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Abstract: The Spherical Fuzzy Set (SFS) framework extends the Picture Fuzzy Set (PFS) concept, offering enhanced precision in handling data characterized by conflict and uncertainty. Furthermore, similarity measures (SMs) are crucial for determining the extent of resemblance between pairs of fuzzy values. While existing SMs evaluate similarity by measuring the distance between values, they sometimes yield results that are illogical or unreasonable, due to certain properties and operational complexities. To address these anomalies, this paper introduces a parametric similarity measure based on three adjustable parameters (α1, α2, α3), allowing decision-makers to fine-tune the measure to suit various decision-making styles. This paper also scrutinizes existing SMs from a mathematical standpoint and demonstrates the efficacy of the proposed SM through mathematical modeling. Finally, we apply the proposed SM to tackle Multi-Attribute Decision-Making (MADM) problems. Comparative analysis reveals that our proposed SM outperforms certain existing SMs in the context of SFS-based applications. 
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Information extraction and analysis from real-life problems are full of vagueness and uncertainties. Several attempts have been introduced to reduce this uncertainty. A famous way to reduce uncertainty was introduced by Zadeh by introducing the concept of the fuzzy set (FS) [1]. This concept is a generalization of the crisp set, describing the belongingness of an object with the help of the membership degree (MD). By generalizing the concept of the fuzzy set, Atanassov attempted to further reduce uncertainty by introducing the concept of intuitionistic fuzzy sets (IFS) [2], in which he described the belongingness of an object by both MD and non-membership degree (NMD). 

To achieve greater accuracy during information extraction, Atanassov [3] formalized the interval-valued IFS by considering MD and NMD as intervals from [0,1]. IFS has been used by researchers in various fields, such as pattern recognition [4], decision making [5], and medical diagnosis [6]. IFS had a limited range for assigning values to the MD ϱ(λ) and NMD γ′(λ) because the sum of the MD and NMD did not necessarily equal 1. The limitations of IFS

were expanded by the ideas of the Pythagorean fuzzy set (PYFS) [7] and the q-rung orthopair fuzzy set (qROFS) [8], 

respectively. 

The applications of IFS, PYFS, and qROFS have great potential in practical scenarios due to their ability to reduce vagueness in information extraction. However, in some instances, these tools could not extract information without some loss, as they account for only two degrees for the description of an element. To address this limitation and describe an object’s belongingness with three degrees, Cuong [9] introduced the concept of picture fuzzy sets (PFS), which include an additional degree known as the abstinence degree (AD). The PFS has been used by many scholars for example, in the work [10]. But some time the concept of PFS failed when 0 ≤ φuα (ϱ(λ), i(λ), γ′(λ)) ≤ 1

violated. For example, the values of the MD, AD and NMD are 0.8, 0.2 and 0.4 respectively. In this case the φuα (ϱ(λ), i(λ), γ′(λ)) = 1.4 ̸≤ 1. The PFS, while useful, had its limitations. To broaden the scope of PFS, Mahmood et al. [11] introduced the concept of Spherical Fuzzy Sets (SFS) and the Total Spherical Fuzzy Sets (TSFS). TSFS, being the latest framework, is designed to extract information with higher accuracy. 
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MADM is a compelling technique used to identify the best alternative from a set of options. The introduction of fuzzy theory has significantly transformed and enhanced MADM. Numerous scholars have refined the MADM

process utilizing various approaches. Khan et al. [12] applied complex SFS to address MADM problems. Senapati et al. [13] adopted interval-valued Intuitionistic IFS for the same purpose. Jana et al. [14] utilized PyFS in their approach to MADM, while Senapati [15] employed PFS for MADM solutions. TSFS were used in work [12] to tackle MADM challenges. Mahmood and Ali [16] resolved MADM issues using complex single-valued neutrosophic sets (CSVNS), and Riaz and Farid [17] applied complex PFS for MADM problems. Khan et al. [18] again used complex SFS in the context of MADM. Riaz et al. [19] addressed MADM with bipolar Fuzzy Sets, while Garg [20]

implemented IFS for MADM solutions. Ashraf et al. [21] utilized interval-valued PFS for MADM, and Garg [22]

adopted PyFS for this purpose. Lastly, Riaz et al. [23] and Pamučar et al. [24] both used qROFS to solve MADM

problems. 

SM is the significant tool for evaluating the similarity between two fuzzy values (FVs). Numerous scholars have introduced various SMs, finding interesting applications in medical diagnosis, pattern recognition, and MADM. 

Boran and Akay [4] and Du and Hu [25] introduced SMs within the framework of IFS and discussed their application in pattern recognition. Donyatalab et al. [26] introduced an SM for qROFS, while Mohd and Abdullah [27] presented SMs for PyFS, discussing their intriguing applications. Wei [28] introduced Cosine Similarity Measures (CSMs) based on the cosine function and contingent similarity measures based on the contingent function for PFS and applied them to MADM. Wei and Geo [29] developed a Dice SM for PFS. Van Dinh et al. [30] introduced some SMs for PFS and applied them to MADM problems. Singh et al. [31] extended SMs by considering the refusal degree of PFS

and applied them to clustering problems. Luo and Zhang [32] introduced SMs based on basic operations for PFS. In the work [33], the concept of SM was introduced for Spherical Fuzzy Sets (SFS) with applications to MADM. Zhao et al. [34] developed SMs for the SFS framework and applied them to pattern recognition and MADM. Shishavan et al. [35] and Khan et al. [36] introduced SMs for SFS, applying them to pattern recognition, while Mahmood et al. [37] applied them to medical diagnosis and pattern recognition. 

From the SMs discussed above, we can draw some key points. All the SMs for IFS, PyFS, qROFS, and PFS are outdated because these frameworks have limited capacity to extract information from real-life scenarios. 

Consequently, decision-makers cannot find the best results due to uncertainty and information loss. Therefore, advanced SMs for SFS should be defined to assess the similarity between FVs with less uncertainty. 

Some SMs fail to compute in certain scenarios. For instance, some cannot provide decision results due to division by zero problems. Thus, the major contribution of this study is to enhance the identification ability of SMs and overcome the defects of current SMs, necessitating the proposal of new SMs. 

This paper is organized as follows: Section 2 discusses some basic concepts. Section 3 reviews existing SMs and discusses their limitations. Section 4 develops a new SM for SFS, which improves upon and generalizes existing SMs for SFS by using parameters. Section 5 presents the application of the proposed SMs to the MADM problem, and Section 6 summarizes the study. 

2 Preliminaries

This section presents some basic concepts for understanding the article. 

2.1 Definition [2]: On a set X a IFS is of the shape I = {(λ, (φ, γ′)) : 0 ≤ sum (φ(λ), γ′(λ)) ≤ 1}. Further, r(λ) = 1 − sum (φ, γ′) represents the hesitancy degree of λ ∈ X and the pair (φ, γ′) is termed as an intuitionist FV (IFV). 

2.2 Definition [7]: On a set X a PyFS is of the shape I = (λ, (φ, γ′)) : 0 ≤ sum φ2(λ), γ′2(λ) ≤ 1 . 

Further, r(λ) = 1 − sum φ2(λ), γ′2(λ) represents the hesitancy degree of λ ∈ X and the pair (φ, γ′) is termed as a Pythagorean FV (PyFV). 

2.3 Definition [9]: On a set X a PFS is of the shape I = {(λ, (φ, i, γ′)) : 0 ≤ sum (φ(λ), i(λ), γ′(λ)) ≤ 1}. 

Further, r(λ) = 1 − sum (φ(λ), i(λ), γ′(λ)) represents the refusal degree of λ ∈ X and the pair (φ, i, γ′) is termed as a picture FV (PFV). 

2.4 Definition [11]: For any universal set X a SFS is of the form I = {(λ, (φ, i, γ′)) : ∀λ ∈ X}. Here φ, i, and γ′

are mappings form X → [0, 1] denoting MD, AD, and ND respectively provided that 0 ≤ sum φ2(λ), i2(λ), γ′2(λ) ≤

1 and r(λ) = p1 − sum (φ2(λ), i2(λ), γ′2(λ)) is known as the RD of λ in I. The triplet (φ, i, γ′) is considered as a spherical FV (SFV). 
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X} be any two be SFSs on universe X, then the SM between ϑ and Φ is defined as ϱ(ϑ, Φ), which satisfies the following axioms:

(ϱ1) 0 ≤ ϱ(ϑ, Φ) ≤ 1; 

(ϱ2) ϱ(ϑ, Φ) = 1 Iff ϑ = Φ; 

(ϱ3) ϱ(ϑ, Φ) = ϱ(Φ, ϑ); 

(ϱ4) Let C be any SFS such that ϑ ⊆ Φ ⊆ C, then ϱ(ϑ, C) ≤ ϱ(ϑ, Φ) and ϱ(ϑ, C) ≤ ϱ(Φ, C); Now, we will review some existing similarity measures for SFSs in the following section. 

Let ϑ = {(λi, φϑ (λi) , iϑ (λi) , γ′ϑ (λi)) | λi ∈ X} and Φ = {(λi, φΦ (λi) , iΦ (λi) , γ′Φ (λi)) | λi ∈ X} be any two be SFSs on X = {λ1, λ2, . . . , λ2} , ρϑ (λi) and ρΦ (λi) be the refusal degrees of element λi belonging to SFSs A and B respectively, where ρϑ (λi) = 1 − φ2 (λ
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Ullah et al. [39] introduced the SMs for SFSs based on the cosine function, as provided below. 
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3 An Analysis of Some Existing Spherical Fuzzy Similarity Measures As a numerical tool for calculating the degree of similarity between objects, SMs have been utilized to solve problems in decision-making, clinical diagnosis, and pattern recognition. Although many SMs for SFSs have been proposed, they can yield unreasonable and counter-intuitive results in practical applications, bringing significant challenges to users. In this section, we comprehensively analyze some existing SMs from an arithmetic perspective, as presented in Table 1 below. 

Table 1. A comprehensive analysis of some existing similarity measures for SFS
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The axiom ϱ2 is one of the most basic axioms of spherical SMs. By analyzing Table 1, we can easily find that the similarity measures ϱ5, ϱ7, ϱ8, ϱ12, and ϱ14 do not satisfy this axiom. The detailed discussion is as follows: n
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i.e. ϑ ̸= Φ based on Eq. (12), we have
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Obviously, in the above cases, the SMϱ12 is invalid. 

(2) The similar SMs ϱ5, ϱ7, ϱ8, ϱ12, and ϱ14 do not satisfy the the axiom ϱ(ϑ, Φ) = 1 implies ϑ = Φ and these SMs provide a counter-intuitive result for practical users in this case. 

(3) For the SM ϱ3, ϱ7, ϱ8, ϱ11, ϱ12, ϱ13 and ϱ14, when SFSs A = Φ = (λ, 0.0, 0.0, 0.0) defined on X = {λ}, we have ϱ3(ϑ, Φ) = ϱ7(ϑ, Φ) = ϱ8(ϑ, Φ) = ϱ11(ϑ, Φ) = ϱ12(ϑ, Φ) = ϱ13(ϑ, Φ) = ϱ14(ϑ, Φ) = 0 . In this case, 0

these SM are invalid, they do not satisfy the axiom. 

(4) The capacity of the SM to recognize the nearness of fuzzy not entirely settled by the articulation structure and the data contained in the articulation. The more data the SM focuses on the more grounded the identification ability. By analyzing Table 1 we find that the SM ϱ1 only considers the difference of positive degree or neutral degree or negative degree or refusal degree between SFSs which brings a big amount of information losing. For example, let ϑ = (0.1, 0.2, 0.1), Φ = (0.6, 0.2, 0.1) be two SFSs. Since |0.1 − 0.1| < |0.2 − 0.2| <| 1 − 0.1 − 0.2−

0.1| < |1 − 0.6 − 0.2 − 0.1| < |0.1 − 0.6 |, hence, the SM among A and B just considers the distinction of the positive degree between A and B by utilizing the SMϱ1. For this situation, the SM will cause a great of data loss in viable application, so that it cannot provide more accurate results for practical users. In addition, in this situation, we also find that the SMs ϱ2, ϱ4, ϱ5, ϱ6, ϱp have the same drawback. 

3

3.1 A Parametric Similarity Measure Between Spherical Fuzzy Sets Considering the reasons for the unsatisfactory results observed in the above analysis (Table 1), we propose an expanded parametric SM for SFSs in this section to address the limitations of existing SMs. 

In this section, we introduce a parametric spherical fuzzy SM by developing a paired function. The analysis in Table 1 indicates that the SMs ϱ5, ϱ7, ϱ8, ϱ12, and ϱ14 have drawbacks. Consequently, we present the parametric SMs in Definition 8, which follows. 

3.1.1 Definition 7: Let ϑ = {(λi, φϑ (λi) , iϑ (λi) , γ′ϑ (λi)) | λi ∈ X} and Φ = {((λi, φΦ (λi) , iΦ (λi) , γ′ (λ

Φ

i))) | λi ∈ X } be

any two be SFSs on X = {λ1, λ2, . . . , λ2} then the function ϱα : SFS(λ) × SFS(λ) → [0, 1] defined by 1

" 

η

# p

1 X

ϱα(ϑ, Φ) = 1 −

∆p

(λi) + ∆p

(λi) + ∆p

(λi)

(15)

3η

1ϑΦ

2ϑΦ

3ϑΦ

i=1

ϱα(ϑ, Φ) is a similarity measure between ϑ and Φ, and p = 2. 

where, 

1







∆





1ϑΦ (λi) =

α1 φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) − γ′2 (λi) − γ′2 (λi)

α1 ∈ [0, +∞), 

α



ϑ

Φ

ϑ

Φ

ϑ

Φ



1 + 1

1







∆





2ϑΦ (λi) =

α2 i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi) − γ′2 (λi) − γ′2 (λi)

α2 ∈ [0, +∞), 

2α



ϑ

Φ

ϑ

Φ

ϑ

Φ



2 + 1

1

∆



3ϑΦ (λi) =

α3

γ′2 (λi) − γ′2 (λi) − φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) α3 ∈ [0, +∞), 2α

ϑ

Φ

ϑ

Φ

ϑ

Φ

3 + 1

1

+

1

+

1

∈ (0, 1], and p is any positive integer. 

α1+1

2α2+1

2α2+1
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n



o

n



o

3.1.2 Theorem Let ϑ =

λ, φ2 (λ), i2 (λ), γ′2 (λ) | λ ∈ X

and Φ =

λ, φ2 (λ), i2 (λ), γ′2 (λ) | λ ∈ X

ϑ

ϑ

ϑ

Φ

Φ

Φ

be any two be SFSs on universe X, then the SM between ϑ and Φ is defined as ϱα(ϑ, Φ), which satisfies the following axioms:

(ϱ1) 0 ≤ ϱα(ϑ, Φ) ≤ 1; 

(ϱ2) ϱα(ϑ, Φ) = 1 Iff ϑ = Φ; 

(ϱ3) ϱα(ϑ, Φ) = ϱα(Φ, ϑ); 

(ϱ4) Let C be any SFS such that ϑ ⊆ Φ ⊆ C, then ϱα(ϑ, C) ≤ ϱα(ϑ, Φ) and ϱα(ϑ, C) ≤ ϱα(Φ, C). 

Proof: In order to prove that Eq. (15) is a SM, we only need to prove Eq. (15) satisfies axioms (ϱ1) −

(ϱ4) ϑ = {(λi, φϑ (λi) , iϑ (λi) , γ′ϑ (λi)) | λi ∈ X}

and

Φ = {((λi, φΦ (λi) , iΦ (λi) , γ′ (λ

Φ

i))) | λi ∈ X }

and

C = {((λi, φC (λi) , iC (λi) , γ′ (λ

C

i))) | λi ∈ X } be any three SFSs on X = {λ1, λ2, . . . , λ2}. 

(ϱ1) We can write the following equations:

1







∆





1ϑΦ (λi) =

α1 φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) − γ′2 (λi) − γ′2 (λi)

α1 ∈ [0, +∞)

α



ϑ

Φ

ϑ

Φ

ϑ

Φ



1 + 1

1

=





α1φ2 (λi) − i2 (λi) − γ′2 (λi) − α1φ2 (λi) − i2 (λi) − γ′2 (λi)

α

ϑ

ϑ

ϑ

Φ

Φ

Φ

1 + 1

1





2



∆





2ϑΦ (λi) =

α2 i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi) + γ′ (λi) − γ′2 (λi)

α2 ∈ [0, +∞)

2α



ϑ

Φ

ϑ

Φ

ϑ

Φ



2 + 1

1

=





α2i2 (λi) − φ2 (λi) − γ′2 (λi) − α2i2 (λi) − φ2 (λi) − γ′2 (λi)

2α

ϑ

ϑ

ϑ

ϑ

Φ

Φ

2 + 1

1

∆



3ϑΦ (λi) =

α3

γ′2 (λi) − γ′2 (λi) − φ2 (λi) − φ2 (λi) + i2 (λi) − i2 (λi) α3 ∈ [0, +∞) 2α

ϑ

Φ

ϑ

Φ

ϑ

Φ

3 + 1

1







=



α



3γ′2 (λi) − φ2 (λi) − i2 (λi)

− α3γ′2 (λi) − φ2 (λi) − i2 (λi)

2α



ϑ

ϑ

ϑ

ϑ

Φ

Φ



3 + 1

By φ2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) , i2

ϑ

i) , γ′2ϑ (λi) , φ2

Φ

i) , i2

Φ

i) , γ′2Φ (λi) ∈ [0, 1]

and

φ2ϑ

i) + i2

ϑ

i) + γ′2ϑ (λi) ≤

1φ2 (λ

(λ

(λ

Φ

i) + i2

Φ

i) + γ′2

Φ

i) ≤ 1

We have

−1 ≤ α1φ2 (λ

(λ

ϑ

i) − i2

ϑ

i) − γ′2ϑ (λi) ≤ α1

−α1 ≤ − α1φ2 (λ

(λ

(λ

Φ

i) − i2

Φ

i) − γ′2

Φ

i) ≤ 1

0 ≤  α1φ2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) − i2

ϑ

i) − γ′2

ϑ

i) −

α1φ2Φ

i) − i2

Φ

i) − γ′2

Φ

i)

≤ α1 + 1

i.e, 0 ≤ ∆1ϑΦ (λi) ≤ 1

Then

−1 ≤ α2i2 (λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) + γ′2

ϑ

i) ≤ 1 ∨ α2

− (1 ∨ α2) ≤ − α2i2 (λ

(λ

(λ

Φ

i) − φ2

Φ

i) + γ′2

Φ

i) ≤ 1

Similarly, we get the following inequalities:

−1 ≤ α3γ′2 (λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) + i2

ϑ

i) ≤ 1 ∨ α3

− (1 ∨ α3) ≤ − α3γ′2 (λ

(λ

(λ

Φ

i) − φ2

Φ

i) + i2

Φ

i) ≤ 1

Then we obtain:

0 ≤  α2i2 (λ

(λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) + γ′2ϑ (λi) −

α2i2Φ

i) − φ2

Φ

i) + γ′2Φ (λi)

≤ 2 ∨ α2

0 ≤  α3γ′2ϑ (λi) − φ2 (λ

(λ

(λ

(λ

ϑ

i) + i2

ϑ

i) −

α3γ′2Φ (λi) − φ2Φ

i) + i2

Φ

i)

≤ 2 ∨ α3

It means that:

1







1

1

0 ≤ ∆





2ϑΦ (λi) =

α2i2

α2i2

(λi)

≤

∨

≤ 1

2α



ϑ (λi) − φ2

ϑ (λi) + γ′2ϑ (λi) −

Φ (λi) − φ2

Φ (λi) + γ′2

Φ



2 + 1

α2 + 1

2

1









1

1

0 ≤ ∆





3ϑΦ (λi) =

α3γ′2 (λi) − φ2

− α3γ′2 (λi) − φ2

≤

∨

≤ 1

2α



ϑ

ϑ (λi) + i2

ϑ (λi)

Φ

Φ (λi) + i2

Φ (λi)



3 + 1

α3 + 1

2

Finally, we have:

1

" 

2

# p

1 X

0 ≤ 1 −

∆p

(λi) + ∆p

(λi)

≤ 1

32

1ϑΦ

2 ϑΦ (λi) + ∆p

3ϑΦ

i=1
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Therefore, 

(ϱ1) 0 ≤ ϱα(ϑ, Φ) ≤ 1

(ϱ2) If ϑ = Φ then φ2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) = φ2

Φ

i) , i2

ϑ

i) = i2

Φ

i) and γ′2

ϑ

i) = γ′2

Φ

i). Therefore, ∆1ϑΦ (λi) =

0, ∆2ϑΦ (λi) = 0a2γ, ∆3ϑΦ (λi) = 0 i.e., ϱα(ϑ, Φ) = 1

If ϱα(ϑ, Φ) = 1 then

1







∆





1ϑΦ (λi) =

α1 φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) − γ′2 (λi) − γ′2 (λi)

= 0

α



ϑ

Φ

ϑ

Φ

ϑ

Φ



1 + 1

1

∆



2ϑΦ (λi) =

α2

i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi) + γ′2 (λi) − γ′2 (λi) = 0

2α

ϑ

Φ

ϑ

Φ

ϑ

Φ

2 + 1

1









∆





3ϑΦ (λi) =

α3 γ′ 2 (λi) − γ′2 (λi) − φ2 (λi) − φ2 (λi) + i2 (λi) − i2 (λi) = 0

2α



ϑ

Φ

ϑ

Φ

ϑ

Φ



3 + 1

By the definition of absolute value, we have:





α1 φ2 (λ

(λ

(λ

(λ

γ′2 (λ

(λ

= 0

ϑ

i) − φ2

Φ

i) −

i2ϑ

i) − i2

Φ

i) −

ϑ

i) − γ′2

Φ

i)





α2 i2 (λ

(λ

(λ

(λ

γ′2 (λ

(λ

= 0

ϑ

i) − i2

Φ

i) −

φ2ϑ

i) − φ2

Φ

i) +

ϑ

i) − γ′2

Φ

i)

α3 γ′2ϑ (λi) − γ′2 (λ

(λ

(λ

(λ

(λ

Φ

i) −

φ2ϑ

i) − φ2

Φ

i) +

i2ϑ

i) − i2

Φ

i) = 0

i.e., 



α











1

−1

−1

φ2 (λ

(λ

0

ϑ

i) − φ2

Φ

i)

−1

α

i2 (λ

(λ

=

0



2

1





ϑ

i) − i2

Φ

i)







−1

1

α3

γ′2 (λ

(λ

0

ϑ

i) − γ′2

Φ

i)

Since

1

+

1

+

1

∈ (0, 1] then 2 ≤ α

α

1α2α3 − (α1 + α3 + α3). 

1 +1

2α2+1

2α3+1

By the definition of matrix determinant, we can get:







α1

−1

−1 







−1

α2

1

= α1α2α3 + 2 − (α1 + α3 + α3) ≥ 4







−1

1

α3 

Therefore, we have



−1

φ2 (λ

(λ





α





0 



0 

ϑ

i) − φ2

Φ

i)

1

−1

−1

i2 (λ

(λ

=

−1

α

0

=

0



ϑ

i) − i2

Φ

i)





2

1











γ′2 (λ

(λ

−1

1

α

0

0

ϑ

i) − γ′2

Φ

i)

3

It means that φ2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) = φ2

Φ

i) , i2

ϑ

i) = i2

Φ

i) and γ′2

ϑ

i) = γ′2

Φ

i) then ϑ = Φ (ϱ3). Based on the

definition of absolute value, we can get the following equations: 1







∆





1ϑΦ (λi) =

α1 φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) − γ′2 (λi) − γ′2 (λi)

α



ϑ

Φ

ϑ

Φ

ϑ

Φ



1 + 1

1



h



i

=

(−1) α



1

φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) − γ′2 (λi) − γ′2 (λi)

α



Φ

ϑ

Φ

ϑ

Φ

ϑ



1 + 1

1







=

α



1

φ2 (λi) − φ2 (λi) − i2 (λi) − i2 (λi) − γ′2 (λi) − γ′2 (λi)

α



Φ

ϑ

Φ

ϑ

Φ

ϑ



1 + 1

= ∆1Φϑ (λi)

1







∆





2ϑΦ (λi) =

α2 i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi) + γ′2 (λi) − γ′2 (λi)

2α



ϑ

Φ

ϑ

Φ

ϑ

Φ



2 + 1

1



h



i

=

(−1) α



2

i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi) + γ′2 (λi) − γ′2 (λi)

2α



Φ

ϑ

Φ

ϑ

Φ

ϑ



2 + 1

1

=



α2

i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi) + γ′2 (λi) − γ′2 (λi)

2α

Φ

ϑ

Φ

ϑ

Φ

ϑ

2 + 1

= ∆2Φϑ (λi)
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1









∆





3ϑΦ (λi) =

α3 γ′2 (λi) − γ′2 (λi) − φ2 (λi) − φ2 (λi) + i2 (λi) − i2 (λi)

2α



ϑ

Φ

ϑ

Φ

ϑ

Φ



3 + 1

1



h





i

=

(−1) | α



3

γ′2 (λi) − γ′2 (λi) − φ2 (λi) − φ2 (λi) + i2 (λi) − i2 (λi)

2α



Φ

ϑ

Φ

ϑ

Φ

ϑ



3 + 1

1









=

α



3

γ′2 (λi) − γ′2 (λi) − φ2 (λi) − φ2 (λi) + i2 (λi) − i2 (λi)

2α



Φ

ϑ

Φ

ϑ

Φ

ϑ



3 + 1

= ∆3Φϑ (λi)

ϱα(ϑ, Φ) = ϱα(Φ, ϑ)

(ϱ4) Therefore ϑ ⊆ Φ ⊆ C then φ2 (λ

(λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) ≤ φ2

Φ

i) ≤ φ2

C

i) , i2

C

i) ≤ i2

Φ

i) ≤ i2

ϑ

i), γ′2

C

i) ≤

γ′2 (λ

(λ

Φ

i) ≤ γ′2

ϑ

i)

Therefore, we can have

α1 φ2 (λ

(λ

(λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) − i2

ϑ

i) − γ′2ϑ (λi) ≤ α1

φ2Φ

i) − i2

Φ

i) − γ′2

Φ

i) ≤ α1

φ2C

i) − i2

C

i) − γ′2

C

i)

α2 i2 (λ

(λ

(λ

(λ

(λ

(λ

(λ

(λ

C

i) − φ2

C

i) − γ′2

C

i) ≤ α2

i2Φ

i) − φ2

Φ

i) − γ′2

Φ

i) ≤ α2

i2ϑ

i) − φ2

ϑ

i) − γ′2ϑ (λi)





α3 γ′2 (λ

(λ

(λ

≤ α

(λ

(λ

(λ

(λ

C

i) − φ2

C

i) − i2

C

i)

3

γ′2Φ (λi) − φ2Φ

i) − i2

Φ

i) ≤ α3

γ′2ϑ (λi) − φ2ϑ

i) − i2

ϑ

i)

By the property of inequality, we can obtain:



α1

φ2 (λ

(λ

(λ

(λ

ϑ

i) − i2

ϑ

i) − γ′2ϑ (λi) − α1

φ2ϕ

i) − i2

ϕ

i) − γ′2ϕ (λi)



≤ α1 φ2 (λ

(λ

(λ

(λ

(λ

ϑ

i) − i2

ϑ

i) − γ′2ϑ (λi) − α1

φ2C

i) − i2

C

i) − γ′2

C

i)





α2

i2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) − γ′2

ϑ

i) − α2

i2Φ

i) − φ2

Φ

i) − γ′2

Φ

i)



≤ α2 i2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) − γ′2

ϑ

i) − α2

i2C

i) − φ2

C

i) − γ′2

C

i)





α3

γ′2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) − i2

ϑ

i) − α3

γ′2Φ

i) − φ2

Φ

i) − i2

Φ

i)



≤ α3 γ′2 (λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) − φ2

ϑ

i) − i2

ϑ

i) − α3

γ′2

C

i) − φ2

C

i) − i2

C

i)



∆2ϑΦ (λi) ≤ ∆1ϑC (λi) , ∆2ϑΦ (λi) ≤ ∆2ϑC (λi) , ∆3ϑΦ (λi) ≤ ∆3ϑC (λi) Therefore, we have

1

" 

2

# p

1 X

1 −

∆p

(λi)

3η

1ϑCC (λi) + ∆p

2 ϑC (λi) + ∆p

3ϑC

i=1

1

" 

2

# p

1 X

= 1 −

∆p

(λi) + ∆p

(λi) + ∆p

(λi)

3η

1ϑΦ

2ϑΦ

3ϑΦ

i=1

It means that ϱα(ϑ, C) ≤ ϱα(ϑ, Φ). 

Similarity, we have ϱα(ϑ, C) ≤ ϱα(Φ, C). 

(1) When α1 = 0, α2 = α3 = +∞, Eq. (15) can be written as:

" 

2  

1



X

ϱ



1(ϑ, Φ) = 1 −



i2 (λi) − i2 (λi)

3η

ϑ

Φ



i=1

P

P





2



i2 (λi) − i2 (λi)



+ γ′ (λ

(λ



+

ϑ

Φ

ϑ

i) − γ′2

Φ

i) 



2P







P

1

!# P



γ′2 (λ

(λ

ϑ

i) − γ′2

Φ

i) 

+

(16)

2P

(2) When α1 = α2 = +∞α3 = 0, Eq. (15) can be written as:

" 

2  

1 X

P

ϱ



2(ϑ, Φ) = 1 −

φ2 (λi) − φ2 (λi)



3η

ϑ

Φ

i=1

1



P



P !# P

i2 (λi) − i2 (λi)





i2 (λi) − i2 (λi) − φ2 (λi) − φ2 (λi)

+

ϑ

Φ

+

ϑ

Φ

ϑ

Φ

(17)

2P

2P
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3.1.3 Theorem For any two SFSs

ϑ = {(λi, φϑ (λi) , iϑ (λi) , γ′ (λ

ϑ

i)) | λi ∈ X } , 

Φ = {(λi, φΦ (λi) , iΦ (λi) , γ′ (λ

Φ

i)) | λi ∈ X } , 

on X = {λ1, λ2, . . . , λn}, ωi ∈ [0, 1] and Pn

ω

i=1

i = 1. The function ϱω : SFS(λ) × SFS(λ) → [0, 1] is defined

by

1

" 

2

# p

1 X

ϱω(ϑ, Φ) = 1 −

ωi (∆p

(λi) + ∆p

(λi) + ∆p

(λi))

3η

1ϑΦ

2ϑΦ

3ϑΦ

i=1

ϱω(ϑ, Φ) is a weighted SM between ϑ and Φ. 

Proof: The proof is similar to Theorem 1 . 

In the following, an example is added to clarify more. 

3.1.4 Example Let ϑ = (λ, 0.2, 0.4, 0.5), Φ = (λ, 0.4, 0.3, 0.4) and C = (λ, 0.5, 0.0, 0.0) are three different SFVs on X = {λ}.ϑ Is more similar to Φ than the C say ϱ(ϑ, Φ) > ϱ(ϑ, C). To prove the accuracy of this view for our proposed SM ϱα and the current ones to be specific ϱ1, ϱ2, ϱ3, ϱ4, ϱ5, ϱ6ϱ7, ϱ9, ϱ10ϱ11ϱ12, ϱ13, ϱ14, ϱα. We can see the obtained values of the SMs in Table 2. 

Table 2. The values of the SMs on SFVs ϑ, Φ and C

ϱ

ϱ(ϑ, Φ)

ϱ(ϑ, C)

Relation

ϱ1

0.902

0.811

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ2

0.923

0.847

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ3

0.3552

-0.1463

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ4

0.939

0.875

ϱ(v, Φ) = ϱ(C, Φ)

ϱ5

0.115

0.2222

ϱ(ϑ, Φ) < ϱ(C, Φ)

ϱ6

0.8453

0.7273

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ7

0.3913

0.0255

ϱ(v, Φ) > ϱ(C, Φ)

ϱ8

0.832

0.712

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ9

0.9219

0.856

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ10

0.9219

0.856

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ11

0.077

0.153

ϱ(ϑ, Φ) < ϱ(C, Φ)

ϱ12

0.0385

0.0765

ϱ(ϑ, Φ) < ϱ(C, Φ)

ϱ13

0.6599

0.0765

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱ14

0.2292

0.0196

ϱ(ϑ, Φ) > ϱ(C, Φ)

ϱm

0.4

0.0175

ϱ(ϑ, Φ) > ϱ(C, Φ)

4 Application of the Proposed Similarity Measures

In this section, we apply the proposed the SMs in MADM problems, which show the expected SM is sensible and in accordance with human cognition. 

Let X = {λ1, λ2, . . . λα} a set of attributes, the η alternatives ϑi = (ϑij) = {(λj, φϑi (λj) , iϑi (λj) , γ′ (λ

ϑi

j ))} |

λj ∈ X Where λj, φ2 (λ

(λ

(λ

(λ

(λ

(λ

(λ

(λ

ϑ

i) , i2

ϑ

i) , γ′2

ϑ

i) , φ2

Φ

i) , i2

Φ

i) , γ′ 2

Φ

i) ∈ [0, 1] and φ2

ϑ

i)+i2

ϑ

i)+γ′2ϑ (λi) ≤

1, φ2 (λ

(λ

ϑ

i) is a positive degree which is use to alternative ϑi satisfies the λj (i = {1, 2, . . . 2}, j = {1, 2, . . . α}).i2

ϑ

i)

a neutral degree which is use to alternative ϑi does not satisfies the λj · γ′2 (λ

ϑ

i), negative degree which is use to

alternative ϑi does not satisfies the λj. The decision making is used to choose best alternative steps are following. 

Step 1. Standardize decision alternatives. 

In this process multi attribute decision making can be divided in to type’s amount type and interest type. The amount type can be changed into interest type by use the formula of decision-making process. 



ϑ

ϑ′ =

ij for benefit attribute λj

ij

ϑc for cost attribute λ

ij

j

ϑc = (φ

ij

ϑi (λj ) , iϑi (λj ) , γ′ϑi (λj )) , i = {1, 2, . . . η}, j = {1, 2 . . . α}. 

The above formula based on the

alternative ϑ



i = ϑ′

. 

ij

Step 2. The SM ϱ = (ϑi, ϑ) (i = 1, 2, 3, . . . , η) is calculated where, ϑ = (0.2,0.4,0.5),(0.2,0.4,0.5),(0.2,0.4,0.5) is a standard provided by the decision maker in the form of the SFV. We find the similarity values with the help of the proposed SM. 
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Step 3. The maximum one is chosen in ϱ = (ϑi0, ϑ) from ϱ = (ϑi, ϑ) i = (i = 1, 2, 3, . . . η) i.e ϱ = (ϑi0, ϑ) =

max1≤i≤2 {ϱ (ϑi, ϑ)}. Then the maximum SMs alternative ϑi0 according to the principle of maximsum. 

In the following example for the similarity measure ϱα, P = 3, α1 = α2 = α3 = 3

3.1.5 Example There are three medical equipment ϑ1, ϑ2, ϑ3 with four different attributes λ1, λ2, λ3 described the SFSs as shown in Table 3. The weight of λj(1 ≤ j ≤ 3) are (0.5, 0.3, 0.2). 

Table 3. Three alternatives with three attributes

x1

x2

x3

ϑ1

(0.15, 0.14, 0.12)

(0.13, 0.13, 0.33)

(0.33, 0.22, 0.16)

ϑ2

(0.18, 0.13, 0.34)

(0.26, 0.26, 0.27)

(0.39, 0.1, 0.16)

ϑ3

(0.12, 0.18, 0.37)

(0.25, 0.32, 0.21)

(0.38, 0.28, 0.35)

In the following, Table 4 shows the values of the SMs of ϑ1, ϑ2, and ϑ3 with ϑ. 

Table 4. Values of the similarity measures and decision results of the Example 2

ϱ (ϑ1, ϑ)

ϱ (ϑ2, ϑ)

ϱ (ϑ3, ϑ)

ϱ1

0.6544

0.6903

0.7537

ϱ2

0.8293

0.8244

0.8642

ϱ3

XXX

XXX

XXX

ϱ4

0.7996

0.8185

0.8463

ϱ5

0.3328

0.3059

0.2647

ϱ6

0.6238

0.6474

0.6845

ϱ7

0.2208

0.293

0.4125

ϱ8

XXX

XXX

XXX

ϱ9

0.8148

0.8222

0.849

ϱ10

0.8312

0.8474

0.853

ϱ11

0.8878

0.7858

0.8841

ϱ12

0.3339

0.3191

0.3338

ϱ13

0.2586

0.6521

0.8402

ϱ14

0.1006

0.3041

0.375

ϱm

0.9086

0.9108

0.9253

Table 4 displays the values of the SMs for medical equipment based on their attributes. Now, we will determine the ranking of the alternatives using the values obtained from the SMs. The resulting decision rankings for the medical equipment are presented in Table 5. 

Table 5. Ranking of medical equipment based on SM values

The Best Alternative

Doc

ϱ1

ϑ3

0.1352

ϱ2

ϑ3

0.0398

ϱ3

XXX

0.2706

ϱ4

ϑ3

0.0656

ϱ5

ϑ3

0.3059

ϱ6

ϑ3

0.0843

ϱ7

ϑ3

0.2639

ϱ8

XXX

2.5184

ϱ9

ϑ3

0.0416

ϱ10

ϑ3

0.038

ϱ11

ϑ1

0.1057

ϱ12

ϑ1

0.0149

ϱ13

ϑ3

0.9751

ϱ14

ϑ3

0.4779

ϱm

ϑ3

0.0189

It is cleared from Table 5, the alternative ϑ3 is obtained by using the SMs ϱ1, ϱ2, ϱ3, ϱ4, ϱ5, ϱ6, ϱ7, ϱ9, ϱ10, ϱ11, ϱ12, ϱ13, ϱ14 and ϱα. However, the alternative ϑ3 is obtained the ϱ8. The ranking of the medical equipment is geometrically 47
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represented by Figure 1 as follows. 

Figure 1. Ranking of the medical equipment obtained from the SMs in Table 5

It is cleared from Figure 1, the alternative ϑ3 is obtained by using the SMs ϱ1, ϱ2, ϱ3, ϱ4, ϱ5, ϱ6, ϱ7, ϱ9, ϱ10, ϱ11, ϱ12, ϱ13, ϱ14 and ϱα. However, the alternative ϑ3 is obtained by the ϱm. 

3.1.6 Example In this example, a MADM problem related to selecting medical equipment is solved. When prioritizing clinical needs assessment, factors such as regulatory compliance, interoperability with current systems, user-friendly interfaces, dependable quality from reputable manufacturers, cost-effectiveness, scalability, patient comfort and safety, evidence-based decision-making, and extensive training and support are crucial. By considering these factors, healthcare facilities can make well-informed decisions that not only improve patient care but also ensure operational effectiveness and regulatory compliance. Based on some attribute i.e., Precision (λ1), Versatility (λ2) and Ease of maintenance (λ3) the weight vector is ω = (0.2, 0.3, 0.5). Let there are six candidates to be assessed based on these attributes. Consider ϑ = {(0.11, 0.21, 0.32), (0.11, 0.21, 0.32), (0.11, 0.21, 0.32)} the standard is set in the form of the SFV. The alternative which is more similar to ϑ is considered as the best employee. After an initial assessment, the employees are assigned the SFVs with respect to the attributes provided in Table 6 in the following. 

Table 6. Evaluation results of six faculty candidates in this example x1

x2

x3

ϑ1

(0.23, 0.33, 0.20)

(0.33, 0.13, 0.22)

(0.12, 0.32, 0.37)

ϑ2

(0.10, 0.20, 0.24)

(0.02, 0.21, 0.10)

(0.22, 0.22, 0.22)

ϑ3

(0.31, 0.31, 0.25)

(0.32, 0.24, 0.22)

(0.10, 0.22, 0.33)

ϑ4

(0.13, 0.25, 0.23)

(0.23, 0.24, 0.22)

(0.32, 0.21, 0.1)

ϑ5

(0.13, 0.22, 0.13)

(0.22, 0.13, 0.22)

(0.23, 0.23, 0.10)

ϑ6

(0.17, 0.11, 0.14)

(0.12, 0.22, 0.21)

(0.32, 0.2, 0.12)

Figure 2. The ranking of the medical equipment obtained from the SMs in Table 8
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Table 7. Similarity measures and decision results in this example ϱ (ϑ1, ϑ)

ϱ (ϑ2, ϑ)

ϱ (ϑ3, ϑ)

ϱ (ϑ4, ϑ)

ϱ (ϑ5, ϑ)

ϱ (ϑ6, ϑ)

ϱ1

0.7326

0.6496

0.7206

0.6741

0.6468

0.6373

ϱ2

0.8612

0.8466

0.8506

0.8322

0.8276

0.8205

ϱ3

XXX

XXX

XXX

XXX

XXX

XXX

ϱ4

0.8251

0.7887

0.8233

0.7871

0.7751

0.776

ϱ5

0.2953

0.3485

0.2995

0.3506

0.3669

0.3658

ϱ6

0.6559

0.612

0.6535

0.6102

0.5951

0.5981

ϱ7

0.3916

0.2196

0.3497

0.2643

0.2116

0.1855

ϱ8

XXX

XXX

XXX

XXX

XXX

XXX

ϱ9

0.8482

0.8199

0.8359

0.8226

0.8183

0.8086

ϱ10

0.8119

0.8151

0.8195

0.8365

0.8192

0.8221

ϱ11

0.8996

0.8413

0.9386

0.7454

0.7405

0.6992

ϱ12

0.3131

0.3277

0.321

0.3148

0.2943

0.276

ϱ13

0.6767

0.417

0.7393

0.4639

0.2719

0.1951

ϱ14

0.2896

0.1917

0.3291

0.2186

0.123

0.0838

ϱm

0.9125

0.9145

0.91

0.912

0.905

0.904

Table 8. Ranking of the medical equipment obtained by the proposed and existing SMs The Best Candidate

Doc

ϱ1

ϑ1

0.2372

ϱ2

ϑ1

0.0873

ϱ3

XXX

0.4301

ϱ4

ϑ1

0.1211

ϱ5

ϑ1

0.14

ϱ6

ϑ1

0.1422

ϱ7

ϑ1

0.5597

ϱ8

XXX

22.8696

ϱ9

ϑ1

0.1019

ϱ10

ϑ1

0.0371

ϱ11

ϑ3

0.767

ϱ12

ϑ3

0.0925

ϱ13

ϑ3

1.6719

ϱ14

ϑ3

0.7388

ϱm

ϑ2

0.03

The similarity of each candidate with the standard is evaluated using both existing and proposed SMs. The results are tabulated in Table 7. 

Table 7 displays the values of the SMs for the employees compared to the standard, using both the existing and proposed SMs based on their attributes. The ranking of the medical equipment based on these values is provided in Table 8. 

It is cleared from Table 8, the candidate ϑ1 is obtained by using the SMs ϱ1, ϱ2, ϱ4, ϱ5, ϱ6, ϱ7, ϱ9, ϱ10 the candidate ϑ1 is obtained by using the SMs ϱα. Some SM not given the answer. The ranking is also geometrically represented in Figure 2. 

5 Conclusions

In this study, new SMs are defined for SFS to evaluate the similarity between two SFVs. The newly defined SM

for SFS generalizes the existing SMs by introducing parameters. The mathematical work and subsequent discussion demonstrate the viability and adaptability of the proposed SM. The limitations of the existing SMs for SFS have also been discussed. The following steps are discussed:

The proposed SM satisfies the axiom (S2), which ensures that the proposed SM avoids counterintuitive situations where ϑ = Φ implies ϱ(ϑ, Φ) = 1, a condition not met by some existing SMs. 

The proposed SMs are based on the parameters α1, α2 and α3, giving decision-makers the flexibility to choose the values of these parameters independently. In this scenario, decision-makers can select appropriate values for the parameters α1, α2, α3 to obtain a sensible SM that aligns with the current leadership style and decision-making environment. 
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The proposed SM is capable of providing reliable and sensible decision-making results. It not only has a high level of credibility but can also address dynamic problems that current SMs cannot resolve, yielding reasonable decision outcomes. Therefore, the proposed SM is both practical and adaptable. 
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Abstract: The Spherical Fuzzy Set (SFS) framework extends the Picture Fuzzy Set (PFS) concept, offering enhanced
precision in handling data characterized by conflict and uncertainty. Furthermore, similarity measures (SMs) are
crucial for determining the extent of resemblance between pairs of fuzzy values. While existing SMs evaluate
similarity by measuring the distance between values, they sometimes yield results that are illogical or unreasonable,
due to certain properties and operational complexities. To address these anomalies, this paper introduces a parametric
similarity measure based on three adjustable parameters (a1, az, a3), allowing decision-makers to fine-tune the
measure to suit various decision-making styles. This paper also scrutinizes existing SMs from a mathematical
standpoint and demonstrates the efficacy of the proposed SM through mathematical modeling. Finally, we apply the
proposed SM to tackle Multi-Attribute Decision-Making (MADM) problems. Comparative analysis reveals that our
proposed SM outperforms certain existing SMs in the context of SFS-based applications.

Keywords: Fuzzy set; Spherical fuzzy set; Similarity measure; Multi-attribute decision-making
1 Introduction

Information extraction and analysis from real-life problems are full of vagueness and uncertainties. Several
attempts have been introduced to reduce this uncertainty. A famous way to reduce uncertainty was introduced by
Zadeh by introducing the concept of the fuzzy set (FS) [1]. This concept is a generalization of the crisp set, describing
the belongingness of an object with the help of the membership degree (MD). By generalizing the concept of the
fuzzy set, Atanassov attempted to further reduce uncertainty by introducing the concept of intuitionistic fuzzy sets
(IFS) [2], in which he described the belongingness of an object by both MD and non-membership degree (NMD).
To achieve greater accuracy during information extraction, Atanassov [3] formalized the interval-valued IFS by
considering MD and NMD as intervals from [0,1]. IFS has been used by researchers in various fields, such as pattern
recognition [4], decision making [5], and medical diagnosis [6]. IFS had a limited range for assigning values to the
MBD o()) and NMD ~/(A) because the sum of the MD and NMD did not necessarily equal 1. The limitations of IFS
were expanded by the ideas of the Pythagorean fuzzy set (PYFS) [7] and the g-rung orthopair fuzzy set (QROFS) [8],
respectively.

The applications of IFS, PYFS, and qROFS have great potential in practical scenarios due to their ability to reduce
vagueness in information extraction. However, in some instances, these tools could not extract information without
some loss, as they account for only two degrees for the description of an element. To address this limitation and
describe an object’s belongingness with three degrees, Cuong [9] introduced the concept of picture fuzzy sets (PFS),
which include an additional degree known as the abstinence degree (AD). The PES has been used by many scholars
for example, in the work [10]. But some time the concept of PFS failed when 0 < pua (o()),i(A),7/(\) < 1
violated. For example, the values of the MD, AD and NMD are 0.8, 0.2 and 0.4 respectively. In this case the
pua(o(A),i(A),7'(\)) = 1.4 £ 1. The PFS, while useful, had its limitations. To broaden the scope of PFS,
Mahmood et al. [11] introduced the concept of Spherical Fuzzy Sets (SES) and the Total Spherical Fuzzy Sets
(TSFS). TSFS, being the latest framework, is designed to extract information with higher accuracy.
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