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Abstract: This research employs a data-driven approach to optimize the plasma arc cutting process. The evaluation
of cut quality is based on six output characteristics, while the input parameters include stand-off distance, cutting
current, and cutting speed. The output metrics consist of the material removal rate (MRR), surface roughness,
bevel angle, slag formation, kerf width, and heat-affected zone (HAZ). Given the complexity of the process and
the multitude of involved processing parameters, it is imperative to develop an optimization model to ensure the
production of undisturbed structures. The primary aim of this study is to identify the most critical factors that facilitate
optimal conditions for plasma arc cutting. The research goal is to determine the influence of input parameters on
the plasma arc cutting quality using an adaptive neural fuzzy inference system (ANFIS). It has been found that
the material removal rate (MRR), surface roughness, bevel angle, slag formation, kerf width, and heat-affected
zone (HAZ) are predominantly affected by the interplay of cutting current and stand-off distance. Ideally, the best
predictive model for various attributes, such as MRR, bevel angle, slag formation, surface roughness, kerf width,
and HAZ, is one that synergistically combines cutting current and stand-off distance. This study, which evaluates
multiple input parameters simultaneously, is expected to attract significant attention as it represents a pioneering
small-scale investigation in the field.

Keywords: Plasma arc cutting; Technology forecasting; Adaptive neural fuzzy inference system

1 Introduction

Despite the extensive application of plasma arc cutting (PAC) in heavy-duty manufacturing cycles, there are
challenges and drawbacks that require careful consideration prior to its implementation. Traditional control methods
falter due to the unique nature of the input parameters, necessitating advanced technological approaches for process
enhancement.

PAC is renowned for its efficiency and versatility in cutting a wide range of materials within the industrial sector.
A significant hurdle for PAC is the formation of dross [1]. The primary influential factors in the PAC process
are identified as arc current, standoff distance, and cutting speed [2], with each factor carrying varying degrees of
significance. A study on the heat-affected zone (HAZ) generated during PAC of stainless steel (Grade 304) revealed
optimal cutting conditions utilizing response surface methodology (RSM): a voltage of 240 volts, a current of 65
amps, and a speed of 1.5 millimeters per second [3]. Employing these input parameters resulted in an output of
a material removal rate (MRR) of 5.79 millimeters per second over a period of 246 seconds, achieving a surface
roughness of 65 micrometers [4]. Analysis of the cut surface’s microstructure uncovered the presence of a recast
layer, microstriations, and dross accumulation [5]. Experimental results indicate that the proposed control method
surpasses traditional PI control in enhancing accuracy, finish, ripple reduction, and overall quality of the workpiece,
alongside other comprehensive metrics. Additionally, the power supply for PAC demonstrates exceptional control
performance, attributed to its fuzzy-neural network framework [6].

The primary objective of this study is to pinpoint the variables that significantly influence the PAC process when
applied to stainless steel [7]. The investigation proceeds through the evaluation and application of six distinctive
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output characteristics. The adaptive neurofuzzy inference system (ANFIS) [8–10] is an extraordinarily effective
tool for identifying and categorizing critical input parameters essential to the progression of the PAC process. This
system is characterized by robustness, resilience, immunity to interference, fault tolerance, conformity with ANFIS
standards, and proficiency in normalization and generalization. Consequently, variations in the characteristics are
unlikely to significantly impact the performance of the PAC method as refined by ANFIS [11–13].

2 Methodology
2.1 Experimental Setup and Data

To conduct the cutting tests, stainless steel AISI 304 specimens measuring 250×70×50mm were prepared. The
input parameters include standoff distance, cutting current, and cutting speed. The outputs, such as material removal
rate (MRR), chamfer, surface roughness, dross, kerf width, and heat-affected zone (HAZ), are measured. The
MRR is efficiently determined using electronic weighing equipment. Surface roughness is assessed with a Talysurf
instrument, while the remaining outputs are measured using an automated Vernier caliper. Figure 1 displays the
experimental setup of the plasma arc cutting system. Table 1 presents sample experimental data related to the input
and output variables [14–16].

Figure 1. Experimental setup of plasma arc cutting system

Table 1. Experimental data samples [12]

Input 1 Input 2 Input 3 Input 4 Output 1 Output 2 Output 3 Output 4 Output 5 Output 6
Cutting Current,

A
Cutting Speed,

mm/s
Gas Pressure,

1/min
Stand-off Gap,

mm
MRR,

mm2/min
Surface Roughness,

lm
Chamfer,
mm

Dross,
mm2

Kerf width,
mm

HAZ
mm

100 2 15 2.5 1056.12 21.7 0.24 1.38 2.78 1.53
200 2 15 2.5 733.27 18.23 0.21 1.12 2.66 2.4
100 4 15 2.5 1049.5 23 0.31 1.36 2.75 2.02
200 4 15 2.5 890.65 19.96 0.22 1.3 2.7 1.86
150 3 12 2 979.92 20.88 0.22 1.36 2.68 1.79
150 3 18 2 1219.03 23.63 0.29 1.47 2.86 1.69
150 3 12 3 931.24 20 0.21 1.29 2.75 2.03
150 3 18 3 880.36 18.98 0.19 1.26 2.64 2.11
100 3 15 2 1270.86 25.85 0.32 1.57 2.87 1.34
200 3 15 2 1087.42 23.69 0.3 1.4 2.79 1.84
100 3 15 3 1134.58 24.19 0.31 1.41 2.8 1.82
200 3 15 3 836.33 19.83 0.21 1.28 2.71 2.02
150 2 12 2.5 609.54 15.77 0.14 1.07 2.61 2.2
150 4 12 2.5 1001.8 19.77 0.22 1.34 2.69 2.01
150 2 18 2.5 1020.53 19.12 0.21 1.3 2.72 2.03
150 4 18 2.5 779.04 18.15 0.2 1.19 2.65 2.16
100 3 12 2.5 948.27 20.55 0.24 1.32 2.71 1.95
200 3 12 2.5 865.77 19.64 0.21 1.27 2.7 1.87
100 3 18 2.5 1200.73 23.76 0.29 1.47 2.82 1.51
200 3 18 2.5 801.54 18.15 0.21 1.2 2.65 2.29
150 2 15 2 1367.02 25.37 0.34 1.56 2.85 1.5
150 4 15 2 788.54 19.53 0.2 1.22 2.7 2.07
150 2 15 3 519.48 15.26 0.11 1 2.62 2.43
150 4 15 3 1248.72 24.13 0.32 1.5 2.79 1.8
150 3 15 2.5 773.53 17.38 0.15 1.23 2.57 2.13
150 3 15 2.5 773.61 17.39 0.16 1.25 2.56 2.13
150 3 15 2.5 773.33 17.38 0.16 1.22 2.55 2.12

2.2 ANFIS Methodology

Figure 2 depicts the five distinct layers of the ANFIS network. Within the ANFIS framework, the fuzzy inference
system functions analogously to a central nervous system. The first layer receives inputs and employs membership
functions to convert them into fuzzy values. For this study, the bell-shaped membership function was selected due
to its superior efficacy in handling nonlinear data regression.
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Figure 2. ANFIS layers

The membership functions, characterized by a bell-shape, are defined in the following manner:

µ(x) = bell (x; ai, bi, ci) =
1

1 +

[(
x−ci
ai

)2
]bi (1)

where, {ai, bi, ci} denote the parameters set, while x is the input.
The calculation of rule firing strength involves multiplying the fuzzy signals generated by the first layer within

the second layer. The third layer, known as the rule layer, is responsible for normalizing the signals emanating from
the second layer. The fourth layer undertakes the task of rule inference and transforms all signals into crisp values.
The final layer produces an impeccable output through the aggregation of all incoming signals.

3 Results

By employing the ANFIS approach, the most precise predictors for each type of defect were identified. The
process of selecting and preprocessing input parameters to remove extraneous information is critical. The MATLAB
command below is used to split the dataset into a training set (odd-indexed samples) and a checking set (even-indexed
samples):

>>[data] = plasma;

>> trn_data = data(1:2:end,:);

>> chk_data = data(2:2:end,:);

The function “exhsrch” determines the set of inputs that have the greatest impact on the six output variables
through an exhaustive search of all available inputs. The first argument of the function specifies the number of
input combinations to be evaluated during the selection process. “Exhsrch” first constructs an ANFIS model for all
possible combinations. The model is then trained for a single epoch, after which the outcomes are evaluated. The
command line used to identify the one and two most important factors in predicting outputs is as follows:

>> exhsrch(1,trn_data,chk_data);

>> exhsrch(2,trn_data,chk_data);

Table 2. Correlation matrix of the one- and two-attributes influence on the recycling rate

MRR Cutting Current, A Cutting Speed, mm/s Gas Pressure, 1/min Stand-off Gap, mm
Cutting Current,

A
trn = 200.4070
chk = 266.0967

Cutting Speed,
mm/s

trn = 198.5691,
chk = 265.8494

trn = 227.9316,
chk = 185.7137

Gas Pressure,
1/min

trn = 189.1326,
chk = 270.5929

trn = 200.4373,
chk = 413.1904

trn = 218.9203,
chk = 206.6505

Stand-off Gap,
mm

trn = 140.9772,
chk = 310.8652

trn = 148.4954,
chk = 197.2559

trn = 157.0890,
chk = 282.0749

trn = 196.6478,
chk = 186.2681

Table 2 displays the correlations between the effects of single and dual input combinations on the Material
Removal Rate (MRR). These effects are quantified using the Root Mean Square Error (RMSE) for both training and
error checking. The standoff distance has the most significant impact on the MRR and is associated with the smallest
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training error. Essentially, even minor adjustments to the standoff distance can lead to considerable changes in the
MRR.

When combining the cutting current and standoff distance, the training error decreases further, which indicates
a greater influence on the MRR. Conversely, the most significant variation in MRR is expected to occur with
simultaneous changes to the cutting current and standoff distance. Figure 3 illustrates the ANFIS decision surface
generated by using the two optimal inputs.

Figure 3. Optimal ANFIS decision surface for MRR

Table 3. Correlation matrix between input parameters and surface roughness

Surface Roughness Cutting Current, A Cutting Speed,
mm / s Gas Pressure, 1 / min Stand-off Gap, mm

Cutting Current,
A

trn = 2.5681,
chk = 4.3947

Cutting Speed,
mm/s

trn = 2.5276,
chk = 4.4007

trn = 3.1573,
chk = 2.8265

Gas Pressure,
1/min

trn = 2.4495,
chk = 4.3424

trn = 2.8351,
chk = 6.6431

trn = 3.2032,
chk = 2.4485

Stand-off Gap,
mm

trn = 1.5345,
chk = 4.5983

trn = 2.1837,
chk = 3.4789

trn = 2.5032,
chk = 3.3776

trn = 2.8467,
chk = 2.0403

Figure 4. Optimal ANFIS decision surface for surface roughness
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Table 3 shows the relationships between the effects of single and combined input pairs on surface roughness.
Among the input parameters, the cutting current exerts the greatest influence on surface roughness, as indicated by
its status as the most accurate during training. In other words, even minimal adjustments to the cutting current can
lead to significant variations in surface roughness.

The pairing of cutting current and standoff distance significantly affects surface roughness by reducing the
training error. Specifically, alterations in surface roughness are most pronounced when both the cutting current and
standoff distance are varied together. Figure 4 presents the ANFIS decision surface generated by employing the two
most effective inputs.

Table 4 illustrates the relationships between the effects of single and paired input combinations on chamfer. The
cutting current is the input parameter that most significantly influences the chamfer, as indicated by the least training
error. Essentially, even small fluctuations in the cutting current can lead to considerable variations in the chamfer.

Combining the cutting current with the standoff distance minimizes the training error, which in turn exerts the
most significant effect on the chamfer. More specifically, the chamfer is likely to show the greatest variation when
changes in the cutting current and standoff distance occur simultaneously. Figure 5 shows the ANFIS decision
surface that is derived from using the two optimal inputs.

Table 4. Correlation matrix between input parameters and chamfer

Chamfer Cutting Current, A Cutting Speed,
mm / s Gas Pressure, 1 / min Stand-off Gap, mm

Cutting Current,
A

trn = 0.0548,
chk = 0.0558

Cutting Speed,
mm/s

trn = 0.0527,
chk = 0.0625

trn = 0.0667,
chk = 0.0666

Gas Pressure,
1/min

trn = 0.0530,
chk = 0.0548

trn = 0.0614,
chk = 0.1303

trn = 0.0689,
chk = 0.0482

Stand-off Gap,
mm

trn = 0.0367,
chk = 0.0739

trn = 0.0453,
chk = 0.0871

trn = 0.0569,
chk = 0.0834

trn = 0.0638,
chk = 0.0439

Figure 5. Optimal ANFIS decision surface for chamfer

Table 5 outlines the correlations between the effects of individual and combined input pairs on dross. The
standoff gap, as an input feature, has the most profound impact on dross, associated with the least training error.
Essentially, even minor adjustments to the standoff distance can lead to significant changes in dross.

When the cutting current and standoff distance are paired, there is a reduction in training error, which translates
to a more substantial effect on dross. In practice, the most notable change in dross would occur when there are
concurrent variations in both the cutting current and standoff gap. Figure 6 shows the ANFIS decision surface
generated by employing the two optimal inputs.

Table 6 displays the relationships between the effects of single and combined input pairs on kerf width. The kerf
width is most significantly influenced by the cutting current, which is the input parameter with the lowest training
error. Essentially, even minor fluctuations in the cutting current can lead to considerable shifts in kerf width.
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Table 5. Correlation matrix between input parameters and dross

Dross Cutting Current, A Cutting Speed,
mm / s Gas Pressure, 1 / min Stand-off Gap, mm

Cutting Current,
A

trn = 0.1333
chk = 0.3058

Cutting Speed,
mm/s

trn = 0.1303,
chk = 0.3174

trn = 0.1491,
chk = 0.1134

Gas Pressure,
1/min

trn = 0.1290
chk = 0.3054

trn = 0.1334
chk = 0.2615

trn = 0.1501,
chk = 0.1264

Stand-off Gap,
mm

trn = 0.0855,
chk = 0.3197

trn = 0.0931
chk = 0.1117

trn = 0.1039,
chk = 0.1768

trn = 0.1254,
chk = 0.1286

Figure 6. Paternoster transport solutions for unloading (roller and belt conveyor)

The combination of cutting current and standoff distance reduces the training error, thereby having the most
pronounced influence on kerf width. Practically speaking, the kerf width would experience the greatest variation
when changes to the cutting current and standoff gap occur concurrently. Figure 7 illustrates the ANFIS decision
surface created by utilizing the two optimal inputs.

Table 6. Correlation matrix between input parameters and kerf width

Kerf Width Cutting Current, A Cutting Speed,
mm / s Gas Pressure, 1 / min Stand-off Gap, mm

Cutting Current,
A

trn = 0.0790,
chk = 0.5970

Cutting Speed,
mm/s

trn = 0.0744,
chk = 0.5748

trn = 0.0983,
chk = 0.0808

Gas Pressure,
1/min

trn = 0.0731,
chk = 0.5837

trn = 0.0881,
chk = 0.1919

trn = 0.0953,
chk = 0.0855

Stand-off Gap,
mm

trn = 0.0577,
chk = 0.5746

trn = 0.0767
chk = 0.1121

trn = 0.0702,
chk = 0.1311

trn = 0.0884,
chk = 0.0594

Table 7 shows the correlations between the effects of individual and combined input pairs on the Heat-Affected
Zone (HAZ). The standoff distance is the input parameter that has the most substantial impact on the HAZ, as
evidenced by the smallest training error. Essentially, even minor adjustments to the standoff distance can lead to
significant changes in the HAZ.

The combination of cutting current and standoff gap minimizes the training error and, therefore, has the most
profound influence on the HAZ. Put another way, the HAZ would undergo the greatest degree of variation when
the cutting current and standoff distance are altered simultaneously. Figure 8 depicts the ANFIS decision surface
generated using the two optimal inputs.
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Figure 7. Scheme of a rectangular conveyor

Table 7. Correlation matrix between input parameters and HAZ

HAZ Cutting Current, A Cutting Speed,
mm / s Gas Pressure, 1 / min Stand-off Gap, mm

Cutting Current,
A

trn = 0.2562,
chk = 0.4912

Cutting Speed,
mm/s

trn = 0.2359,
chk = 0.4818

trn = 0.2988
chk = 0.2375

Gas Pressure,
1/min

trn = 0.2415,
chk = 0.4920

trn = 0.2674,
chk = 0.6201

trn = 0.2957,
chk = 0.2767

Stand-off Gap,
mm

trn = 0.1594,
chk = 0.5895

trn = 0.2102,
chk = 0.3228

trn = 0.2084,
chk = 0.3930

trn = 0.2390
chk = 0.2663

Figure 8. Optimal ANFIS decision surface for HAZ

4 Conclusions

In the industrial sector, plasma arc cutting is utilized for particularly demanding tasks. Traditional control
methods fall short due to the complex nature of the input parameters, rendering them unsuitable for advancing
technology in this area. This experiment employed a data-driven optimization approach to enhance the plasma arc
cutting process. The quality of the cut is evaluated by six output attributes. The input factors are classified as the
standoff gap, cutting current, and cutting speed. The output variables include the Material Removal Rate (MRR),
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surface roughness, chamfer, dross, kerf width, and Heat-Affected Zone (HAZ).
The primary goal of this research was to identify the most significant characteristics that determine the most

effective settings for plasma arc cutting. An adaptive neural fuzzy inference system (ANFIS) was employed to
analyze the various input parameters of the plasma arc cutting process. According to ANFIS predictions, the
variables of Material Removal Rate (MRR), chamfer, surface roughness, dross, kerf width, and Heat-Affected Zone
(HAZ) are most significantly influenced by the combination of cutting current and standoff distance. In other words,
the optimal configuration for predicting the dimensions of the Heat-Affected Zone, Material Removal Rate (MRR),
surface roughness, chamfer, dross, and kerf width occurs when the cutting current and standoff gap are considered
in tandem.
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