optimization Algorithm (WOA). Additionally, trajectory-based methods such as Tabu Search (TS) and Simulated
Annealing (SA) have been scrutinized for their proficiency in identifying short, feasible paths among the plethora
of solutions. There has been a surge in the enhancement and modification of these algorithms, with a multitude
of hybrid metaheuristic algorithms being proposed. This review meticulously examines various metaheuristic
algorithms and their hybridizations, specifically in their application to the path planning challenges faced by smart
vehicles. The exploration extends to the comparison of these algorithms, highlighting their distinct advantages and
limitations. Furthermore, the review delves into potential future directions in this evolving field, emphasizing the
continual refinement of these algorithms to cater to the increasingly complex demands of smart vehicle navigation.
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1 Introduction

The advent of technologies such as big data, cloud computing, 5G networks [1], the Internet of Things (IoT) [2],
and artificial intelligence (AI) [3, 4] has been instrumental in the evolution of smart vehicles. These vehicles leverage
these technologies to mitigate human error in driving, navigate traffic in self-driving modes, assist in industrial
logistics and manufacturing processes as Automated Guided Vehicles (AGVs), and operate in challenging terrains
as Unmanned Ground Vehicles (UGVs). Furthermore, their applications extend into healthcare, domestic settings,
and e-commerce through Autonomous Mobile Robots (AMRs).

In the domain of self-driving vehicles, technologies like Light Detection and Ranging (LIDAR) sensors [5],
cameras integrated with deep learning algorithms [6], and ultrasonic sensors [7]are employed for vehicle and object
detection, traffic alerts, zebra crossing recognition, and collision avoidance with pedestrians. AGVs, utilized in
warehouse logistics and material handling, navigate using lasers, magnets, vision cameras, or by following marked
lines or wires. The role of AI, particularly reinforcement learning, has become prominent in route planning for
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AGVs [8]. AMRs have a wide array of applications including inspection [9], surveillance [10], monitoring [11],
logistics, and service [12–15]. They are categorized into holonomic and non-holonomic types [16, 17], with
holonomic robots having controllable degrees of freedom equal to their total degrees of freedom [18], allowing
movement in any direction within their configuration space. Non-holonomic mobile robots, on the other hand,
have constraints on their velocities and derivatives of position [19].

For effective navigation, smart vehicles must comprehend the nature of their environment to adapt their actions
for optimal goal attainment. Critical to this process are three fundamental components: mapping, localization,
and path planning [20]. Mapping involves the creation or retrieval of environmental maps, providing location and
orientation data for the vehicles. Localization is essential for vehicles to ascertain their position on the map, a task
accomplished using cameras, GPS, and various sensors like laser, vision, and ultrasonic sensors. The location may
be expressed in absolute coordinates (longitude, latitude, altitude), as a reference relative to the environment, or
as topographical coordinates (e.g., in a room). Path planning is the process of determining a viable, obstacle-free
route in typically congested real-world environments [21].

2 Literature Review
2.1 Path Planning Methods and Algorithms for Smart Vehicles

Path planning in the context of smart vehicles is categorized into two primary approaches: global and local.
Global path planning is concerned with deriving the optimal path using extensive environmental data. This
approach is most effective in static environments that are well-defined and familiar to the smart vehicle. Here,
path planning algorithms generate a complete route from an origin to a destination, thereby determining the
optimal trajectory for the vehicle. In contrast, local path planning is pertinent in environments that are either
unfamiliar or subject to change. It involves real-time computation while the vehicle is in motion, utilizing data
from onboard local sensors. This enables the smart vehicle to adaptively generate new routes in response to
dynamic environmental changes. A wide array of path planning methods and algorithms have been explored in the
field of robotics. Factors influencing the selection of an appropriate algorithm include the kinematics and dynamics
of the environment, the computational capabilities of the smart vehicles, the type of sensors employed, and the
availability of other sourced information. The decision-making process regarding the choice of an algorithm also
involves considering the trade-offs between algorithmic performance and complexity, which vary depending on
the specific application [22]. As illustrated in Figure 1, path planning methods and algorithms can be divided
into several categories, such as classical methods like cell decomposition, metaheuristic algorithms including the
genetic algorithm, machine learning approaches like reinforcement learning, and sampling methods exemplified
by probabilistic roadmaps [22–25].

Figure 1. Classification of path planning algorithms

2.2 Metaheuristic Algorithms

Metaheuristic algorithms represent a class of high-level heuristic approaches that are designed to provide
suitable solutions to optimization problems, particularly those characterized by incomplete information or limited
computational resources. When applied to path planning, metaheuristic algorithms demonstrate proficiency in
managing environments that are partially known or contain moving obstacles. This is in contrast to classical
algorithms, which typically necessitate prior comprehensive knowledge of the environment [23]. Metaheuristic
algorithms are categorized into two main groups: population-based methods like Particle Swarm Optimization
and trajectory-based methods such as Simulated Annealing, as depicted in Figure 2 [26]. Population-based
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metaheuristics operate by generating multiple points within the search space, whereas trajectory-based methods
progress through the search space by navigating a trajectory via a single point at each time step.

Figure 2. Classification of metaheuristic algorithms

Table 1. Pseudocode of GA

Genetic Algorithm
1 Choose encode method
2 G← 0
3 Gmax ←Maximum generation
4 Initialize population
5 for (G < Gmax) do
6 for (i=1 to maximum population) do
7 Evaluate fitness of individual i
8 end for
9 Selection
10 Crossover
11 Mutation
12 Move new individuals to population G + 1
13 G← G+ 1
14 end for
15 return best individual

2.2.1 Genetic Algorithm (GA)
The GA, an optimization methodology, draws upon the principles of genetics and natural selection, first

conceptualized by Bremermann [27]. Holland was the pioneer in adapting the genetic algorithm to computer
science [28]. Its applications have since permeated various domains, including robot navigation and numerous
scientific and technological fields. This algorithm focuses on optimizing complex problems where the objective
function needs to be maximized or minimized within specified constraints. The method starts by defining a
population size, where chromosomes (sets of genes) are formulated based on the given problem. Each chromosome
in the population is assigned a fitness value, contingent upon the objective function. Chromosomes are then selected
based on their fitness, allowing them to propagate their genes to subsequent generations through crossover processes.
Mutation is employed to maintain population diversity and avert premature convergence. Table 1 elucidates the
pseudocode of the genetic algorithm. The algorithm concludes its process once the population has converged [29].

The recent focus on GA-based methods, particularly in the realm of optimization problems like path planning,
highlights the potential of GA in addressing these challenges [6]. This is evidenced by the success of GA in
various applications, as discussed in Table 2, which outlines different studies that have employed GA for path
planning. This table includes the variables considered in each study and provides insights into their findings.
Moreover, the hybridization of GA with other intelligent algorithms has been an area of considerable research
interest. Notable examples include the integration of GA with Fuzzy Logic [30], Intelligent Water Drop [31], and
Neural Network [32], aiming to enhance the efficacy of the solutions. In the utilization of GA-based methods for
path planning, distance often emerges as a common parameter [33–37], alongside other considerations such as path
smoothness and clearance [34, 36, 37], energy evaluation [38], and factors related to robot speed. A noteworthy
study by Liu et al. [39] presented an improved GA to tackle the appointment order allocation and route planning
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issues of Cainiao unmanned vehicles. Additionally, Wang et al. [40] proposed an optimized approach using GA
to implement the Multi-Objective Evolutionary Algorithm (MOEA) for planning the trajectory of a mobile robot
in a known environment. This experiment involved a two-wheeled mobile robot using the ArUco system within
the Robotic Operating System (ROS). However, it’s important to note the limitations of this method, particularly
its unsuitability for rough terrains due to the omission of the mobile robot’s dynamics in the planning process.
Furthermore, the algorithm’s deployment on a console computer, rather than within the robot’s embedded system,
is attributed to the limitations of the embedded system’s low-end hardware.

Table 2. GA for path planning of smart vehicles

Types
Initial

Population
Generation

Method
Population Size Reproduction Operators Fitness Function

Improved
GA Random 100 F = 1

C+MP

Novel GA CBPRM 20, 25, 50
Crossover: Ordinary Mutation: Change, smooth and

shortcut operators C(k) = L(k)× S(k)

hTetre-GA Random 25, 50, 100

Crossover: Single-point crossover operator Mutation:
Classic GA mutation operator Removal Operator:
Translational motion command, Non-translational

motion command Rearrangement Operator

F =
1

1+WA∗

(
POS

(
pl

p−1

))

Novel GA Random 20
Crossover: Single-point with crossover rate
(pc) = 1.0 Mutation: Bitwise flipping with

mutation rate (pm) = 0.1(1/string length )

GA Random Crossover: single-point F = N −(
α1

∑n
i=1 di + α2 ∗m

)
Types Sorting and Selection Technique Number of

Generations Type of Vehicle Type of Obstacle

Improved
GA

Optimization guidance factor and Roulette
selection 500 Multiple Static

Novel GA 50 Single Static

hTetro-GA NSGA-II technique 50 Single (Reconfigurable
tilted robot)

Static (H-Shaped, Spiral
and 3-Slit) Dynamic

(Perpendicular and
Parallel)

Novel GA
Parent Selection: Rank-based roulette wheel

Survivor selection: Elitism + crowding
distance (NSGA-II)

2000
Single (Two wheeled

mobile robot running on
STM32 microcontroller)

Static

GA Roulette Between 100 and
500 generations Single Static (Special, Regular,

Irregular multiple)
Types Type of Map Software Remarks Ref

Improved
GA Topological MATLAB R2018a

Order allocation and route planning problem is modelled to
obtain efficient picking of orders. Provides the optimal

solutions to unmanned vehicle inputs and their path planning.
[39]

Novel GA Geometrical CGAL 3.3.1 [41]
Minwoski sum is used as a computational geometry based

approach instead of cell based methods. CBPRM speeds up
the evolutionary process.

[42]

hTetro-GA 24× 24 Grid Robotic Operating System
(ROS)

NSGA-II technique is implemented to determine best motion
command sequence. hTetro-GA algorithm can be

implemented for reconfigurable robots during a rescue task.
[43]

Novel GA 10× 10 Grid Robotic Operating System
(ROS) and Python 3

Experimented mobile robot is localized by the ArUco system
through a bird’s view camera. Mobile robot can’t operate on

rough environment because its dynamic behaviour is not
considered in the work.

[40]

GA 100× 100
Geometrical

Large turning angle problem in basic genetic algorithm is
overcome. Genetic algorithm implementation is separate
from path smoothing process. Experimental results are

compared with Dijkstra algorithm
[44]

Note: NSGA-II: Non-dominated sorting genetic algorithm-II; CBPRM: Clearance Based Probabilistic Roadmap Method; hTetro-Ga:
hinged-Tetromino-Genetic Algorithm

2.2.2 Ant Colony Optimization (ACO)
The concept of ACO was first introduced by Dorigo in his Ph.D. dissertation in 1992 [45]. This algorithm is

inspired by the sophisticated social behaviors exhibited by ants during their search for food. A key element of this
behavior is the deposition of pheromones, which serve to guide other ants by creating a trail to the food source.
The trail’s pheromone concentration intensifies as more ants traverse it, thereby increasing the likelihood of it
being followed by additional ants. Notably, the shortest route to the food source becomes the most popular among
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the ants, as it can be traversed in the least amount of time. This phenomenon was first observed in the renowned
Double Bridge experiment [46], where ants consistently selected the shortest path over time when presented with
multiple routes to a food source. Pheromone evaporation also plays a crucial role in this process. It serves
as a mechanism to prevent the ants from getting trapped in locally optimal solutions [47]. As the pheromone
evaporates, the attractiveness of a given path diminishes, reducing the likelihood of it being selected by other ants.
Additionally, on the shortest path, the rate of pheromone deposition surpasses its rate of evaporation, ensuring that
a high pheromone level is maintained. In the context of ACO algorithms, this concept is applied to the selection
of paths between nodes. The probability of an ant, situated at node i, choosing to move to another node j in the
network, is influenced by the level of pheromone deposition on the potential paths, as described in reference [47].

pkij =


(τk

ij)
α
(ηk

ij)
β∑

i∈Nk
i
(τk

ij)
α
(ηk

ij)
β if j ∈ Nk

i

0 if j /∈ Nk
i

(1)

where, τkij denotes pheromone levels. Analogous to the natural tendencies of ants, paths with elevated pheromone
concentrations are more likely to attract ants in the algorithm, leading to a preference for these paths over others
with lower pheromone levels [48].

Table 3. Pseudocode for ACO

Ant Colony Optimization
1 Initialize nodes and necessary parameters
2 Initialize pheromone level of each node
3 Define maximum iterations ITR
4 while (ITR>0) do
5 for each ant k do
6 ηj ← heuristic function of the search space (fitness value)
7 Transition probability [j]← pkij(t)
8 Select node with the highest pkij(t)
9 Update pheromone level τij(t+ 1)
10 end for
11 ITR=ITR-1
12 end while
13 Best solution← solution with best ηj
14 return Best solution

The heuristic function: ηkij = 1
dje

.
The pheromone update:

τij(t+ 1) = (1− ρ)τij(t) + ρ ∗∆τij(t) + q ∗∆τ bij(t) (2)

∆τij(t) =

m∑
k=1

∆τkij(t) (3)

∆τkij(t) =

{
Q
Lk

, if ant k passes node i and j

0, otherwise
is the quantity of pheromone deposited, where Q is a constant and

Lk is the total length of the path that ant k travels. A pseudocode of this algorithm is presented in Table 3.

Lk =

n−1∑
i=1

√
(xi+1 − xi)

2
+ (yi+1 − yi)

2 (4)

Numerous scholars have conducted comprehensive research on the operational mechanics, structural design,
and optimal parameterization of ACO, proposing various enhancements to address these areas, as detailed in
Table 4. Additionally, a range of variables, as listed in Table 5, have been considered in these studies. Liu et
al. [49] optimized cross-path nodes in the path search process using the ant colony algorithm combined with
geometric optimization, which improved the algorithm’s effectiveness and path quality via pheromone updates.
You et al. [50] developed a novel heuristic operator to augment the diversity and convergence of the population
search. Dai et al. [51] addressed issues related to global convergence speed and path smoothing by enhancing
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an A* algorithm-based ACO and the maximum-minimum ant system, incorporating a retraction mechanism to
circumvent deadlocks. Jiao et al. [52] proposed an adaptive state transfer and pheromone update method, enhancing
the significance of heuristic information and pheromone strength in the iterative process of the algorithm, thereby
improving its adaptability to diverse environments and its capacity to escape local optima. Akka and Khaber [53]
refined the state transfer formula to prioritize the selection of neighbor nodes with the most exits as the subsequent
node. This enhanced algorithm introduces diversity to the search process and mitigates the impact of ineffective
pheromones by dividing the multi-heuristic function, separately rewarding and penalizing the worst path, as
outlined by Yang et al. [54].

Table 4. Applied ant Colony Optimization Algorithm and its hybrids for path planning of smart vehicles

Types m α β ρ Q Nmax φ γ ξ v δ Selection of Next Node
An improved ant colony algorithm

(ACO-PD) 10 1.1 p
12

0.5 200 0.01
√
2

DL-ACO [PEACO and TPOA] 20
10

1
0.3

3
0.8 0.03 0.1 100

100 1 0.9 Roulette wheel selection
LF-ACO 50 1 3 0.3 100 50 1 10 5 20 Roulette wheel
APACA 120 1 5 0.9 100 200
RMACA 50 1 5 0.5 10

54 %
lower

than [55]
IACA 30 1 5 2 100

Ant Colony Optimization and Fuzzy Control 80 1 9 0.5 1 100 Roulette wheel

IACO-A* 50
0,1,
2,3,
4,5

0,1,
3,5,
7,9

0,0.1,
0.3,0.5,
0.7,0.9

1 100

IAACO 50 1 7 2.5 100 1
Types Type of Vehicle Type of

Obstacles Type of Maps Software
An improved ant colony algorithm

(ACO-PD) Single Static Grid

DL-ACO [PEACO and TPOA] Single
(Rikirobot) Static Grid

LF-ACO Multiple robot Static Grid MATLAB and Robotic
Operating System (ROS)

APACA Single (Smart
wheelchairs) Static 20× 20 Grid (in subgraph (a) of

Figure 3)
RMACA Single Static Grid. (Common, tumnel,trough,

baffle maps) MATLAB
IACA Single Static Grid MATLAB

Ant Colony Optimization and Fuzzy Control Single Static 20× 20 Grid MATLAB
IACO-A* Single Static 20× 20 Grid (in subgraph (c) of

Figure 3) MATLAB R2020b

IAACO Single Static 20× 20 Grid in subgraph (b) of
Figure 3)

Types Remarks Ref.
An improved ant
colony algorithm

(ACO-PD)
• Proposed method solves convergence speed problem in ACO. • Geometric optimization method is

implemented to improve path generated by ACO. [49]

DL-ACO [PEACO
and TPOA]

• PEACO and TPOA is combined to generate path and avoid obstacles. • Proposed method gives better results
in path distance, smoothness and good solution rate when compared to APACA and MO-FA. •

Experimentation is done with Rikirobot powered by Raspberry Pi and Rplidar A1. • Implements piecewise
B-Spline to smoothen path.

[56]

LF-ACO
• Proposed method aims to solve multi-robot path planning. • Pheromone update in ACO incorporates

pheromones of leader and follower ant. • Maximum-minimum ant approach is employed for global search. •
Generated path is optimized by TPOA and dynamic cut-point method.

[54]

APACA
• Implementation of Direction determining Method to speed up convergence rate for global optimal search. •
Proposed method shows better outcomes in number of iterations and path length when compared to IACA and

GPACA.
[52]

RMACA
• Retraction mechanism is employed to avoid local minimum. • Improved Maximum-minimum ant approach
performs global search. • Estimation function in A∗ improves search efficiency of ACO. • RMACA is better

in convergence rate and bending suppression effect.
[51]

IACA
• Stimulating probability is introduced to improve transition rule. • Unlimited step length principle is used as
heuristic information for path search efficiency. • Dynamic change in evaporation rate increases convergence

speed.
[53]

Ant Colony
Optimization and

Fuzzy Control
• Fuzzy algorithm controls α and β to adjust evaporation rate. • Proposed critical obstacle influence factor

generates initial pheromone distribution. [57]

IACO-A*
• Proposed modelled environment is based on geometric modelling and Monte Carlo calculation. • Proposed

method gives optimum results in terms of path length, cumulative radiation dose and energy consumption when
compared to other algorithms.

[58]

IAACO
• The transition probability is induced with angle guiding factor and obstacle exclusion factor to enhance path

search efficiency. • Heuristic information adaptive adjustment factor and adaptive pheromone volatilization
factor are introduced into the pheromone update rule for optimum global search.

[59]

Note: DL-ACO: Double Layer-ACO; PEACO: Parallel Elite Ant Colony Optimization; TPOA: Turning Point Optimization Algorithm;
APACA: Adaptive Polymorphic Ant Colony Algorithm; Retraction Mechanism Ant Colony Algorithm; IACA: Improved Ant Colony

Optimization Algorithm; MO-FA: Multiobjective Firefly Algorithm; IACO-A*: Improved Ant Colony Optimization algorithm-modified A*

236



Figure 3. Sample maps implemented for ant Colony Optimization Algorithm: (a) APACA 20×20 grid map [52];
(b) IAACO 20×20 grid map [59]; (c) IACO-A* 20×20 grid map [58]

Table 5. Variables used in various ACO

Variables Description
m Ant’s population size

Nmax Maximum iteration number
α Weight of Pheromone
β Weight of Heuristic information
ρ Pheromone evaporation ratio
Q Pheromone’s Intensity
τij Pheromone on the path between i and j
ηij Heuristic information on j
ξ Distance factor coefficient
φ Distance correction parameter
v Ant’s importance on moving straight
δ Parameter to update Pheromone
γ Diffusion coefficient

2.2.3 Particle Swarm Optimization (PSO)
PSO is inspired by the collective behavior of animals like birds, tetrapods, or fish in their pursuit of food. This

approach mirrors the natural group dynamics observed in these species, where there is no singular leader guiding
the group to the food source [60]. In such a group, each individual may not know the precise location of the
food, but they can approximate their proximity to it. Independent efforts by each animal to reach the food source
would be inefficient, leading to extended time frames and chaos. Consequently, the most effective strategy is for
the members to follow those closest to the food source [29]. In PSO, each individual animal is analogous to a
solution, possessing two critical pieces of information: Their fitness value, derived from the objective function;
The velocities that guide the solution towards the target location.

237



The algorithm commences with a set of solutions or particles. Each particle navigates the solution space,
returning their fitness value, known as pbest, in each iteration. The best pbest value from each iteration is recorded
as the global best value, gbest. Based on these two values, the algorithm updates the velocity and position of
each particle. The search process concludes either upon reaching the maximum number of iterations or upon
identifying the optimal solution. The formulas for updating the velocity and position of particles in PSO are
outlined subsequently.

vid(t+ 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (pid − xid(t)) + c2 ∗ r2 ∗ (pgd − xid(t)) (5)

xid(t+ 1) = xid(t) + η ∗ vid(t+ 1) (6)

The inertia weight is denoted asw, c1, c2 are the learning factors, r1, r2 are normal distribution random numbers
within the interval [0, 1], η represents the velocity constraint proportional factor, vid represents the velocity of the
i-th particle in d dimension, and xid represents the position of the i-th particle in d dimension. The procedure to
implement this algorithm is described in Table 6.

Table 6. Pseudocode of particle swarm optimization

Particle Swarm Optimization
1 Initialize particle population size S
2 GEN← 0
3 Initialize GENmax
4 for (each particle i = 1,...,S) do
5 Initialize particle’s position xi
6 Initialize particle’s best known position to initial position: pi ← xi
7 Initialize particles velocity vi
8 if fitness (pi) > fitness(g) then
9 g ← pi
10 end if
11 while GEN < GENmax do
12 for each particle i = 1,...,S do
13 for each dimension d = 1,...,n do
14 r1, r2 ← random normal distribution in [0,1]
15 Update particle’s velocity vid
16 Update particle’s position xid
17 end for
18 if fitness (xi) > fitness(pi) then
19 pi ← xi

20 if fitness (pi) > fitness(g) then
21 g ← pi
22 end if
23 end if
24 end for
25 GEN=GEN+1
26 end while
27 Best solution← solution with best ηj
28 return Best solution

The PSO is analogous to the GA in its initiation with a randomly formed population set, subsequently evaluated
based on fitness values. This methodology has been effectively applied in various navigation contexts, such as
aerial robot navigation in unknown three-dimensional environments [61], humanoid robot navigation [62], and
industrial robot navigation [63]. The performance efficacy of PSO is contingent on the precision in adjusting,
controlling, and updating its parameters.

Since its inception in 1995, numerous approaches have been suggested to refine these aspects and enhance
the overall functionality of PSO. Traditional techniques for parameter adjustment and control include Fixed
Inertia Weight (FIW) [64, 65], Linearly Decreasing Inertia Weight (LDIW) [64–67], Time Varying Acceleration
Coefficient (TVAC) [65, 68], Random Inertia Weight (RANDIW) [64–66, 68], Random Acceleration Coefficients
(RANDAC) [69], and Fixed Acceleration Coefficients (FAC) [64–66, 68].

Table 7 compiles various studies that have proposed improvements and hybridizations of PSO to address
path planning challenges. Dewang et al. [70] introduced an adaptive particle swarm optimization (APSO) that
dynamically alters the inertia weight in each iteration, initiating the search with a high inertia weight to avoid
local minima, and gradually reducing it to focus on exploitation as iterations progress. This strategy yielded
superior results in comparison to standard PSO in terms of path length and planning time, as demonstrated in
the environment depicted in subgraph (a) of Figure 4. Chai et al. [71] combined PSO with the Probabilistic
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Roadmap Method (PRM) to enhance sampling in PRM. This hybrid method leverages knowledge of sample points
in obstacle-laden regions to refine sampling in open spaces, particularly in narrow passages, thereby improving
connectivity. Masehian and Sedighizadeh et al. [72] utilized PSO to derive the shortest and smoothest feasible
paths. Particles are initialized based on points identified in free space by a robot’s laser sensor, with the optimal
particle’s position determined by the sensor readings. PRM serves as the local planner for obstacle avoidance, and
simulation results indicate a more efficient runtime compared to the basic PRM approach. Li et al. [73] presented
an improved PSO that initializes particles through uniform random distribution, employs an exponentially decaying
inertia weight to enhance planning efficiency, and integrates cubic spline interpolation for path smoothing. This
variant was benchmarked against other PSO variants, with comparisons based on performance indices and path
planning metrics, where IPSO showed promising results. Song et al. [74] developed a fractional-order PSO
variant (FOPSO) that introduces adaptive fractional-order velocity and utilizes Bezier curves for path smoothing.
Its performance was evaluated against other PSO variants using benchmark functions. Finally, Alam et al. [75]
implemented PSO for random sampling along grid lines between start and goal points, with an initial spacing of
points along the Euclidean path. The effectiveness of this approach was validated through simulations in various
environments with static obstacles.

Table 7. Applied Particle Swarm Optimization and its hybrids for path planning of smart vehicles

Types Particle Size Inertia Weight (w) Cognitive
Factor (c1)

Social Factor
(c2)

Number of
Generations

Hybrid PSO 20 10% 1.5 1.5 500
EDPSO 150 1 0.4 0.4 150

PSO-AWDV 200 0.9, 0.5 2.0, 1.0 1.0, 2.0 100
Improved PSO 10 0.4, 0.9 2 2 3000

FIMOPSO 50 0.4 to 0.9 100
Types Type of Vehicle Type of Obstacles Type of Map Software

Hybrid PSO Single (Mobile
robot)

Dynamic 200 × 200 Geometrical MATLAB
2018b

EDPSO Single Static and Dynamic 20 × 20 Geometrical (see in
subgraph (d) of Figure 4)

PSO-AWDV Single Static 11 × 11 Geometrical (see in
subgraph (c) of Figure 4)

Improved PSO Single Static 18 × 18 Geometrical MATLAB
R2016a

FIMOPSO Single Static and dynamic 210 × 178 Geometrical (in
subgraph (b) of Figure 4)

MATLAB

Types Remark Ref.

Hybrid PSO

•The performance of hybrid PSO and ACO on shortest path and
least time constraint is measured against PSO and ACO separately.
•Although it’s observed that PSO outperforms ACO, the hybrid

gives a superior results.

[76]

EDPSO

•Peaks of diversity in population gives room for more exploration
in the search space. •Can be applied to smart vehicles with slow

movements. •Comparison was made on all the cited
meta-heuristics using 10 complex multi-model functions from the

CEC 2019 benchmarking suite.

[77]

PSO-AWDV •Quartic Bezier transition curve with three control points is
implemented to smoothen planned path.

[78]

Improved PSO
•Proposed mutation operation increases particle diversity.

•Proposed de-redundant algorithm removes needless points, thus
improving generated path.

[79]

FIMOPSO

•Constraints to be minimized are path length, motor torque, travel
time, robot acceleration; obstacle avoidance is maximized.
•Obstacle avoidance problem is solved with Fuzzy inference

system.

[80]

Note: EDPSO: Enhanced Diversity Particle Swarm Optimization; PSO-AWDV: Particle Swarm Optimization - Adaptive Weighted Delay
Velocity; FIMOPSO: Fuzzy enhanced Improved Multi-objective Particle Swarm Optimization
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2.2.4 Artificial Bee Colony (ABC)
The ABC algorithm, conceived by Dervis Karaboga for addressing polynomial mathematical problems [81],

is inspired by the foraging behavior of honey bees. In their natural environment, honey bees use pheromones and
a waggle dance to communicate information about food sources. When a bee finds a food source, it evaluates the
nectar quantity, returns to the hive, and performs a waggle dance to convey information about this source. The
quality of the food source is indicated by the vigor of the waggle dance. In the context of the ABC algorithm,
the location of a food source represents a potential solution to an optimization problem, and the quality of the
solution is analogous to the nectar content of the food source. The ABC algorithm categorizes bees into three
roles: employed bees, onlooker bees, and scout bees. It is assumed that for each food source position, there is
one corresponding employed bee. Employed bees share information about the location and quality of food sources
with onlooker bees through the waggle dance. Onlooker bees then select food sources based on their perceived
quality, meaning that higher-quality sources are more likely to be chosen. If employed bees abandon a food source,
they transition into scout bees, embarking on the search for new food sources. Scout bees memorize the quality
of discovered food spots and compare them with known sources to identify the most promising ones. The ABC
algorithm’s pseudocode is illustrated in Table 8. Initially, the ABC algorithm establishes a population of food
source positions (SN), where SN represents the population size. Each food source, or solution, is a D-dimensional
vector, with D being the number of optimization parameters. Each food source is linked to a probability value pi,
influencing the decision-making of onlooker bees.

Table 8. Pseudocode of ABC

Artificial Bee Colony Algorithm
1 Initialize bee population size SN = number of employed bees = number of observer bees
2 Evaluate fitness of each bee f(sol)
3 Set best solution, solBest← sol
4 ITR← 0
5 Initialize ITRmax
6 while ITR < ITRmax do
7 for each employed bee i = 1 ,..., SN do
8 Select random solution and apply random neighbourhood structure
9 Determine the probability of each solution, pi
10 end for
11 for each employed be do
12 sol← select solution with highest probability
13 apply random neighbourhood structure
14 If f(sol) < f(solBest) then
15 solBest← sol
16 end if
17 end for
18 ITR = ITR + 1
19 end while
20 return Best solution, solBest

pi =
fiti∑SN

n=1 fitn
(7)

where, fiti is the fitness of solution i, and SN is number of employed bees (population size). The generation of a
new food source position from an existing one is determined using the following expression:

vij = xij + ∅ij (xij − xkj) (8)

where, k and j are random values in sets {1, 2 . . . ,SN} and {1, 2, . . . ,D} respectively. k should be different from
i. ∅ij ∈ [−1, 1] controls the production of a neighbour food source position around xij .

Research in the field of ABC for path planning has led to a variety of advancements and hybrid approaches, as
detailed in Table 9. One notable development in the navigation of smart vehicles is the combined Artificial Bee
Colony and evolutionary programming approach proposed by Contreras-Cruz et al. [82]. In this methodology,
the ABC algorithm serves as the local search method, while evolutionary programming is employed to enhance
the potential paths obtained. This approach was initially applied in multi-robot systems and later refined for use
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in unfamiliar environments with dynamic obstacles [83]. However, certain shortcomings were identified, such
as neglecting the distance between new bee positions and obstacles. To address these issues, an improved ABC-
Evolutionary Programming (ABC-EP) approach was proposed by Kumar and Sikander [84]. Further advancements
include the Adaptive Dimension Limit-Artificial Bee Colony Algorithm (ADL-ABC), introduced by Kamil et
al. [85] for optimizing the global path of mobile robots. This algorithm demonstrated its efficacy by finding
solutions with fewer iterations and reduced computational time. Another development, the Directed Artificial Bee
Colony algorithm, was shown to yield better results in dense environments, such as maps with numerous static
obstacles, compared to other leading algorithms [86]. In an effort to curtail computational time, particularly crucial
in real-time path planning scenarios, Szczepanski and Tarczewski [87] proposed a hybrid approach combining the
ABC and Dijkstra algorithms. This amalgamation aimed to balance the comprehensive search capabilities of the
ABC algorithm with the efficiency of Dijkstra’s algorithm, particularly in environments where quick computation
is vital.

Table 9. ABC for path planning of smart vehicles

Types Population
Size

Number of
Iterations

Type of Vehicle Type of
Obstacles

Type of Map

ADL-ABC 100 1000 Single Static 10×10
Geometrical

ABC-EP 10 500 generations
(for EP)

Single (Xidoo-Bot,
mobile robot

Pioneer 3-AT)
Static

Various
Geometrical

and Grid
maps. (see
Figure 5)

Improved
ABC-EP

200, 400, 600,
800, 1000

100 Single Static and
Dynamic

100m×100m
Geometric

Enhanced ABC 25 100 Single Static 100×100 Grid
Types Software Remark Ref.

ADL-ABC MATLAB

•Implemented dynamic control limit reduces
computational time and number of iterations.
•Generated path is smoothened using cubic
polynomial through three via points. •Better

results are observed when proposed method is
compared to ABC.

[85]

ABC-EP C language

•While ABC builds a path in collision free space,
EP improves the path using mutation to produce a
short path. •Proposed approach was implemented
in some benchmark maps. •ABC-EP is deployed
to an experimental platform to show its feasibility.

[82]

Improved
ABC-EP

MATLAB
2018b

•Best food points among randomly distributed
ones which aid in finding optimum path are

selected its distance to goal point and nearest
obstacle. •When determining the optimum path,
takes into account the distance between the new

bee position (best node) and any surrounding
barriers.

[84]

Enhanced ABC •Cubic Ferguson spline is introduced to
smoothen path generated by ABC.

[88]

Note: ADL-ABC: Adaptive Dimension Limit – Artificial Bee Colony; ABC-EP: Artificial Bee Colony – Evolutionary Programming.

2.2.5 Firefly Algorithm (FA)
The FA, introduced by Yang [89], is inspired by the bioluminescent communication of fireflies. The key

aspect of this communication is the distinctive light patterns emitted by fireflies, where the intensity of the light is
indicative of a firefly’s attractiveness. In the context of the FA, this attractiveness is analogous to the fitness value
of a solution. The algorithm operates on the principle that among any two fireflies, the one emitting brighter light
will attract the one with dimmer light. The attractiveness of a firefly is quantified as per the following equation [90]:
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β = β0e
−γrij

2

(9)

where, β denotes the attractiveness, β0 represents the maximum attractiveness, which is typically set to 1, γ is
the light absorption coefficient ranging between [0.1, 10], and rij is the distance between firefly i and firefly j,
calculated using the standard Euclidean distance formula:

xi = xi + β (xj − xi) + α(ϕ− 0.5) (10)

where, xi and xj are the positions of firefly i and firefly j in the d-dimensional space, respectively; α and ϕ are
random numbers in the distribution [0, 1]. The pseudocode for FA is described in Table 10.

Table 10. Pseudocode of FA

Firefly Algorithm
1 Objective function f(x), x = (x1, x2 . . . , xd)
2 Initialize population size xi(i = 1, 2, . . . , n)
3 Determine the intensity (I) of each firefly determined by f(x)
4 Initialize GENmax
5 while (GEN < GENmax) do
6 for (i = 1 to n) do
7 for (j = 1 to i) do
8 If (Ij > Ii) then
9 Vary attractiveness with distance r via exp (−γr)

10 move firefly i towards j
11 Evaluate new solutions and update light intensity
12 end if
13 end for
14 end for
15 Rank fireflies and find the current best
16 GEN = GEN + 1
17 end while
18 return Best firefly

The FA has been implemented in diverse research areas, including robotics [91, 92], machine learning [93],
journalism [94], and cloud computing [95]. Table 11 presents a compilation of techniques proposed for FA’s
application in smart vehicle navigation. In an effort to enhance the convergence speed and local search accuracy
of the standard FA, Chen et al. [96] introduced a modified version (PPMFA) that incorporates a Gaussian random
number into the fixed step size. This addition enhances the diversity of the firefly population, helping to prevent
the algorithm from stagnating in dead-end zones. Additionally, a novel path center technique was employed to
calculate distances between fireflies, essentially representing paths. This method involves connecting geometric
centers of path segments to form new segments and repeating the process until a single segment remains, termed as
the path center. The distance between two path centers is used as the measure of distance between two fireflies. The
PPMFA showed superior performance in accuracy and convergence speed compared to PSO and the Standard SFA.
Duan et al. [97] proposed a Developed Firefly Algorithm (DFA) to address multi-objective navigation challenges.
The algorithm extends the grid map to create feasible paths and employs the Pareto dominance relationship for path
comparison and segregation. Non-dominant fireflies are stored in an elite record library for comparison during
iterations. DFA includes an evolutionary stage for optimizing paths by adding, removing, or swapping points. When
tested against NSGA-II on a ZDT1 instance, the DFA demonstrated enhanced efficiency. Patle et al. [98] utilized
the firefly algorithm for mobile robot navigation in dynamically obstacle-laden environments. An AI mechanism
navigates the robot, while a controller based on FA detects and avoids obstacles, generating paths (fireflies) and
selecting the optimum one using Euclidean distance from the nearest obstacle. This approach outperformed other
intelligent methods in terms of path length in various scenarios. Experiments with the Khepera-II robot showed a
deviation of about 5.7% from simulated results. Hassan and Fadhil [99] developed a modified firefly algorithm for
path planning of mobile robots in 3D sphere-like, partially dynamic environments. In this approach, each firefly
is viewed as an agent navigating around obstacles, with the generated paths considered potential solutions. The
optimal path is selected based on path length and completeness. This modified approach was noted for its minimal
memory requirement and effective performance in spherical spaces.
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Table 11. FA for path planning of smart vehicles

Types Population
Size

Generation γ β0 α Type of Vehicle Type of
Obstacles

FFA Single Static
FAMCPSO 1 2 0.5 Single Static

MO-FA 200 150 Single Static

FA-TPM 5 - 100 50 – 100 0.1 - 1 0.1-1 0.1-1

Single (Fire Bird V
robot- NEX Robotics

and Embedded
Real-Time Systems

Lab, CSE IIT Bombay)

Dynamic

Type Type of Map Software Remark Ref.

FFA 10×10
Geometrical

•A* algorithm is implemented to obtain the shortest
path. •Cubic polynomial spline is interpolated on the

generated path to produce smooth trajectory using
iterative random selection.

[91]

FAMCPSO 600cm×800cm
Geometrical

MATLAB
2018b

•Proposed method is a combination of MCPSO and
FA. •Consideration of inverse dynamic and kinematic
modelling to obtain optimum torque and velocity for
wheels of AMR. •The recommended hybrid method

shows good results when compared to various
algorithms in different environments.

[100]

MO-FA
Grid (see

subgraph (a) of
Figure 6)

C/C++
language

•Path safety, the path length, and the path smoothness
are considered in the design of proposed method.

[101]

FA-TPM
Grid (see in

subgraph (b) of
Figure 6)

Microsoft
Visual

C++, 2010
with

OpenGL

•While TPM searches for obstacle free path, FA
performs obstacle avoidance.

[102]

Note: FAMCPSO: Firefly Algorithm Modified Chaotic Particle Swarm Optimization; AMR: Autonomous Mobile robot; MCPSO: Modified
Chaotic Particle Swarm Optimization; FA-TPM: Firefly Algorithm-Three Path Method.

Table 12. Pseudocode of CSA

Cuckoo Search Algorithm
1 Objective function f(x), x = (x1, x2 . . . , xd)
2 Initialize population of n host nests
3 ITR← 0
4 Initialize maximum number of generations ITRmax
5 while (ITR < ITRmax) do
6 i← Get a cuckoo randomly by levy flight
7 Evaluate fitness(i)
8 j← choose a nest
9 if fitness(i) > fitness(j) then
10 replace j by the new solution
11 end if
12 Abandon a fraction (Pa) of worst nest and build new ones
13 Keep the best nests
14 Rank the nests and find the current best
15 Pass the current best solutions to the next generation
16 ITR = ITR + 1
17 end while
18 return Best nest

2.2.6 Cuckoo Search Algorithm (CSA)
Developed in 2009, the CSA is a nature-inspired optimization technique designed to tackle complex prob-

lems [103]. Its conceptual framework is based on the intriguing brood parasitism behavior observed in certain
cuckoo species. These birds are known for their strategy of laying eggs in the nests of other host species. Cuckoos
often adapt the appearance of their eggs, mimicking the color and pattern of the host species’ eggs [104], thereby
reducing the likelihood of the host species detecting the foreign egg. In cases where the host species identifies
and removes the cuckoo egg or abandons its nest to start anew, the cuckoo must find another host nest. Notably,
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cuckoo eggs typically hatch faster than those of the host species, allowing the young cuckoo to dispose of the host’s
eggs and monopolize the food supplied by the unwitting host [105]. The behavioral rules of the cuckoo birds, as
translated into the CSA, can be summarized as follows:

Each cuckoo randomly selects a nest in which to lay its egg.
The nests that successfully retain cuckoo eggs, escaping detection and eviction by the host species, are carried

forward to the next generation.
The probability of a host bird discovering an alien egg is denoted by P ∈ [0, 1], and the total number of

available host eggs or nests within the search space remains constant.

Figure 4. Sample maps implemented for particle swarm optimization: (a) APSO 200×200 map [70]; (b)
FIMOPSO 210×178 map [80]; (c) PSO-AWDV 11×11 map [78]; (d) EDPSO 20×20 map [77]

The CSA primarily employs a random walk strategy for nest searching, with Levy flight [103] being the most
commonly used method due to its efficiency in exploring the search space. In the context of path planning problems,
the nests and eggs within the CSA framework can be metaphorically viewed as solutions, where host eggs in a nest
represent current solutions and a cuckoo egg symbolizes a new, potentially superior solution xt+1. The objective
is to replace less effective solutions with more viable ones (represented by the cuckoo’s egg).

xt+1
i = xt

i + α⊕ Levy(γ) (11)

where, ii represents the i-th particle, t stands for the iteration cycle, α > 0 is the step size, and⊕ denotes entrywise
multiplication. Step lengths of Levy flight are distributed according to this probability.

Levy(γ) = L−γ , (1 < γ ≤ 3) (12)
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where, L represents step size length and γ denotes the variance. P, γ, and α are are critical to the algorithm’s
performance and require careful tuning to enhance solution quality. One of the advantages of the cuckoo search
algorithm is its minimal need for parameter fine-tuning, coupled with its ability to handle multi-modal objective
functions effectively. The implementation of the Cuckoo Search Algorithm is further elucidated in a pseudocode
format, as illustrated in Table 12.

Figure 5. List of benchmark maps used in ABC-EP [82]

Figure 6. Sample maps implemented for firefly algorithm: (a) FA-TPM [102]; (b) FA 100×100 map [98]
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The implementation of the CSA spans a wide array of fields, demonstrating its versatility and effectiveness.
This includes applications in vehicle routing [106, 107], neural networks [108], scheduling [109, 110], medical
fields [111, 112], cloud computing [113], and notably in robotics, particularly in the navigation of smart vehicles.
Table 13 showcases a range of hybrid approaches combining Cuckoo Search with other methods to address path
planning challenges. In the realm of multi-robot collaboration and navigation within densely obstacle-laden maps,
Sahu et al. [114] introduced a Modified Cuckoo Search as a novel solution. This adaptation of the CSA was
specifically designed to enhance collaborative strategies and navigation efficiency in complex environments. A
comparative study by Ab Wahab et al. [23] assessed the performance of the cuckoo search against other metaheuristic
algorithms and traditional path planning methods across various scenarios. The study highlighted CSA’s strengths
and potential areas for integration with other techniques. To address the dual goals of minimizing computational
costs and maximizing efficiency in mobile robot path planning, Garip et al. [115] proposed a hybrid algorithm
that combines the principles of cuckoo search with firefly and particle swarm optimization. This hybrid approach
aimed to leverage the strengths of each method to produce a more robust and efficient path planning solution. In
the context of quantum computing, Kundra et al. [92] utilized cuckoo search to prevent premature convergence in
the proposed quantum firefly algorithm. This application underscores CSA’s utility in enhancing the stability and
performance of other advanced algorithms. Additionally, to optimize robot paths in environments with dynamic
obstacles, Kumar et al. [116] implemented a Modified Cuckoo Search algorithm. This version of CSA was tailored
to process obstacle distance and heading angle data from robot sensors, enabling more adaptive and responsive
path planning in changing conditions.

Table 13. CSA for path planning of smart vehicles

Types P γ α Population
Size

Number
Generations

Type of
Vehicle

Type of
Obstacles

MCS-SCA-
PSO 0.25 30 Multiple

(Epuck robot)
Static and
dynamic

Improved
CSA 0.25 30 Single Dynamic

Hybrid
CSA-BA 20 500 Single Static
Hybrid
genetic-
cucking

0.25 1 400 40 Single Static

CSA-PSO-
FA 1 0.2 20 1000

Single and
multiple

(Kobuki mobile
robot)

Static

CSA-BA 0 - 1 30 500 Single Static
Type Type of Map Software Remark Ref.

MCS-SCA-
PSO

450 × 450
Geometrical

(see subgraph
(a) of Figure 7)

C language
•PSO performs local search, CSA performs global

search, and sine cosine algorithm implements
greedy approach.

[117]

Improved
CSA Topological MATLAB

2014a

•Global search ability is improved by introducing
mutation and crossover. •Convergence rate and

optimization accuracy of algorithm are tested using
unimodal and multimodal functions.

[118]

Hybrid
CSA-BA

12 × 12
Geometrical

(see in
subgraph (b) of

Figure 7)

MATLAB •The proposed approach is implemented in two
maps with various positions of circular obstacles. [119]

Hybrid
genetic-
cucking

10000 × 8000
× 5000

Geometrical
MATLAB

•Using intelligent algorithms in path planning of
3D environment is studied. •Spherical obstacles

are implemented.
[120]

CSA-PSO-
FA

200 × 160 and
100 × 100 Grid

MATLAB,
ROS

•CS-PSO-FA algorithm is investigated both in
simulation and experimentally. [115]

CSA-BA 12 × 12
Geometrical

MATLAB
2015b

•CSA-BA obtains a better result in path length than
CSA and BA. [121]

Note: CSA-BA: Cuckoo Search Algorithm – Bat Algorithm; CSA-PSO-FA: Cuckoo Search Algorithm – Particle Swarm Optimization –
Firefly Algorithm; MCS-SCA-PSO: Modified Cuckoo Search - Sine Cosine Algorithm - Particle Swarm Optimization.

2.2.7 Whale Optimization Algorithm (WOA)
The WOA, introduced by Mirjalili and Lewis [122], is an innovative algorithm that emulates the bubble-net

hunting behavior of humpback whales [123]. These whales, known for their social nature, often forage in groups,
preying primarily on krill and small fish located near the water’s surface. A notable aspect of their hunting
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technique involves diving approximately 12 meters deep and then engaging in a unique strategy to encircle their
prey. This involves creating a ring of bubbles as they spiral upward towards the surface, effectively trapping the
prey. This hunting method, particularly the encircling maneuver and the spiral bubble-net movement, has been
translated into a mathematical model for the WOA. The algorithm draws inspiration from these distinct whale
behaviors to devise a search and optimization strategy. The spiral path and bubble-net formation are key elements
that have been abstracted and applied in the algorithm to simulate the whale’s approach to localize and encircle
the prey effectively. The mathematical representation of these behaviors enables the WOA to efficiently explore
and exploit the search space in various optimization problems.

Figure 7. Sample maps implemented for cuckoo search algorithm: (a) MCS-SCA-PSO 450×450 map [117]; (b)
Hybrid CSA-BA 12×12 map [119]

(1) Encircling prey
In the WOA, the behavior of a humpback whale encircling its prey is a key mechanism. When a whale identifies

the location of its prey, it begins to encircle it. In the context of WOA, this is modeled by assuming that the best
current solution in the search space is akin to the whale closest to the target prey. Consequently, other search agents
(whales) in the algorithm adjust their positions relative to this best agent, simulating the encircling behavior. This
behavior is represented mathematically in the following equations:

D = |C ·X∗(t)−X(t)| (13)

X(t+ 1) = X∗(t)−A ·D (14)

A = 2a · r − a (15)

C = 2r (16)

where, A and C are coefficients, t denotes current iteration, X∗ is the best whale position, X is the current whale
position, a is a decreasing constant that linearly reduces from 2 to 0 over the course of iterations and is given by
a = 2− 2t

M (M: maximum number of iteration), r ∈ [0, 1] is a random value.
(2) Spiral bubble-net manoeuvre (Exploitation phase)
As the value of a decreases, the radius of encircling the prey diminishes. With A being a random value within

the range [−a, a], search agents can discern the relationship between their current position and the optimal position
when A is reduced to the interval [−1, 1]. Additionally, during the spiral movement phase, the position of the
whale relative to the prey is updated. The distance D′ between the i-th whale and the prey (which represents the
best solution obtained so far) is calculated accordingly:
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X(t+ 1) = D′ · ebl · cos(2πl) +X∗(t) (17)

D′ = |X∗(t)−X(t)| (18)

where, b is a constant that defines the shape of the logarithmic spiral, and l is again a random value in the
range [-1, 1]. The spiral movement is an integral part of the whale’s hunting strategy, where it combines the
encircling maneuver with a simultaneous inward spiral motion towards the prey. In the WOA, the whale’s position
is updated based on a probability of 50% to either continue encircling the prey or to engage in the spiral movement.
This probabilistic approach enables the algorithm to balance between exploration and exploitation, effectively
mimicking the hunting behavior of humpback whales. The decision between the two behaviors is governed by the
following equation:

x(t+ 1) =

{
X∗(t)−A ·D, p < 0.5

D′ · ebl · cos(2πl) +X∗(t), p ≥ 0.5
(19)

(3) Searching for prey (Exploration phase)
In the exploration phase of the WOA, a whale updates its position based on a randomly selected agent, rather

than the current best agent. This phase is crucial for global search within the solution space. When |A| < 1, the
algorithm switches to exploration mode. In this case, given Xrand as the position of a random agent, the updated
position of a whale is determined using the following equations:

D = |C ·Xrand −X| (20)

X(t+ 1) = Xrand −A ·D (21)

Table 14. Pseudocode of WOA

Whale Optimization Algorithm
1 Initialize the whale population Xi(i = 1, 2, . . . , n)
2 Calculate the fitness of each whale
3 Xbest = the best search agent
4 while ( t < maximum number of iterations)
5 for each search agent
6 Update a,A,C, l and p
7 if (p < 0.5) then
8 if (|A| < 1) then
9 Update current agent via Encircling Prey

10 else
11 Select a random agent (Xrand)
12 Update current agent via Search for Prey
13 else
14 pdate search agent via Spiral Bubble-net
15 end for
16 Amend the position of whales that are outside the search space
17 Calculate the fitness of each search agent
18 Update Xbest if there is a better solution
19 t = t+ 1
20 end while
21 return Xbest

The pseudocode detailing the WOA is illustrated in Table 14. This algorithm has been widely applied across
various research domains. It has been utilized for image segmentation [124], in the validation of welded Al/Cu
bimetal sheets [125], for intelligent facial emotion recognition [126], to enhance power system stabilizers [127],
and in task scheduling for microprocessor systems [128].

In robotics, WOA has been instrumental in planning the joint trajectory of robotic arms [129], enhancing
robotic manufacturing processes [130], planning navigation of unmanned vehicles [131], aiding in multiple robot
space exploration [132, 133], and optimizing deep neural networks [134]. Table 15 presents an overview of various
studies where WOA has been implemented in smart vehicle navigation.
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Table 15. WOA for path planning of smart vehicles

Types Population
Size

Number of
Iterations

Type of
Vehicle

Type of
Obstacles

Type of Map

WOA 100 Single
(Khepera II

mobile robot)

Static Geometrical

Improved
WOA based on

GA

100 Single Static 20×0 Grid.

MWOA 100 500 Single Static 300×500
pixels

Geometrical
MO-WOA 50,80,100,150 50,70,90,110 Multiple Static 15×15 Grid

(see Figure 8)
NWOA 1000 Single

(Raspberry Pi
(3B+))

Static and
dynamic

1800×1800
Geometrical

Updated WOA 500 Single Static 8×8
Geometrical

Types Software Remark Ref.

WOA MATLAB

•Algorithm solves robot scheduling problem in a
manufacturing environment. Novel mathematical
model is proposed and experimentally tested on

26 benchmark functions.

[135]

Improved
WOA based on

GA

• Proposed method can be implemented for
logistic mobile robot. Efficiency of proposed

algorithm is improved by 10.71% compared to
traditional WOA.

[136]

MWOA

•Distance and smooth path functions are
minimized.• The pareto front-optimal solution

gives the optimal solution for MWOA. The
proposed method has a lower error rate than the
Multi-Objective Genetic Algorithm (MOGA)

method [137].

[138]

MO-WOA MATLAB

•At 130 iterations and 150 way-points, proposed
algorithm outperforms compared deterministic

and hybrid stochastic exploration algorithm. Map
exploration and minimum time map enhancing
accuracy is the idea behind proposed algorithm.

[139]

NWOA Python

• Adaptive technology, enhanced potential field
factors and virtual obstacles are introduced to

optimize the convergence rate of the algorithm.
NWOA performance better in convergence rate

when compared to WOA, GA-WOA, and
EGE-WOA.

[140]

Ypdated WOA
Proposes a changed whale advancement

calculation based Mobile robot way
determination.

[141]

NOTE: MWOA: Multiobjective Whale Optimization Algorithm; MO-WOA: Multi-Objective Whale Optimization Algorithm; NWOA; Novel
Whale Optimization Algorithm

2.2.8 Grey Wolf Optimization (GWO)
Proposed by Mirjalili et al. [142], GWO is an algorithm inspired by the social hierarchy and hunting techniques

of grey wolves. Grey wolves are apex predators that typically live in packs of 5 to 12 members, each adhering to a
strict social structure as depicted in Figure 9.
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Figure 8. Sample map implemented for whale optimization algorithm: MO-WOA 15×15 map [139]

Figure 9. Social hierarchy of grey wolves

In this hierarchy, the alphas (α)—a male and a female—serve as the leaders. Positioned at the top, they
represent the fittest solution, and their directives are followed by the rest of the pack. The beta (β) wolves, ranked
second, are considered the primary candidates for alpha status. Below them are the delta (δ) wolves, including
scouts, sentinels, elders, hunters, and caretakers, who preside over the omega (ω) wolves, often viewed as the
scapegoats of the pack. Grey wolves hunt collaboratively, starting with tracking, chasing, and approaching their
prey. They encircle, pursue, and harass the prey until it weakens, then launch an attack. This hunting behavior
is mathematically modeled in GWO, where the alpha, beta, and delta wolves correspond to the best, second-best,
and third-best solutions, respectively, while the remaining solutions are considered omega wolves. The model
encompasses several phases:
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(1) Encircling the prey:

D⃗ =
∣∣∣C⃗−→XP (t)−

−→
XP (t)

∣∣∣ (22)

X⃗(t+ 1) =
−→
XP (t)− A⃗D⃗ (23)

A⃗ = 2a⃗−→r1 − a⃗ (24)

C⃗ = 2−→r2 (25)

where, A⃗ and C⃗ represent coefficient vectors, t is the present iteration,
−→
XP is prey’s position, X⃗ is the grey wolf

position,−→r1 and−→r2 are random vectors within [0, 1], and a⃗ decreases linearly from 2 to 0 in the course of iterations.
(2) Hunting:
Alpha, beta, and delta wolves update their positions first, assuming better knowledge of the prey’s location:

−→
Da =

∣∣∣−→C1
−→
Xa(t)− X⃗(t)

∣∣∣ (26)

−→
Dβ =

∣∣∣−→C2
−→
Xβ(t)− X⃗(t)

∣∣∣ (27)

−→
Dδ =

∣∣∣−→C3
−→
Xδ(t)− X⃗(t)

∣∣∣ (28)

−→
X1(t+ 1) =

−→
Xα(t)−

−→
A1
−→
Dα (29)

−→
X2(t+ 1) =

−→
Xβ(t)−

−→
A2
−→
Dβ (30)

−→
X3(t+ 1) =

−→
Xδ(t)−

−→
A3
−→
DδA (31)

X⃗(t+ 1) =
(−→
X1 +

−→
X2 +

−→
X3

)
/3 (32)

(3) Attacking the prey (Exploitation):
The mathematical representation of a prey attack in the GWO is characterized by the gradual decrease of a

from 2 to 0 over the iterations. The attack phase is initiated when the value of |A| < 1, with A⃗ being a random
value within the range of [−2a⃗, 2a⃗].

(4) Searching for prey (Exploration)
When the value of |A| > 1 in the GWO, the wolves are prompted to explore for more suitable prey. This

exploration phase is influenced by the parameter
−→
C , which is a random value within the range [0, 2]. The role of

C is to introduce stochasticity into the behavior of the grey wolves, either emphasizing (C > 1) or deemphasizing
(C < 1) their predatory attack. This mechanism allows for a balanced exploration of the search space, mimicking
the adaptive hunting behavior of grey wolves in the wild. The pseudocode detailing the GWO process is provided
in Table 16.

GWO has been applied to solve optimization problems in a diverse range of fields. In medicine, it has
been used for various optimization tasks [143, 144]. In manufacturing, it has been employed for operation
sequencing [145]. The algorithm has also been adapted for use in unmanned aerial vehicle navigation [146],
multi-agent systems [147], and robotics. For insights into the variety of GWO applications specifically in smart
vehicle navigation, one can refer to Table 17. Gul et al. [148] proposed a hybrid algorithm combining PSO with
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GWO. This hybrid PSO-GWO algorithm was designed to improve path length and ensure smoother trajectories
for mobile robots. Furthermore, a mutation operator was introduced to refine the trajectory generated by the
PSO-GWO algorithm (Figure 10) [149]. To address the challenge of local minima in GWO, Dong et al. [150]
suggested a modified position update mechanism specifically tailored for robot path planning. This modification
aimed to enhance the algorithm’s ability to navigate complex environments more effectively. In addition, Kumar et
al. [151] developed a Variable Weight GWO, aimed at increasing speed and reducing the distance of planned routes
for mobile robots. This variant of GWO adjusts the algorithm’s parameters dynamically to optimize performance
in real-time navigation tasks.

Table 16. Pseudocode of GWO

Grey Wolf Optimization
1 Initialize the prey wolf population Xi(i = 1, 2, . . . , n)
2 Initialize a, A, and C
3 Calculate the fitness of each search agent
4 Xα = the best search agent
5 Xβ = the second best search agent
6 Xδ = the third best search agent
7 while (t<maximum number of iterations)
8 of each search agent
9 Update the position of the current search agent

10 end of
11 Update a, A, and C
12 Calculate the fitness of all search agent
13 Update Xα, Xβ , Xδ
14 t = t + 1
15 end while
16 return Xα

Table 17. Grey Wolf Optimization for path planning of smart vehicles

Type Population Size Iterations Type of Vehicle Type of
Obstacles

IGWO 30 100 Single Static
VM-GWO 20,25 (For map 1)

25,30 (For map2)
35,20 (For map 1)
30,40 (For map 2)

Single Static

HPSO-GWO-
EA

Single Static

HPSO-GWO 100 500 Single Static and
Dynamic

HWGO 20 100 Single
Type Type of Map Software Remark Ref.

IGWO Geometrical MATLAB
R2018b

•The algorithm is tested on 20
benchmark functions. [150]

VM-GWO
20× 10× 10

Geometrical (3D
map)

MATLAB
2018a

•Execution speed outperformed
GWO. [151]

HPSO-GWO-
EA

Geometrical MATLAB
R2017a

•Mutation operator from evolutionary
algorithms is introduced to solve

path safety, length, and smoothness.
[148]

HPSO-GWO 100× 100
Geometrical

(see Figure 10)

MATLAB
R2019b

•Frequency-based function is
introduced to modify the search

process of GWO.
[149]

HWGO MATLAB
R2019

•Proposed algorithm is implemented
in tuning parameters of fractional

order PID controller.
[152]

Note: IGWO: Improved Grey Wolf Optimization; VM-GWO: Variable Weight - Grey Wolf Optimization; HPSO-GWO-EA: Hybrid Particle
Swarm Optimization - Grey Wolf Optimization – Evolution Algorithm; HPSO-GWO: Hybrid Particle Swarm Optimization - Grey Wolf

Optimization; HWGO: Hybrid Whale Grey Wolf Optimizer

2.2.9 Grey Wolf Optimization (GWO)
The MVO is an innovative population-based algorithm inspired by the multi-verse theory in physics, which

posits the existence of multiple universes interacting within a multi-verse [153]. This algorithm incorporates three
key cosmological concepts: white holes, black holes, and wormholes [154, 155]. In astrophysics, the Big Bang,
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considered the origin of the universe, is likened to a white hole [156], a concept representing regions emitting
energy and matter. Conversely, black holes are known for their intense gravitational force, which attracts and
absorbs matter, including light beams [157]. Wormholes are theorized as space-time passages that link different
parts of a universe or even connect separate universes. The concept of universe expansion, driven by the inflation
rate or eternal inflation [158], is also integrated into this model.

Figure 10. Sample maps implemented for grey wolf optimization: HPSO-GWO 100×100 [149]

In MVO, these astronomical phenomena are mathematically modeled to facilitate exploration (white holes),
exploitation (wormholes), and local search (black holes) in the search space. Each ‘universe’ in MVO represents
a potential solution, with the objects within a universe analogous to variables of that solution. The fitness value of
a solution is equated to its inflation rate. Universes in MVO adhere to the following principles:

(1) High inflation rate leads to a high chance of having a white hole.
(2) Low inflation rate leads to a low chance of having a black hole.
(3) High inflation rate universes are likely to pass objects through white holes.
(4) Lower inflation rate universes have a tendency to get objects through black holes.
(5) Regardless of inflation rate, objects in all universes can move randomly towards an optimal universe via

wormholes.
Assuming that U is a set of universes, where n is the number of possible solutions (universes) and d represents

the number of parameters or variables:

U =


x1
1 x2

1 · · · xd
1

x1
2 x2

2 · · · xd
2

...
...

...
...

x1
n x2

n · · · xd
n

 (33)

then each parameter can be represented as below:

xj
i =

{
xj
k, r1 < NI(Ui)

xj
i , r1 ≥ NI(Ui)

(34)

xj
i is the j-th parameter of the i-th universe. NI(Ui) indicates the normalized inflation rate of the i-th universe.

Ui is the i-th universe. r1 is a random value in [0, 1]. xj
k denotes the j-th variable of k-th universe chosen by a

roulette wheel selection mechanism. Roulette wheel, which depends on normalized inflation rate, selects a universe
and determines white holes for it. Through this mechanism, exploration is done. For exploitation, each universe
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is assumed to have wormholes connecting it to the best universe, facilitating the exchange of objects (parameters).
The update for each parameter is thus given by:

xj
i =

{
(Xj + TDR× ((ubj − lbj)× r4 + lbj)) , r3 < 0.5
(Xj − TDR× ((ubj − lbj)× r4 + lbj)) , r3 ≥ 0.5 r2 < WEP

xj
i , r2 > WEP

(35)

where, Xj represents the j-th parameter of the best universe formed so far, TDR (Travelling Distance Rate) and
WEP (Wormhole Existence Probability) are coefficients, lbj and ubj denote the lower and upper bounds of the
j-th parameter respectively, xj

i represents the j-th parameter of the i-th universe and r2, r3, r4 are random values
in [0, 1]. The formulas for the coefficients are as follows:

WEP = min+l ×
(
max−min

L

)
(36)

where, min andmax are the minimum and maximum respectively, l tells the current iteration andL is the maximum
iterations.

TDR = 1− l1/p

L1/p
(37)

where, p denotes the exploitation accuracy over the iterations, with higher values leading to more accurate
exploitation/local search. The Multi-Verse Optimizer algorithm is detailed in the pseudocode shown in Table 18.

Table 18. Multi-Verse Optimizer (MVO)

Multi-Verse Optimizer
1 Create random universes (U)
2 Initialize WEP, TDR, and Best Universe
3 SU ← Sorted universes
4 NI ← Normalize inflation rate (fitness) of the universes
5 while the end criterion is not satisfied do
6 Evaluate the fitness of all universes
7 for each universe indexed by i do
8 Update WEP and TDR
9 Black hole index← i

10 for each object indexed by j do
11 r1 ← random([0, 1])
12 if r1 < NI (Ui) then
13 White hole index← RouletteWheelSelection (−NI)
14 U( Black hole index, j)← SU( White hole index, j)
15 end if
16 r2 ← random([0, 1])
17 if r2 < WEP then
18 r3 ← random([0, 1])
19 r4 ← random([0, 1])
20 if r3 < 0.5 then
21 U(i, j)← Best Universe (j) + TDR

× ((ub(j)− lb(j))× r4 + lb(j))
22 else
23 U(i, j)←= Best Universe (j)− TDR

× ((ub(j)− lb(j))× r4 + lb(j))
24 end if
25 end if
26 end for
27 end for
28 end while
29 return Best Universe

The MVO has been successfully implemented in a variety of domains to address complex optimization
problems. Its applications range from project scheduling [159] to enhancing kernel extreme learning machines
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for medical diagnosis [160], modeling solar radiation [161], and solving economic dispatch problems in power
systems [162]. In the field of robotics, MVO has demonstrated its versatility and effectiveness. It has been
used for path planning in three-dimensional search spaces [163], tuning PID controllers [164, 165], planning the
navigation of quadrotors [166], and devising routes for mobile robots [167]. However, the application of MVO in
the navigation of smart vehicles is relatively nascent, with only a handful of researchers exploring its potential in
this area, as detailed in Table 19.

Table 19. MVO for path planning of smart vehicles

Type Type of
Vehicle

Type of
Obstacles

Type of Map Software Remark Ref.
Evolutionary
Multi-Verse
Optimizer

Single Python
(3.7)

• Parameters of each solution
are the weights and bias of
implemented Multi-Layer
perceptron Network.

[167]

MMVO Single Static
400× 400

Geometrical
(2D and 3D)

• 3D path planning in a
modelled 3D environment is

examined.
[163]

Note: MMVO: Modified Multi-Verse Optimizer

2.2.10 Bat Algorithm (BA)
The BA, inspired by the echolocation behavior of microbats, was developed by Yang [168]. Microbats emit

short, loud bursts of sound at frequencies ranging from 25 kHz to 150 kHz and listen to the echoes bouncing back
from nearby objects. This echolocation ability enables them to pinpoint the location of objects. Typically, the
frequency of pulse emission and the loudness of the sound increase during prey search and decrease upon prey
discovery. The BA is formulated based on idealized rules derived from this echolocation behavior:

(1) Bats estimate distance based on the echo of their sounds and can differentiate prey from other objects.
(2) Bats move randomly with a velocity vi towards a prey at position xi, emitting sounds at a frequency fmin,

with wavelength λ and loudness A0.
(3) The loudness is assumed to be between a large positive value and its minimum value is defined as Amin.
For the BA, the frequency which is assumed to be within [0, fmax], the new velocity and position are defined

below.

fi = fmin + (fmax − fmin)β (38)

vti = vt−1
i +

(
xt
i − x∗

)
fi (39)

xt
i = xt−1

i + vti (40)

where, x∗ represents the current global best solution from all n bats and β is a vector within [0, 1]. The loudness
(A), starts as any positive number, typically within the range [1, 2], and is then updated by a constant α ∈ [0, 1]
as shown in Eq. (36). A = 0 when a solution is found. The rate of pulse emission r0i ∈ [0, 1] is controlled by a
constant γ, which can be the same as α.

At+1
i = αAt

i, rt+1
i = r0i [1− exp(−γt)] (41)

For local search, new solutions for each bat are generated using a random walk strategy, once a solution is
selected from the current best ones.

xnew = xold + ϵAt (42)

where, ϵ ∈ [−1, 1] denotes a random number in [−1, 1] and At represents average loudness of all bats at time t.
The implementation of the Bat Algorithm is depicted in Table 20.
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The implementation of the BA in the domain of mobile robot planning and navigation has yielded impressive
results, as evidenced by numerous studies in the field. Table 21 provides an overview of various research efforts
that have proposed enhancements to the BA, detailing the variables considered in each study. Among these
advancements, Ajeil et al. [169] introduced a Modified Frequency Bat Algorithm (MFB) specifically designed to
optimize the shortest path finding from a start to an end point, compared to the standard Bat Algorithm. This novel
algorithm integrates obstacle detection and avoidance techniques, utilizing sensor data to dynamically plan new
paths in response to moving obstacles. The algorithm’s performance was evaluated through simulations conducted
in a grid mat environment. The results demonstrated that the MFB outperformed the standard BA in terms of
efficiency and effectiveness in pathfinding, particularly in environments with dynamic obstacles.

Table 20. Pseudocode of BA

Bat Algorithm
1 Objective function f(x), x = (x1, . . . . . . , xd)

T

2 Initialize the bat population xi(i = 1, 2, . . . , n) and vi
3 Define pulse frequency fi at xi
4 Initialize pulse rates ri and the loudness Ai
5 while (t < Max number of iterations ) do
6 Generate new solutions by adjusting frequency,
7 and updating velocities and locations/solutions Eqs. (2)-(4)
8 if ( rand > ri) then
9 Select a solution among the best solutions
10 Generate a local solution around by flying randomly
11 end if
12 Generate a new solution by flying randomly
13 if (rand < Ai&f (xi) < f (x∗)) then
14 Accept the new solutions
15 Increase ri and reduce Ai
16 end if
17 Rank the bats and find the current best x∗
18 end while
19 Post-process results and visualization

Table 21. BA for path planning of smart vehicles

Type Population
Size

A(0) r(0) α γ fmin fmax Type of
Vehicle

Type of
Obstacles

MFB 5 1 0.5 0.98 0.8 0 10 Single Dynamic
Type-1

FLS-BA
20 Single Static

Type Type of Map Software Remark Ref.
MFB 12× 12 Grid MATLAB • Obstacle detection and avoidance method is

integrated in the algorithm.
[169]

Type-1
FLS-BA

• BA modifies Type-1 FLS to generate
optimum trajectory. Proposed method aims at

obtaining the least mean square error in
trajectory tracking.

[170]

Note: MFB: Modified Frequency Bat algorithm; FLS-BA: Fuzzy Logic System – Bat Algorithm

2.2.11 Tabu-Search Algorithm (TS)
The TS [171] is a method of optimization that utilizes constraint-based techniques to avoid local minima in

a search space. It incorporates flexible memory cycles to intensify and diversify local search patterns, thereby
facilitating the discovery of optimal solutions. During the exploration process, Tabu Search meticulously tracks
information about both the current solution and those previously explored [172]. The algorithm operates by
employing neighborhood search methods to progress from a current solution x to a feasible solution x’within the
neighborhood of x. This iterative process continues until a predetermined stopping criterion is met. One of the
key features of TS is its use of memory structures to record visited solutions, preventing the algorithm from getting
trapped in local minima and encouraging the exploration of unvisited areas in the search space [173]. The memory
structures, also known as the tabu list, contain a set of recently visited solutions that are temporarily banned from
reconsideration, typically for n iterations (where n, the tabu tenure, specifies the length of the list). The procedure
for implementing this algorithm is outlined in Table 22.
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Table 22. Pseudocode of TS

Tabu-Search Algorithm
1 Generate initial solution (x0)
2 Initialize tabu list (TL← [ ])
3 Current solution(x)← initial solution (x0)
4 Best solution(xbest)← current solution(x)
5 Define maximum iteration (ITRmax)
6 Iteration (ITR)← 0
7 while (ITR < ITRmax) do
8 SN ← Get neighbours of xbest
9 for S ∈ SN do
10 if S /∈ TL&& fitness(S) > fitness(xbest) then
11 xbest = S
12 end if
13 end for
14 add S to TL
15 end while
16 return xbest

The application of the TS in mobile robot navigation is still relatively underexplored. However, some studies,
as indicated in Table 23, have developed new hybrids that enhance the basic algorithm’s efficiency in path planning.
Xing et al. [174] introduced a novel TS tailored for routing multiple AGVs in warehouse settings. Châari et al. [175]
developed a TS-based system model for global path planning on grid maps. Kumar et al. [176] modified the TS
method for navigating mobile robots in complex environments. Khaksar et al. [177] integrated TS rules into a
fuzzy controller designed to address online navigation challenges. Panda et al. [178] proposed a hybrid algorithm
combining TS and PSO to optimize pathfinding for AMRs.

Table 23. TS for path planning of smart vehicles

Type Iteration
Number

Type of
Vehicle

Type of
Obstacles

Type of Map
TS-PATH 30 Single Static Grid (see Figure 11)

PSO-TABU 31 Multiple Static Geometrical
Modified Tabu

Search

Single
(Khepera-
III robot)

Static 10× 8cm Grid (simulation) and
400× 300cm2 Geometrical (experimental)

ANFIS Single Static 10× 9, 10× 10 and 10× 14 Geometrical
Tabu Search 9 Single Static 10× 10 Grid
GSTLACA Multiple Dynamic Grid

TS/FA 5-7 Single Static 561× 380 px2 and 433× 430 px2 Grid
Type Software Remark Ref.

TS-PATH
Designed a

C++ simulation
model

• The effectiveness of the tabu search for the global
path planning problem is investigated.

[175]

PSO-TABU
Designed a C

simulation
environment

• In terms of solution quality and computation time,
PSO-TABU, outperforms the basic PSO and TABU

search algorithm.
[178]

Modified Tabu
Search

V-REP
simulation
software

•Algorithm is verified in both simulation and
experimental platform. Deviation between the

simulation and experimental results is about 4%.
[176]

ANFIS MATLAB
R2010b

• Heuristic rules of Tabu search is infused in fuzzy
controller. Fuzzy planner can handle online navigation

task.
[177]

Tabu Search MATLAB •Algorithm generates trajectories to multiple end
points using the shortest possible path.

[179]

GSTIACA

e-Puck
architecture in

the Webots
simulation

environment.

• Real-time simulation shows concurrent navigation
and map building in dynamic environments.

[180]

TS/FA
MATLAB
2014a and

V-rep simulator

• TS/FA is an offline hybrid algorithm. Bezier curve is
used to smoothen generated path.

[181]

Note: TS-PATH: Tabu Search Path; PSO-TABU: Particle Swarm Optimization – Tabu Search; ANFIS: Adaptive Neuro-Fuzzy Inference
System; GSTIACA: Genetic Shared Tabu Inverted Ant Cellular Automata; TS/FA: Tabu Search / Firefly Algorithm

257



2.3 Analysis

An important aspect to consider when evaluating the metaheuristic algorithms discussed in this work is
their performance on various benchmark functions. Benchmark tests, comprising mathematical functions, are
instrumental in assessing the algorithms’ ability to find solutions in a given dimension d that lead to global
optima [182]. These benchmark functions, as cataloged in Table 24, can be categorized into unimodal, multimodal,
or combinatory types, which blend unimodal and multimodal characteristics. Unimodal functions are designed to
lead to a single optimum solution, whereas multimodal functions yield multiple optimum solutions.

The significance of metaheuristic algorithms in research, particularly in addressing complex real-world prob-
lems, is underscored by several advantages noted by Gholizadeh and Barati [183]. Their high efficiency and
flexibility are key attributes that make these algorithms increasingly valuable in solving complex challenges. Ad-
ditionally, the popularity and impact of a metaheuristic algorithm can often be gauged by the number of citations it
receives in academic literature. Table 25 provides a ranking of the algorithms utilized in this study based on their
citation count.

Selecting the appropriate algorithm for path planning in the application of smart vehicles is a critical decision.
The choice of algorithm significantly depends on the specific requirements of the smart vehicle’s mission. For
instance, the algorithmic needs for rescue missions and urgent tasks differ markedly from those required for
surveillance or logistics operations. A key consideration in this decision-making process is the balance between
exploration and exploitation, which are inherent trade-offs in optimization problems. Exploration entails an
efficient search of the solution space, aiming to circumvent local optima in pursuit of global solutions. While this
process is thorough, it often results in slower convergence speeds. On the other hand, exploitation focuses on
rapidly converging to a solution, which enhances the speed but raises the risk of becoming trapped in local optima.
Therefore, when choosing an algorithm for path planning in a particular context, it’s crucial to weigh these factors:
convergence speed and the ability to identify global optima. The chosen algorithm should align with the specific
objectives of the task at hand, whether it requires rapid response times or a more comprehensive search of the
solution space.

Table 24. Common benchmark problems [117, 150, 182]

Function
Name

Equation Objective
Value

Modality
Spherical ∑i=d

i=1 xi
2 0 Unimodal

Schwefel 2.22 ∑i=d
i=1 |xi|+

∏i=n
i=1 |xi| 0 Multimodal

Schwefel 2.21 max1≤i≤n |xi| 0 Unimodal
Rosenbrock ∑i=d

i=1 100
(
xi+1 − xi

2
)2

+ (1− xi)
2 0 Multimodal

Step ∑d
i=1 |xi + 0.5|2 0 Unimodal

Schwefel 418.9829d−
∑i=d

i=1 −xi sin
√
|xi| 0 Multimodal

Rastrigin 10 ∗ d+
∑i=d

i=1 xi
2 − 10 cos (2πxi) 0 Multimodal

Auckley
− 20 ∗ exp

√√√√1

d

i=d∑
i=1

x2
i − exp

(
1

d

i=d∑
i=1

cos (2πxi)

)
+ e

0 Multimodal

Griewank ∑d
i=1

x2
i

4000 −
∏d

i=1 cos
(

xi√
i

)
+ 1 0 Multimodal

Table 25. Citation ranking of algorithms used in this work (Retrieved 28 Nov, 2022, Google Scholar)

Rank Year Algorithm Number of Citations
1 1995 Particle Swarm Optimization [60] 75041
2 1975 Genetic Algorithm (GA) [28] 74165
3 1992 Ant Colony Optimization [45, 184] 5685 (from 1992) 15447 (from 2006)
4 2014 Grey Wolf Optimization [142] 9881
5 1986 Tabu Search Algorithm [171, 185] 6320 (from 1986) 9716 (from 1989)
6 2005 Artificial Bee Colony [186] 8060
7 2009 Cuckoo Search Algorithm [103] 7217
8 2016 Whale Optimization Algorithm [122] 6649
9 2008 Firefly Algorithm [89] 6224

10 2016 Multi-Verse Optimizer [153] 1656

258



Figure 11. Sample maps implemented for tabu search algorithm: TS-PATH grid map [175]

2.3.1 Analysis on computational time and shortest path
In the realm of computational time and path optimization for smart vehicle applications, various metaheuristic

algorithms exhibit distinct strengths. A hybrid CSA, for instance, has been shown to achieve optimal paths more
rapidly than both PSO and GA [187]. PSO, on the other hand, outperforms the BA in terms of convergence
when tuning omnidirectional mobile robots [188], while a hybrid PSO variant provides shorter paths in less time
compared to modified BA and ABC [189].

CSA has been proven to outperform BA in finding an optimal path [121]. When it comes to covering the
search space effectively, a multi-objective GWO demonstrates superior performance over multi-objective PSO and
GA [190]. ACO outshines GA in obtaining optimal paths [191], and a hybrid ACO-PSO algorithm yields more
optimal robot paths than ACO alone [192]. Moreover, ABC is noted for achieving shorter paths than PSO, as
evidenced by simulation results [88]. These findings underscore the importance of selecting appropriate algorithms
for specific tasks in smart vehicle applications, as outlined in Table 26, where the best-fitted algorithms for various
industrial activities such as logistics, material handling, and surveillance are detailed.

Table 26. Various tasks performed by smart vehicles

Tasks
Vehicle scheduling

Warehouse material handling
Unmanned ground vehicle (military)

Search operation
Security and surveillance

Cleaning and disinfection operation
E-commerce delivery

2.4 Simulation Platform

The simulation of metaheuristic algorithms is carried out on various platforms, each offering unique mathe-
matical and graphical functionalities. While some platforms provide a basic graphical representation of simulation
outputs, others, like Gazebo-ROS, offer a more immersive experience with 3D animated environments for vi-
sualizing simulated outcomes. Among the most popular choices for researchers is MATLAB, known for its
comprehensive inbuilt functions that greatly facilitate the programming of metaheuristic algorithms. However,
some researchers prefer custom-built solutions, creating their own simulation platforms using fundamental pro-
gramming languages such as C and C++ [175, 178]. Table 27 presents a compilation of the languages and simulation
platforms commonly employed in this field of research. Additionally, a quantitative comparison of some of these
simulators has been conducted by Farley et al. [193], providing insights into their respective capabilities and
suitability for different types of simulations.
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Table 27. Common simulation platforms and programming languages

Platform/Programming
Language

Remarks Ref
Python High-level user-friendly programming language. [194]
C, C++ High-level programming language for

general-purpose programming.
[195]

MATLAB Modeling and simulation software built by
Mathworks.

[196]

CoppeliaSim
(formally V-REP)

Creates room for importing personally designed
robots. Robotic models can be controlled using C,
python, or MATLAB scripts including ROS node.

[197]

ROS with Movelt
Movelt is the primary simulator in ROS for

motion planning, 3D perception, manipulation
and control.

[198]

GazeboSim Offers various libraries and cloud services for
robot simulation.

[199]

Webots Offers a complete development environment to
simulate robots and mechanical systems.

[200]

MORSE

Modular Open Robot Simulator Engine based on
Blender game engine. A 3D simulator that offers
a set of standard sensors, actuators and robotic

bases.

[201]

USARsim Urban Search and Rescue simulator for
multi-robot purposes.

[202]

3 Conclusion

This study provides a comprehensive review of various metaheuristic algorithms and their hybrids, as developed
by researchers to address path planning and navigation challenges in smart vehicles. The classification of these
algorithms is primarily into two categories: population-based (encompassing evolutionary, swarm intelligence, and
nature-inspired algorithms) and trajectory-based algorithms. A detailed description of each algorithm is provided,
followed by reviews of recent articles spanning the last 13 years (2010 - 2023), with a majority of the studies
concentrated between 2017 and 2023. Key parameters considered in this review include the type of vehicle (single
or multiple robots), obstacle nature (static or dynamic), map type (topological, geometrical, or grid map), and the
simulation platforms used for analysis.

The analysis also focuses on computational time and the efficiency of these algorithms in finding the shortest
optimum path. Various tasks performed by smart vehicles are enumerated, highlighting the diverse applications. A
notable observation is that navigation for smart vehicles remains an ongoing challenge, particularly in optimizing
path length and reducing travel time. Researchers have made significant improvements and updates to these
algorithms to address observed anomalies [118, 150]. A prominent trend is the development of hybrids between
different algorithms, either to fine-tune parameters [136] or to combine advantages for enhanced robustness [119].
Path smoothing has been a crucial consideration in some studies, with techniques like cubic polynomials [85, 91],
Bezier curves [78, 181], B-spline curves [56], and Cubic Ferguson splines [88] being used to generate smooth
paths.

While most reviewed studies focused on static environments, there is a growing need to explore the navigation
of smart vehicles in dynamic settings, considering moving obstacles and human interactions. One case study
demonstrates the potential of using object detection sensors and refining data through neural networks with finely
tuned weights for path planning in dynamic environments [167]. Additionally, combining reinforcement learning
with metaheuristic algorithms could offer novel solutions for path planning challenges. For instance, incorporating
reinforcement learning agents to balance exploration and exploitation in population-based metaheuristic algorithms
could significantly enhance navigation path planning.
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[5] R. Théodosc, D. Denis, C. Blanc, T. Chateau, and P. Checchin, “Vehicle detection based on deep learning
heatmap estimation,” in IEEE Intelligent Vehicles Symposium (IV), Paris, France, 2019, pp. 108–113.
https://doi.org/10.1109/IVS.2019.8814285

[6] H. Thadeshwar, V. Shah, M. Jain, R. Chaudhari, and V. Badgujar, “Artificial intelligence based self-
driving car,” in Proceedings of the 4th International Conference on Computer, Communication and Signal
Processing (ICCCSP), Chennai, India, 2020, pp. 1–5. https://doi.org/10.1109/ICCCSP49186.2020.9315223
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