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Abstract: Remote sensing plays a crucial role in disaster management. Moreover, its effectiveness is severely
limited due to operational, technological and environmental challenges. Data acquisition can be disrupted by sensor
limitations and by extreme events or natural factors, such as cloud cover. In fact, high-resolution imagery often
requires significant processing time, specialized expertise and expensive infrastructure. Therefore, ensuring timely,
accurate and accessible remote sensing data at all stages—preparedness, response, recovery and mitigation—is a
major challenge. This study explores the application of multi-criteria decision making (MCDM) techniques using
bipolar fuzzy numbers (BFNs) to evaluate this. We apply the weighted and ranking MCDM method, i.e., Method
Based on the Removal Effects of Criteria (MEREC) and Multi-Attributive Border Approximation Area Comparison
(MABAC), respectively, in this paper. The decisions of multiple decision makers (DMs) are considered when
collecting this problem related data and BFNs are utilised as mathematical tools to handle uncertainty. In order to
address the ambiguity and inconsistency of the system, we finally conclude to conduct the comparative and sensitivity
analyses here with the final result.

Keywords: Remote sensor; Disaster management; Bipolar fuzzy numbers; Method Based on the Removal Effects
of Criteria; Multi-Attributive Border Approximation Area Comparison

1 Introduction

A remote sensor is a device that collects information about an object or event, mainly from a distance. For
example, they can detect reflected or emitted energy from satellites or aircraft. The seven steps of remote sensing are
energy source, radiation, and atmosphere, interaction with the target, recording of energy by the sensor, transmission,
reception, processing, interpretation, analysis and application. These steps help to cover the entire process, from the
initial energy source to the final use of the information obtained. Five common types of sensors are temperature,
proximity, pressure, motion, and light sensors. They measure physical properties such as heat, detect the presence
of objects, monitor the pressure of liquids, detect movement, and sense ambient light levels. Sensors are generally
of two types, namely active and passive. Active sensors emit their own energy to collect information. They project
energy (such as lasers or sound waves) onto an object and then accurately measure the reflected energy. For example,
a sonar device on a ship sends out sound pulses to map the ocean floor. On the other hand, passive sensors, on
the other hand, record natural energy reflected or emitted from the Earth’s surface. The most common source
of radiation they detect is sunlight. For instance, a satellite camera can capture images of the Earth’s surface by
reflecting sunlight.

1.1 How Does a Remote Sensor Work

Remote sensors work by detecting energy reflected or emitted from objects without direct physical contact.
They use active or passive methods to measure energy by collecting information about physical properties such

https://doi.org/10.56578/jemse050102
10


https://www.acadlore.com/journals/JEMSE
https://crossmark.crossref.org/dialog/?doi=10.56578/jemse050102&domain=pdf
https://orcid.org/0000-0001-7179-984X
https://orcid.org/0009-0001-1972-6536
https://orcid.org/0000-0003-4690-2598
https://orcid.org/0000-0001-7200-4180
https://doi.org/10.56578/jemse050102
https://doi.org/10.56578/jemse050102

as temperature, composition or distance. This is usually in the form of electromagnetic radiation. In fact, in this
method, they detect natural sunlight or heat (passive sensing), as well as transmitting their own energy, such as radar
or laser pulses (active sensing). Then, when this energy interacts with the ground, it is reflected, absorbed or emitted
differently by different objects. The sensor accurately measures these differences using specialized detectors. This
collected energy is converted into digital signals. These are mainly sent to ground stations for processing. Then,
through correction and enhancement, these are converted into usable images or maps. Finally, analysts interpret
these products to extract information for applications such as disaster management, agriculture or environmental
monitoring.

1.2 Challenges of Remote Sensing for Crucial Role in All Phases of Disaster Management

Remote sensing faces several challenges in fulfilling its important role at all stages of disaster management.
Various natural factors, such as cloud cover, smoke and bad weather, often block optical sensors. This results in
reduced timely visibility during critical incidents. Moreover, rapid response is required during limited satellite
re-imaging, which can delay data availability. On the other hand, high-resolution data and advanced sensors are
very expensive and limited, which severely limits access for many organizations. The need for skilled personnel
is essential to address this complex process, which slows down analysis. Again, integrating multi-sensor data such
as optical, Synthetic Aperture Radar and Unmanned Aerial Vehicle imagery can be technically difficult. Ground
verification during disasters is often limited, which affects accuracy. Finally, in a rapidly changing disaster situation,
providing clear and actionable information to decision makers (DMs) remains a challenge.

1.3 Motivation and Objectives

Understanding the challenges of remote sensing in disaster management is crucial. Because accurate and
timely information directly impacts life-saving decisions. Identifying these limitations can improve the acquisition,
processing, and distribution of information in real time. It also inspires the development of advanced technologies,
sensor fusion, and management strategies. Ultimately, addressing these challenges strengthens preparedness,
response, and recovery efforts for safer and more resilient communities.

The following are the study’s primary objectives:

1. Understanding about the concept of remote sensors;

2. Comprehending the importance of remote sensing in all phases of disaster management;

3. Identifying its challenges;

4. Studying different types of remote sensors;

5. Prioritizing the criteria by the MEREC based decision-making method for this paper;

6. Ranking of the best selected alternatives with MABAC based multi-criteria decision making (MCDM) method.

1.4 Research Outline

In this section, we develop the study’s research outline based on the above study and motivation. The primary
purpose of this study is to find out the main challenges of remote sensing for its crucial role in all phases of disaster
management. There are four criteria and four different alternatives that are different in the disaster management phase.
Two MCDM techniques, i.e., Method Based on the Removal Effects of Criteria (MEREC) and Multi-Attributive
Border Approximation Area Comparison (MABAC), are selected as optimization tools and bipolar fuzzy numbers
(BFNs) are appraised as ambiguous tools. Data are gathered in an impartial way and the result is numerically
computed. Lastly, comparative analysis and sensitivity analysis are conducted to check the stability and robustness
of the proposed model.

1.5 Structure

The research’s structure is explained in this portion. The introduction of this study is discussed in Section
1. Then, Section 2 includes the literature review on different perspectives of this study. After that, Section 3
and Section 4 discussed the preliminaries of mathematical tools and MCDM techniques, respectively, in detail.
Criteria selection and alternative selection are briefly discussed in Section 5 and Section 6, respectively. The model
formulation and data collection are illustrated in Section 7. The numerical illustration and discussion are described
in Section 8. Additionally, the study’s comparative analysis and sensitivity analysis are briefly examined in Section
9. Furthermore, the research implications of this research are discussed in Section 10. Lastly, the conclusions and
the scope of future research are described in Section 11.

2 Literature Survey

The background of this topic is briefly covered in this section. First, we provide a brief literature review of
remote sensing studies, followed by a survey of articles on BFNs, their analysis and applications. In addition, we
conducted a short survey on the MCDM processes with their utilization in our everyday life.
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2.1 Background on Application

Remote sensing began in the 19th and 20th centuries with early aerial photography [1], later expanded to satellite-
based sensing after the launch of Landsat-1 in 1972, which revolutionized Earth observation. Remote sensors are
devices that detect and measure energy reflected or emitted from objects on the Earth’s surface without direct
contact. They operate in different parts of the electromagnetic spectrum—such as visible, infrared, thermal and
microwave-which allows them to capture a variety of information about land, water, atmosphere, and vegetation. In
addition, remote sensors can play an important role in fields such as disaster management, agriculture, environmental
monitoring, climate studies, and urban planning because of their ability to provide large, timely and accurate data.

Here, we review recent publications on remote sensing from different perspectives. These are, mathematical
models with various methods for remote sensing image analysis [2], discussion of various mathematical models
of geometric correction applied to remote sensing images [3], application in remote sensing [4], utilising remote
sensing for any type of mathematical modelling [5], talk about on several remote sensing platforms and sensors [6],
remote sensing with the cryosphere [7], various applications on remote sensing [8], some fundamentals of remote
sensing [9], different application of remote sensing [10], the contribution of remote sensing to the scale issue [11],
neural networks in remote sensing [12].

2.2 Background of Mathematical Tool

A BFN extends the traditional fuzzy number by representing both positive and negative dimensions of satisfaction
simultaneously. The concept of bipolar fuzzy sets, from which BFNs are derived, was introduced by Zhang [13]
in 1994. Unlike classical fuzzy numbers that use a single membership function, BEN uses two functions, namely,
a positive membership and a negative membership, which indicate support and opposition, respectively. This
dual representation allows for richer modelling. It is essential for MCDM, sentiment evaluation, and uncertain
environments. Therefore, BFN serves as a key mathematical tool for capturing complex bipolar information in
decision systems. Here, we will study the research papers that have already been published related to BFNs.
These are, diagnosis by bipolar fuzzy electre-eye method [14], use in group decision making [15], a computational
framework for cognitive modeling and multiagent decision analysis of Bipolar fuzzy sets (BFS) and its relations [16],
bipolar fuzzy metric spaces with its proper application [17], structure of regular bipolar fuzzy graphs [18], required
solution of fully bipolar fuzzy linear programming models [19], solve linear system of equations in bipolar fuzzy
environment [20].

2.3 Literature of MCDM Approaches

An MCDM method is a structured approach to making a choice from multiple alternatives when faced with
multiple, often conflicting, criteria. It is actually about finding the weights of the criteria and ranking the alternatives
to solve a given problem. This decision-making method is applied to deal with uncertain environments. It
helps in solving complete decision-making problems in real life with great ease. There are different types of
MCDM methods, such as Analytic Hierarchy Process [21], Entropy [22], Technique for Order Preference by
Similarity to Ideal Solution [23], Criteria Importance Through Intercriteria Correlation [24], Complex Proportional
Assessment [24, 25], Step-wise Weight Assessment Ratio Analysis [25], MEREC [26], MABAC [27], Decision-
Making Trial and Evaluation Laboratory [28], Vlsekriterijumska Optimizacija Kompromisno Resenje [29], Data
Envelopment Analysis [30], Measurement of Alternatives and Ranking according to COmpromise Solution [31],
etc. Among them, MEREC and MABAC have been used in this paper. Here is a brief discussion of some of the
already published papers on these two methods.

The MEREC approach was invented by Keshavarz-Ghorabaee et al. [32]. Some studies applied this method
in various areas, including: finding the weights of element [26], developing fuzzy extension with the help of
parabolic measure and its applications [33], evaluating objective weights in decision making problems in uncertain
environment [34], assessing enterprise that based on Decarbonization Scheme with Grey-MEREC-MAIRCA (Multi-
Attributive Ideal-Real Comparative Analysis) Hybrid MCDM Method [35], choosing a perfect renewable energy
source in India [36], selecting optimal Spray-Painting robot [37], effectively solving Forklift Selection problem [38].

Pamucar and Cirovi¢ [39] developed the MABAC methodology in 2015. Here are some papers on these
approaches. These are, the literature review of MABAC methodology for sustainability and circularity [40],
bibliometric analysis of various MCDM methods [27], an innovative multi-criteria integrated supplier selection
model [41], ranking of green universities with the help of MCDM process [42], evaluating the best E-Commerce
platform for online business [43], preference for high-performing work systems [44], find the best input factors for
Powder-Mixed Electrical Discharge Machining 90CrSi tool steel [45], perfect material selection with incomplete
weight information [46].
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3 Preliminaries of Mathematical Tools

Preliminaries of mathematical tools are presented in detail in this section. In this study, we consider fuzzy
sets [47] as a tool of uncertainty. The fuzzy set was invented by Zadeh [48] in 1965. The definitions and properties
of fuzzy sets and their extensions are discussed as follows:

3.1 Fuzzy Set and Fuzzy Numbers

In crisp set theory, every element either belongs to the set or does not belong to the set, but there are no
intermediate states. However, in the fuzzy set theory [49], every element may belong partially based on its degree of
belonging value. Every element of the fuzzy set is assigned a membership value that lies between [0, 1]. The fuzzy
set is defined as:

Definition 1. Fuzzy set [48]
Consider X to be a universal set of discourse. A fuzzy set denoted by F, define on X and define as:

F={(&nz9) :£cx} (1

where, 11 £ (&) represent the membership function of fuzzy set F with p 7:X = [0,1]forall{ € X.
Definition 2. a-cut of fuzzy set [50]

Consider X to be the universal set of discourse and & to be a fuzzy set defined on it. Then the a—cut of fuzzy set
(€.) is the collection of elements of fuzzy set € whose membership value (uz) are greater or equal to o (€ [0,1]),
ie.,

Ea=1{Cine(Q) 2 a k(e X} @)

Definition 3. Fuzzy number [51] 5
Assume the set of real numbers (R) to be a universal set of discourse. A fuzzy set £ is called fuzzy number, if it
define on R and satisfies following properties:

A. Fuzzy set (£) is normal, i.e., 3 ¢ € R such that p5(¢) = 1;
B. Support of fuzzy set (€) is bounded, i.e., Suport(é) ={C:ps(() >0&(CeR} CR;

C. Membership function (y15(¢)) of fuzzy set & is piecewise continuous;
D. Fuzzy set (£) is convex, i.e., gz (A1 + (1 — A)¢2) > min{pz(¢1), pg(Ce)} for arbitrary ¢1,¢2 € R and
A€ 0,1].

3.2 BFS

BFS was first introduced by Zhang [52] in 1994. BFS is an extension of fuzzy sets where two membership
values are assigned to every element in the set [53]. The first membership function represents the satisfaction and
the second membership function describes the violation of the elements in the BFS. The definitions and properties
of BFS are described as follows:

Definition 4. BFS [54]
Let Y be the non-empty universal set. A bipolar fuzzy set B define on ) and define as:

B={(¢nug(0),vs(Q): ¢ eV} ©)

where, j1;5 be the positive membership function z15(¢) : Y — [0,1] and v be the negative membership function
pg(C) : ¥ — [—1,0], respectively.

Remark 1. In a fuzzy set, every element has exactly one membership function to describe the belongingness of
the element in the set. However, in a bipolar fuzzy set [53], every element has two membership values to represent
a more specific position in the set, the first positive membership function (y.;3) describes the belongingness of the
element in the set and the second negative membership function (/3) shows the non-belongingness of the element
in the set, respectively.

Example 1. Consider X = [r/2,7] to be a universal set of discourse. Then a bipolar fuzzy set A define on
[/2, 7] and define as:

A= {(n,sin(n), cos(n)) : 1 € [1/2,7]}

In the bipolar fuzzy set A, the positive membership function s i(n) : [m/2,7] — [0, 1] and negative membership
function yu 4(n) : [7/2, 7] — [—1,0] forall n € [7/2, 7].
Definition 5. k-cut of bipolar fuzzy set [55]
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Consider C to be a bipolar fuzzy set defined on the universal set ). Then the k—cut of the bipolar fuzzy set C is
defined as:

G, = G né;
= {C: () = k&eC € VYN {C: wp(0) < —h&eC € V)

where, CN,j = {¢:pz(¢) > k & ¢ € Y} is the positive k—cut and (fk_ = {¢:pz(¢) > k & ¢ € Y} is the negative
k—cut of the bipolar fuzzy set C with k € [0, 1].

“

3.3 Bipolar Triangular Fuzzy Number (BTFN)

This section discusses the BTFN [56] in detail. In the BTFNs, the membership functions are triangular in shape.
The BTEN can be defined as follows:
Definition 6. BTFN [55]

Consider the set of real numbers R to be a universal set of discourse. A BTFN is definedas 7~ = {(& s (8),v7(8))s
(A, B™,CP,D")} with the positive membership function (p+(¢)) and negative membership function (v+(§))
defined as:

&Ar sAl<e<or At Al<e<Br
pi(€) = prdr CP <6< D" and vz(€)) = { 55 s Br << D" (5)
0 ; otherwise 0 ; otherwise

where, Al, B™,C?, D" are real numbers with increasing order, i.e., (Al <B"<(CPL D).

Remark 2. To maintain the text limit and reduce computational complexity a BTFN T = {(¢, +(€), v+()) ;
(A',B™,CP,D")} can be written as T = {¢& (Al B™,CP,D")}.

Example 2. Assume the set of real numbers R to be a universal set of discourse. A BTFN is defined as
S = {(r,p5(7),v5(7));(3,5,6,8)} with the positive membership function (u5(7)) and negative membership
function (vg(7)) defined as:

3
|
w
w
|
3

ps(r)) =4 5% ;6<7<8 vi() =q 5% :5<7<8
0 ; otherwise 0 ; otherwise
and
5 3<7<6 RN
= S*TT ;6 <7 <8 = TT*S ;b<T7<8
0 ; otherwise 0 ; otherwise

where, 3, 3, 6, 8 are real numbers (R) with increasing order, i.e., (3 <5 < 6 < 8).

(0,0) é1 &2

Figure 1. Geometric representation of bipolar triangular fuzzy number (BTFN)

The graphical structure of a BTFN is presented in Figure 1. The upper half shows the positive membership
function and the lower half shows the negative membership function, respectively.
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Definition 7. N0rmali~zed BTEFN [55, 56]
Assume a BTEN S = {(&, ng(£),vg(€)); (AL, B",C?,D")} defined on the set of ral numbers (R). Then the
normalized BTEN (S") is evaluated as:

5 Al Br cr D
5 ={(ens@rsens (5 o o 20}

= {(f,ug(ﬁ)ﬂ/s‘(@) ; (glw %’ %’ 1>}

3.4 Arithmetic Operations on BTFNs

6)

Arithmetic operations on BTFNSs are defined in this section. Since BTFNs have no order relation, the arithmetic
operation on BTFN is defined for various operations.

Assume that S = {5; (AZ,B",CP,DT)} and T = {f; (E', Fm, GP,HT)} are two BTFNs and ) is a scalar
number. Then the arithmetic operations [55] on BTFNs are defined as:

A. Addition of two BTFNs:

SoT={&A +E,B"+F",CP +G?,D" + H")} (7
B. Subtraction from BTFN to BTFN:
SeT={&A -H",B"-GP,C? — F", D" — E')} (8)
C. Scalar multiplication of BTFN:
AxS={&Ax ALAX B" A x CP, A x D")} 9)
where, A is a non-negative scalar (> 0).
AxS={&Ax DA CP A x B", A x A1)} (10)

where, )\ is a negative scalar (< 0).
D. Multiplication of two BTFNs:

SoT ={¢(A'E,B"F",CPG”, D"H") } an

where, A! and E' are two non-negative (> 0) real numbers.
E. Scalar power of BTFN:

S = {& (A (B (CP* (D)) } (12)
where, A is a positive scalar.

3.5 De-Fuzzification of BTFN

De-fuzzification is a numerical process that crispifies fuzzy numbers, since there is no order relation on them.
Several defuzzification formulas have been proposed in previous studies. In this research, we proposed a new
de-fuzzification formula to crispify the BTFNs [57, 58]. The proposed de-fuzzification formula is presented as
follows:

Definition 8. De-fuzzification of BTFN [58]
Let a BTFN be defined as 7 = {(&, u+(€), v4(€)) ; (A}, B",CP?, D")} on the set of real numbers (R). Then

the de-fuzzification of BTFN & (7‘) is evaluated by Eq. (13), as follows:

- 2x A4+ 3x B"+3xCP+2x D"
’(7)- ;
Example 3. Consider a BTFN (I{) is defined as U = {(, j1;3(7), v;3(7)) ; (2,5,6,9)} defined on the set of real

numbers (R). Then the de-fuzzified value of BTEN I/ is:

g(d):2x2+3x5+3x6+2x9
10

74+15+18+187§755

N 10 10 7
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4 Proposed Methodology

This section discusses the mathematical methods of two MCDM methods [59] used in the BTFN environment,
namely MEREC and MABAC. MCDM is a popular optimization technique for dealing with multiple conflicting
criteria and alternatives. First, describe the MEREC method for evaluating the weights of criteria and the MABAC
method for ranking alternatives are further disclosed.

4.1 MEREC Method

In 2021, Keshavarz-Ghorabaee et al. [32] first represented the MEREC method. It is an objective process for
analysing the weights of factors [37]. With this important process, this methodology is used to objectively find
perfect criterion weights by measuring how the removal of each criterion affects the total decision performance.

The mathematical procedure of the MEREC method is formulated here. There are Q number of criteria and P
number of alternatives are considered for the numerical process. R number of DMs give opinions based on their
knowledge and experience, in an unbiased way. All the data are expressed in linguistic terms and further converted
to Triangular Type-2 Fuzzy Number (TT2FN) using a conversion table. The decision matrices are formed in P x Q
order. The numerical procedure of the MEREC method proceeds as follows:

Step A. Structured the decision matrices (Z):

Select the criteria and alternatives based on the literature survey and detailed discussion with decision experts.
There are Q number of criteria and P number of alternatives considered for this study. Further R number of decision
experts are given opinions for decision matrix construction. Therefore, R number of decision matrices structured
with P x Q order in linguistic terms and then transferred into a BTFN using Table 1.

Table 1. Conversion table between linguistic terms and Bipolar Triangular Fuzzy Numbers (BTFNs)

Linguistic Terms BTFN De-Fuzzified Value
ER HAZAG (g)) (7,9,10,12)} 9.5
SR {(&n f uTG €));:(6,8,9,11)} 8.5
HR {(&n f ) (5,7,8,10)} 7.5
MR {(&n ) ), (4,6,7,9)} 6.5
WR {(¢ Nn &), vz (9); 3568} 5.5
BR {(g n, (€),v7,(€))5(2,4,5,7)} 4.5
LR {(& 13,9, v, (s)) (1,34, 6>} 3.5

Note: ER = Extremely Relevant; SR = Strongly Relevant; HR = High Relevant; MR = Moderate Relevant;
WR = Weekly Relevant; BR = Below Relevant; and LR = Low Relevant.

The decision matrix in BTFN given by kth DMs is . and formulate as:

(1) (P (%15) (Z10)k |
(PBo1)k  (PBaz)k (B2 (AB20)k

2= @B (B .. B .. (Fiak (14)
(Foon (@ . G e (Broli] g

where, (32”, j )i is the opinions of ith alternatives with respect to jth criteria in BTFN by kth DMs, withj = 1,2,...,Q,
i=1,2,...,Pand k =1,2,..., R, respectively.
The i ]th coefﬁment of the dec151on matrix (Zy) is %i; )k in a BTFN is formed as:

(), = ({ (s 105, ) ;(Ez,FaGp,HT)}U)k .
= { (Tz‘jvw,é,:j (7i5), vz, (Tz‘j)) ; (El7FnaGp,HT)z'j}k
where, j =1,2,...,9,i=1,2,...,Pandk=1,2,..., R.

Step B. Determine the aggregated fuzzy decision matrix (@) ~
The aggregated fuzzy decision matrix (2) evaluated from all the R number of decision matrices (Zj;) by using
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Eq. (16), as follows:

@ - [QU}PXQ

~|{ (s, (ovs, ) (8 P )|

PxQ (16)
R R
= { (7-7 ,u@,] (T)a ngij (7—)) ; <k—1lgl7n,73 {E}é} 7kH F]?, klI GZ’ k:IlI}QE?X,R {H}:}) }
=1 =1

il pxg
where, j =1,2,...,Q,i=1,2,...,Pandk=1,2,...,R.
Step C. Evaluate the uniform fuzzy decision matrix (7"): ~

Determine the uniform fuzzy decision matrix (2*) from the aggregated fuzzy decision matrix (Z) by normalizing
every entry of the modified decision matrix. The uniform fuzzy decision matrix (2*) is formulated as:

g =25
TIPxQ
- [{ <T’ H g (T)? Vgu (T)) / ) (El7 F",GP, Hr)u} . :|
¥ ¥ 1) PXQ
u u u u nu u Tuw 17
= [{ (Tijvﬂgé?j (%‘j):%@gj (7'1;)) ; (Ezl'jan'j 7ij 7H1',j )}]ng {17
lu _ pl= pnu_ pl= qPv _ pl= pgru_ pi=
- {(u@ (78 (71 ( 2 A R e s E) }
Y Y Hy" =By Hy" By Hj" — By Hi" - Ej i) pxo
Eé_ = min {Ef;
i=1,2,...,P e .
where, — withj=1,2,...,Qandi=1,2,...,P.
H]— = max {Hl’“j“
i=1,2,...,P

Step D. Calculate the de-fuzzified decision matrix (2):

The uniform fuzzy decision matrix (Z") is transferred into a de-fuzzified decision matrix (2) by de-fuzzifying
every entry of it. The BTFN is de-fuzzified using Eq. (13) and the de-fuzzified decision matrix (&) constructed as
follows:

2 = Bijlpyo (18)

where, j =1,2,...,Qandi=1,2,...,P.
Step E. Evaluate the overall performance (9);) of each alternative:
Calculate the overall performance (90t;) of each alternative () by using Eq. (19), as follows:

Q
> In(l— %ij)
=1

Mm; = 5

(19)
where, 1 =1,2,...,P.

Step F. Determine the performance of the alternative (91;;) by eliminating each criteria:

The performance of the alternative value (91;;) is evaluated from the de-fuzzified decision matrix () for each
entry (ij) by using Eq. (20). The performance of the alternative value (91;;) calculate as follows:

Q
2. In(1—By)
Ny = I 0)

where, 7 =1,2,...,Qandi=1,2,...,P.

Step G. Evaluate the aggregated of the absolute deviations (O;):

Calculate the aggregate of the absolute deviations (O;) for every criteria (j) from the performance of the
alternative (91;;) and the overall performance (9);) values by using Eq. (21), as follows:

P
;= |9y — M| (21)

i=1
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where, j =1,2,...,0.
Step H. Determine the weight of the criteria (20,):
The weight of the criteria (20,) is evaluated by normalized deviation value (D) as follows:

O,

W, = —5——— (22)
! ZJ‘Q:1 O;

where, j =1,2,...,0.

Finally, the optimal weight of the criteria (20,) is given by Eq. (22) using the fuzzy-based MEREC methodology.
These criteria weights are operational in further ranking techniques. The MEREC algorithm in the TT2FN
environment is presented in Algorithm 1.

Algorithm 1 Method based on the removal effects of criteria (MEREC) algorithm in triangular type-2 fuzzy number
(TT2FN) environment

Require: decision matrices (Zy)

Ensure: Q number of criteria, P number of alternatives and R number of decision experts
aggregated fuzzy decision matrix (2)
uniform fuzzy decision matrix (Z*)
de-fuzzified decision matrix ()
performance of the alternative value (91;;)
aggregated of the absolute deviations ()
weight of the criteria (20,)
while £k < R do

determine 7
fori <Pandj < Qdo
evaluate 7
calculate 7
determine 91,
calculate
for j < Qdo
evaluate O ;
determine 20
end for
end for
end while

4.2 MABAC Method

MABAC method was introduced by Pamuéar and Cirovié¢ [39] in 2015. The fuzzy set integrated with the
MABAC method can make the model more reliable and evaluate the result optimally. This desicion maling MABAC
method [46] is used to rank the selected alternatives in MCDM by measuring their distances from a defined border
approximation area (BAA).

The numerical procedure of the MCDM-based MABAC method is presented in this section under a TT2FN
environment. There are Q number of criteria, P number of alternatives and R number of DMs who give opinions
based on their knowledge and experience. Therefore, the decision matrices are constructed into P x Q order in
linguistic terms and further converted into TT2FN using conversion Table 1. The fuzzy MABAC method is processed
as follows: _

Step 1. Constructing the decision matrices (Z):

Criteria and alternatives are chosen based on a detailed literature review and consultation with the decision
experts. The decision matrices are structured in the P x Q order in linguistic terms and converted to a BTFN using
a conversion table. The decision matrix (.@k) given by the kth DMs in linguistic terms and further converted into
BTFN is shown in Eq. (14) of Step A in the MEREC method.

Step 2. Evaluating the aggregated decision matrix (2): ~

All the kth number of decision matrices (%) are aggregated into a single aggregated decision matrix (2) using
Eq. (16), shown in Step B of the MEREC method. _

Step 3. Determine weighted aggregated decision matrix (£):

The weighted aggregated decision matrix (@E’ w) evaluated from the aggregated decision matrix (@) in Eq. (16)
and the criteria weights (20;) in Eq. (22) using scalar multiplication of BTFN defined in Eq. (9). The weighted

18



aggregated decision matrix (&) is structured as

(gaw = [(g};} = [QBJ X f@ij} (23)
PxQ PxQ

where, 7 =1,2,...,Qandi=1,2,...,P. _

Step 4. Calculating unified weighted decision matrix (£"):

The unified weighted decision matrix (é “) is calculated by normalizing every element from the weighted
aggregated decision matrix (67’ v, using Eq. (17), described in Step D of the MEREC method.

Step 5. Determine the de-fuzzified decision matrix (£):

Now, de-fuzzify the unified weighted decision matrix (&™) and evaluate the de-fuzzified decision matrix (&)
using the de-fuzzification formula defined in Eq. (13).

Algorithm 2 Multi-attributive border approximation area comparison (MABAC) algorithm in triangular type-2 fuzzy
number (TT2FN) environment

Require: decision matrices (Zy)
Ensure: O number of criteria, P num~ber of alternatives and R number of decision experts

aggregated fuzzy decision matrix (2)
weighted aggregated decision matrix (&)
unified weighted decision matrix (&)
de-fuzzified decision matrix (&)
border approximation area (BAA) value (%)
weight of the criteria (20,)
distance of alternative from BAA (.%;)
while £k < R do
determine 7
fori <Pandj < Qdo
calculate &
determine &
evaluate &
for ; < Qdo
determine .%;
calculate 20
for i <P do
evaluate .%;
end for
end for
end for
end while

Step 6. Calculate the BAA (%;):
The BAA value (.%;) of each criteria (j) is determined from the de-fuzzified decision matrix (&) using Eq. (24),
as follows:

F; = (24)
where, €;; is the ijth entry of the de-fuzzified decision matrix (&) with j =1,2,...,Qandi=1,2,...,P.
Step 7. Evaluating the distance (.%;) of alternative from BAA:
Find out the distance (.#;) of the alternative (i) from BAA (.%;) using Eq. (25), as follows:
Q
Fi=) (€~ F) (25)

where, %;; is the 7jth entry of the de-fuzzified decision matrix (&) withi =1,2,...,P.

Step 8. Rank the alternatives:

Finally, rank the alternatives based on the distance (.#;) of the alternative from BAA evaluated by Eq. (25) in
descending order. The higher the .%; value, the more prioritized the alternative is among the alternatives.
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Alternatives are ranked based on the relative distance values (.#;) of the alternative (¢) where i = 1,2,...,P,
from BAA and calculated using Eq. (25). The MABAC algorithm in the TT2FN environment is presented in
Algorithm 2.

5 Criterion as Remote Sensing Challenges in Disaster Management

Due to limited real-time data, atmospheric interference, and resolution constraints that affect timely and accurate
decision-making, remote sensing faces different challenges in disaster management. Moreover, high costs, data
processing complexity, and sensor limitations hinder rapid analysis and effective disaster response. Selecting criteria
is the most important, as well as a complex task to be done through evaluation with extreme consideration. The
following criteria are based on a range of publications and resources on the difficulties associated with remote sensing
in disaster management. The final decision on the collection of criteria will be finalised through deliberations of
wise DMs.

5.1 Data Resolution and Accuracy (C4)

Data resolution [60] and its accuracy are vital in remote sensing. They regulate the comprehensiveness, accuracy
and reliability of the information used in disaster management. Spatial resolution mainly helps in classifying
small features such as dented buildings or flood-affected areas. On the other hand, temporal resolution ensures
timely warnings during disasters as well as frequent monitoring for updates. Again, spectral resolution allows the
identification of particular conditions, such as moisture levels in burned areas, and radiometric resolution increases
the ability to detect subtle changes in intensity. High accuracy ensures that mapped locations and measurements truly
represent ground reality. Together, high-quality resolution and accuracy enable rapid assessment, precise mutilation
estimation and effective decision-making supporting all phases of disaster management preparedness, early warning,
response, and recovery.

5.2 Limited Real-Time Data Availability (C2)

Limited real-time data [61] availability remains a major challenge in the use of remote sensing for effective disaster
management. The main reason for this is that satellite revision times and sensor delays often pose significant barriers
to the timely capture of rapidly changing events [62]. Various natural barriers, such as cloud cover, atmospheric
disturbances, and technological limitations, can further limit access to immediate data at critical moments. Moreover,
high-resolution real-time imagery is very expensive and not always accessible to all agencies, creating gaps in
monitoring. Data processing and transmission bottlenecks create difficulties in emergency situations by slowing
down rapid interpretation. This reduces situational awareness and limits the effectiveness of early warning. Overall,
the lack of immediate, continuous data undermines decision-making during the preparation, response, and recovery
phases, making it crucial.

5.3 High Cost of Data and Technology (C3)

The high cost of data and technology poses a significant challenge in effectively using remote sensing at all
stages of disaster management [63]. Advanced sensors, high-resolution imagery, and dedicated satellites require
high financial investments. Developing countries have to bear the premium datasets required for accurate monitoring
in disaster-prone areas. Data licensing, use of hardware and specialized software increase these costs and limit their
accessibility. Ground station maintenance and infrastructure processing further increase these costs. Moreover,
skilled personnel are also required for this work. These financial constraints delay the timely acquisition and
analysis of necessary information. As a result, DMs rely on low-quality data, which reduces the accuracy of disaster
assessments. Ultimately, high costs limit the widespread and equitable use of remote sensing for effective disaster
preparedness, response, and recovery, making it important.

5.4 Lack of Technical Expertise and Infrastructure (C})

The effective use of remote sensing at all stages of disaster management [64] is severely hampered by a lack
of infrastructure and technical knowledge, as specialist personnel are required to operate sensors, manage complex
datasets and interpret imagery accurately. Many regions lack trained personnel due to high costs, leading to delays
and errors in data analysis. Various inadequate infrastructures, such as limited computing power, inadequate internet
connectivity, and outdated software, severely limit the smooth operation of large remote sensing datasets. These
are hampered by the lack of proper training and equipment. This gap weakens early warning systems and hampers
rapid response. This is a long-term plan, which also affects post-disaster recovery assessments. Finally, limited
expertise and weak infrastructure reduce the reliability and efficiency of remote sensing in supporting disaster-related
decisions, so it is necessary to consider this.
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6 Alternative as Different in Disaster Management Phase

Remote sensing is crucial in disaster management as it provides rapid, accurate information for hazard assessment
and large-scale monitoring of affected areas. Its timely information helps in better decision-making at the preparation,
response, recovery and mitigation stages. Different options at each stage of disaster management, such as prediction
and early warning, preparation, response, recovery, mitigation, etc., help DMs choose the most effective strategy for
risk reduction. The five options are discussed in detail below.

6.1 Disaster Prediction and Early Warning (D7)

Disaster forecasting [60, 65] and early warning through remote sensing play a vital role in disaster management at
all levels. These satellites and sensors provide continuous monitoring of environmental patterns. Moreover, changes
in weather, land conditions and ocean parameters are detected, which remote sensing can predict hazards such as
cyclones, floods, droughts and landslides [66]. This timely forecasting can issue early warnings to the authorities.
And, therefore, communities can be prepared in advance. In many cases, it is seen that high-resolution imagery
signals emerging threats, and rapid detection of these anomalies becomes necessary. Moreover, remote sensing
also enhances situational awareness during disasters, which is much needed. Subsequently, it helps to refine future
forecasting models by assessing the impacts. In simple terms, it improves reaction, recuperation, and readiness by
making proactive, well-informed judgements.

6.2 Disaster Preparedness (D2)

By offering precise baseline data on sensitive locations, population distribution, and climatic conditions, remote
sensing-assisted disaster preparedness is essential to all stages of disaster management [67]. High-resolution satellite
data helps identify risk zones for floods, landslides, cyclones, and wildfires, enabling better planning and resource
allocation [68]. Mapping evacuation routes, shelter locations, and vital infrastructure is made easier with the help of
remote sensing. Continuous monitoring allows authorities to track changes in land use, vegetation, and water bodies
that may increase future risks. These insights help develop effective preparedness plans and mitigation strategies.
Training and drills can be improved using realistic remote sensing—based simulations. So, remote sensing improves
community preparedness and lessens possible effects prior to a disaster.

6.3 Disaster Response (D3)

Remote sensing-assisted disaster response is essential for crisis management, as satellite and aircraft imagery
provide rapid, comprehensive assessments of impacted areas [67, 69]. Remote sensing helps identify damaged
infrastructure, blocked roads, flooded zones, and areas requiring immediate rescue. It makes it possible for rescuers
to effectively deploy relief teams and prioritise resources. Real-time or near-real-time data improves situational
awareness when ground access is limited or dangerous. Thermal and radar sensors assist in locating survivors,
monitoring fires, and tracking ongoing hazards. Remote sensing also supports communication and coordination
among agencies by offering a common visual reference. These capabilities significantly speed up decision-making
during critical hours. All things considered, it improves precision, security, and efficiency throughout the catastrophe
response stage.

6.4 Disaster Recovery and Mitigation (D)

In order to restore impacted areas and lower future risks, remote sensing-assisted disaster recovery and mitigation
are essential. Post-disaster imagery helps assess the extent of damage to infrastructure, agriculture, and natural
resources, enabling accurate planning for reconstruction [70]. Remote sensing tracks changes in land use, soil
moisture, and vegetation recovery, guiding long-term restoration efforts [71]. It also identifies hazard-prone zones
that require structural improvements or relocation. Authorities can assess the success of prior mitigation efforts by
comparing data collected before and after the event. Remote sensing supports designing better flood control systems,
landslide prevention structures, and resilient infrastructure. These insights strengthen community resilience and
reduce vulnerability to future disasters. In general, it guarantees well-informed choices for both long-term mitigation
planning and recovery.

7 Model Formulation and Data Collection

This section presents the model formulation and data collection for the proposed remote sensor for the crucial
role model. There are four criteria and four alternatives are considered on the basis of a detailed discussion of the
literature survey on this topic and consulting with the decision experts. Hierarchical structure of the proposed remote
sensors model is presented in Figure 2. Then the decision matrices are structured in a 4 x 4 order, with linguistic
terms provided by DMs who are professional, experienced, knowledgeable and unbiased in their fields. All the DMs
are selected as follows:
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DMI1: An associate professor from the department of management with more than 10 years of experience;

DM2: A senior social science researcher from the crisis management department with more than 5 years of

experience;

DM3: A social worker working with a Non-Governmental Organization (NGO) for more than 15 years.

Figure 2. Hierarchical structure of the proposed remote sensors model

Alternative

Table 2. Decision matrices in linguistic terms given by three decision makers (DMs)

Data Limited High Cost of Lack of
Resolution Real-Time Technical
Criteria vs. Alternatives and Data Tle):l:f::ll(:d Expertise and
Accuracy Availability (Cs) 8 Infrastructure
(C1) (C2) 3 (Ca)
Disaster Prediction and
Early Warning (D1) ER SR LR WR
DM, Disaster Preparedness (D) SR ER BR WR
Disaster Response (D3) HR HR LR BR
Disaster Recovery and
Mitigation (Dy) HR MR HR SR
Data Limited Lack of
. . High Cost of .
Resolution Real-Time Technical
Criteria vs. Alternatives and Data T]z:l::ll:lzd Expertise and
Accuracy Availability (Cs) gy Infrastructure
(Ch) (C2) 3 (Cy)
Disaster Prediction and
Early Warning (D) ER ER LR LR
DM, Disaster Preparedness (Ds) HR SR LR WR
Disaster Response (Ds3) SR SR WR LR
Disaster Recovery and
Mitigation (Dy) SR MR SR HR
Data Limited Lack of
. . High Cost of .
o . Resolution Real-Time Data and Techfncal
Criteria vs. Alternatives and Data Technolo Expertise and
Accuracy Availability (Ca) gy Infrastructure
(Cy) (Cs) s (Ca)
Disaster Prediction and
Early Warning (D) SR SR BR LR
DM Disaster Preparedness (D2) SR HR BR LR
Disaster Response (D3) ER ER BR BR
Disaster Recovery and SR MR HR HR

Mitigation (Dy)

Note: ER = Extremely Relevant; SR = Strongly Relevant; HR = High Relevant; MR = Moderate Relevant;
WR = Weekly Relevant; BR = Below Relevant; and LR = Low Relevant.



The DMs are given their opinions in linguistic terms in decision matrices, which are then converted into BTFNs
using Table 1. The de-fuzzified values of the BTFNs are calculated by using Eq. (13) and presented in the
conversion table. The decision matrices given by the three DMs are shown in Table 2 and further applied in
numerical computation in the later section.

8 Numerical Illustration and Discussion

This section presents a numerical illustration of the proposed finding the challenges of remote sensing for a crucial
role in all phases of the disaster management model. There are two MCDM-based optimization methodologies used
to calculate the results in a BTFN environment. First, we evaluate the criteria weights using the MEREC method
and rank the alternatives using the MABAC method. The numerical computations were processed as follows:

The weight of the criteria is determined by using the MEREC technique, as discussed in Section 4.1 under the
BTFN environment, described in Section 3. The dataset i~s considered from the decision matrices given by three
DMs and presented in Table 2. The decision matrices () are converted from linguistic terms to BTFN using
Table 1. Fourth, aggregate the decision matrices (%) and build a single fuzzy decision matrix (2) using Eq. (16)
and determine the uniform aggregated fuzzy decision matrix (9“) with the help of Eq. (17), respectively. After that,
the de-fuzzified decision matrix (2) is calculated using Eq. (13) and presented in Table 3. Then, we determined
the overall performance of each alternative (9Jt;) by Eq. (19) and showed it in Table 4. Further, the performance of
the alternative (91;;) by eliminating each criteria are evaluated by Eq. (20) and presented in Table 5. After that, the
aggregate of the absolute deviations (9) is calculated using Eq. (21) and shown in Table 6. Finally, the weight of
the criteria (20;) is evaluated for the criteria of different challenges of remote sensing in the disaster management
model using Eq. (22) and presented in Table 6.

From the MEREC method and Table 6, we conclude that the criteria Limited Real-Time Data Availability (Cs)
gets the maximum weight and the criteria Data Resolution and Accuracy (C7) got the second maximum weight
for this model. Then, the criteria Lack of Technical Expertise and Infrastructure (C4) and High Cost of Data and
Technology (C3) are the second-least and least-weighted criteria for this study, respectively. Figure 3 represents the
Pie diagram of the criteria weights using the fuzzy MEREC method. The weights of the criteria are further utilised
in the ranking method sections.

The ranking of the different disaster management phases as alternatives is evaluated by the MABAC method,
as described in Section 4.2 unde~r the BTFN environment, which is discussed in Section 3. All the datasets are
presented in decision matrices () in linguistic terms and later converted into BTEN using the conversion table.
Then determine the aggregated decision matrix ( 2 ) by using Eq. (16) from .. Furthermore, evaluate the weighted
aggregated decision matrix (&) from & and criteria weight (20;) by scalar multiplication of BTEN defined in Eq.
(23). Further, calculate the unified weighted decision matrix (@E" “) using Eq. (17) and de-fuzzified decision matrix
(&) using Eq. (13) and presented in Table 7, respectively. Then determine the BAA (.%;) of each criteria (j) using
Eq. (24) and shown in Table 8. Then the distance (-#;) of the alternative from BAA is calculated by Eq. (25) and
shown in Table 9. Finally, the total distance (.#;) of each alternative from BAA is calculated by Eq. (25) and ranked
then in descending order. The ranking of the alternatives based on corresponding .%; values is presented in Table 10.

From Table 10, we conclude that the Disaster Recovery and Mitigation (D, ) disaster management phase is optimal
according to the proposed model. Further, Disaster Prediction and Early Warning (D) and Disaster Response (Ds)
are the second and third optimal disaster management phases. Finally, the Disaster Preparedness (Ds) occupied the
least optimal phase in the MABAC method for disaster management. The graphical representation of the evaluated
results is presented through a Bar diagram with .#; values in Figure 4.

Table 3. De-fuzzified decision matrix (2)

Criteria vs.
Alternatives
Disaster Prediction and
Early Warning (D)
Disaster fgef;aredness 0442 0560 0308  0.364

2
Disaster Response (D3) 0.497 0.560 0.345 0.308

Disaster Recovery and
Mitigation ( Dy ) 0442 0313 0.689  0.689

(& C Cs Cy

0.585 0.612 0.288 0.324
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Table 4. Overall performance value (90t;) of each alternative

Disaster

" Disaster Disaster Disaster
. Prediction and
Alternative Early Warnin Preparedness  Response Recovery and
y( D)) 8 (D2) (D3) Mitigation (D)
1
M; value -0.639 -0.556 -0.575 -0.824

Table 5. Performance of the alternative (91;;) by eliminating each criteria

Criteria vs. Alternatives Cq Csy Cs Cy
Disaster Prediction and Early Warning (D1) -0.419  -0.403 -0.554 -0.541
Disaster Preparedness (D2) -0.410 -0.351 -0464 -0.443
Disaster Response (D3) -0403 -0.370 -0.469 -0.483
Disaster Recovery and Mitigation (D) -0.678 -0.730 -0.531 -0.531

Table 6. Criteria weight evaluated using fuzzy Method Based on the Removal Effects of Criteria (MEREC)

Criteria 2; Weight
Data Resolution and Accuracy (C) 0.683 0.263
Limited Real-Time Data Availability (C5) 0.740 0.285
High Cost of Data and Technology (C'3) 0.575 0.222
Lack of Technical Expertise and
Infrastructure(Cy) 0.595 0.230

Table 7. De-fuzzified weighted decision matrix (&)

Criteria vs. Alternatives Cq Csy Cs Cy
Disaster Prediction and Early Warning (D) 0.585 0.612 0.288 0.324
Disaster Preparedness (D-) 0.442 0.560 0.308 0.364
Disaster Response (D3) 0.497 0.560 0.345 0.308
Disaster Recovery and Mitigation (D) 0442 0313 0.689 0.689

Table 8. Border approximation area (BAA) (.%;) value

Disaster Prediction Disaster Disaster Disaster
Alternative and Early Warning Preparedness Response Recovery and
(Dy) (D32) (D3) Mitigation (D,4)
M; value 0.488 0.495 0.381 0.398

Table 9. Distance (.#;) of alternative from border approximation area (BAA)

Criteria vs. Alternatives Cy C, Cs Cy
Disaster Prediction and Early Warning (D) 0.097 0.117  -0.093 -0.074
Disaster Preparedness (D) -0.046  0.065 -0.073 -0.034
Disaster Response (D3) 0.009 0.065 -0.036 -0.090
Disaster Recovery and Mitigation (D) -0.046  -0.182  0.308 0.291

Table 10. Alternative ranking with associate data determined using fuzzy Multi-Attributive Border Approximation
Area Comparison (MABAC) technique

Criteria 57 Rank
Disaster Prediction and Early Warning (D)) 0.047 2
Disaster Preparedness (D) -0.088 4
Disaster Response (Ds3) -0.052 3
Disaster Recovery and Mitigation (D) 0.371 1
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Figure 3. Pie diagram of the criteria weight by fuzzy Method Based on the Removal Effects of Criteria (MEREC)
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Figure 4. Bar diagram of the alternative ranking based on .#; values

9 Comparative Analysis and Sensitivity Analysis

This section discusses on comparative analysis and sensitivity analysis in detail to verify the stability and flexibility
of the evaluated results.

9.1 Comparative Analysis

Comparative analysis was conducted on this section based on two MCDM methodologies to examine the results’
flexibility and robustness. The Weighted Aggregated Sum Product Assessment method [72] and the Combined
Compromise Solution method [73] are two MCDM-based ranking methods that were invented by Zavadskas et
al. [74] in 2012 and Yazdani et al. [75] in 2019, respectively. The ranking of the alternatives is presented in Table 11.

Table 11. Comparative analysis on three different multi-criteria decision making (MCDM) methods

Multi-Attributive Border Weighted Combined
Alternative Approximation Area Aggregated Sum Compromise
Comparison (MABAC) Product Assessment Solution
Disaster Prediction and ’ ) 2
Early Warning (D)

Disaster Preparedness (D2) 4 4 4
Disaster Response (D3) 3 3 3
Disaster Recovery and 1 1 |

Mitigation (Dy)

From Table 11, we can easily see that the ranking of the alternatives remains unchanged across three MCDM-
based ranking methodologies. This implies that the ranking of the alternatives for evaluating different challenges in
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remote sensing across all phases of disaster management is optimal compared to the different methods. Therefore,
Disaster Recovery and Mitigation (Dy) is the most preferred alternative and the remaining are present in the table.
A comparative ranking analysis of the alternatives using different methods is graphically shown in Figure 5.

2
3

CoCoSo
a4 WASPAS

MABAC

Disaster Prediction and Disaster Preparedness Disaster Response (D3) Disaster Recovery and
Early Warning (D1) (D2) Mitigation (D4)

Figure 5. Comparative ranking of the alternatives by three multi-criteria decision making (MCDM) methods

1
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3
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Disaster Prediction and Early Disaster Preparedness (D2) Disaster Response (D3) Disaster Recovery and Mitigation
Warning (D1) (D4)

E=Case 1 E=Case 2 emmProposed Method

Figure 6. Sensitivity analysis on two cases and compare with the proposed model

9.2 Sensitivity Analysis

Sensitivity analysis was conducted based on two scenarios to assess the stability and flexibility of the results.
Two scenarios are:

Case 1. Remove the criteria High Cost of Data and Technology (C5):

Since the criteria High Cost of Data and Technology (C3) may be less important in some situations and less
weighted criteria, we remove the criteria and evaluate the results based on the modified model. The results are
presented in Table 12.

Case 2. Remove the criteria Lack of Technical Expertise and Infrastructure (Cy):

The technical expertise and infrastructure may increase; therefore, the criteria Lack of Technical Expertise and
Infrastructure (Cy) we removed in the modified model. It’s also the 2nd least weighted criterion. The ranking of the
alternatives based on the new model is shown in Table 12.

Table 12 presents the sensitivity analysis for two cases and the proposed model. From the evaluated results,
Disaster Prediction and Early Warning (D;) becomes the most prioritized alternative, as in the proposed model,
Disaster Recovery and Mitigation (D) is in the optimal position. The remaining rankings are shown in the above
table and graphically picturised with the proposed model in Figure 6.
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Table 12. Sensitivity analysis based on two different cases

Alternative Case 1 Case 2 Proposed Method
Disaster Prediction and Early Warning (D) 1 1 2
Disaster Preparedness (D2) 3 4 4
Disaster Response (D3) 4 3 3
Disaster Recovery and Mitigation (D) 2 2 1

10 Research Implication

Remote sensing primarily faces challenges such as limited spatial and temporal resolution and delays in data
availability due to cloud cover. This helps to limit timely hazard detection. Furthermore, sensor variability, accuracy
issues, and difficulty in integrating multi-source information reduce reliability at the disaster stage. Furthermore,
high cost and the requirement of technical expertise hinder its effective use. Therefore, the difficulties in using remote
sensing to effectively deal with disasters at each specific stage have significant research implications in various fields,
such as:

1. Advanced hazard mapping and risk assessment as needed: High-resolution, multi-temporal satellite and
sky imagery creates more accurate exposure and enables vulnerability maps to improve pre-incident risk modelling
and planning.

2. Evidence-based rapid emergency response: The flood of near-real-time optical and Synthetic Aperture
Radar data after a natural disaster helps in rapid mapping of the extent of damage. This, in turn, allows for
prioritization of rescue, which is crucial for resource allocation.

3. Improved monitoring during reconstruction and recovery: Longitudinal remote sensing records help
researchers measure the trajectory of damage recovery. Additionally, remote sensing reconstruction results can be
used to identify secondary hazards, such as erosion and vegetation loss.

4. Al, fusion, and near-real-time analytics are catalysts for new approaches: The connection of remote
sensing with machine learning, data fusion (where, multi-sensor, in-situ and GIS) and cloud processing makes the
research methodology more automated, leading to scalable disaster analysis.

5. In terms of validity, quality and reproducibility requirements: Remote-sensing results need to be credible
in the context of high-level decisions. In that case, a robust research campaign is needed to standardize benchmarking
data, validation protocols, and reproducibility.

6. Research implications for policy and decision-support phenomena: Translational research is urgently
needed to transform remote sensing outputs into actionable decisions, increasing communication during times of
uncertainty, efficient workflows, and increasing local capacity.

11 Conclusions and Future Research Scope

Despite its great potential, remote sensing still faces obstacles such as resolution limitations, data latency, and
environmental constraints, which somewhat reduce its effectiveness in disaster management. In addition, integration
challenges and sensor inaccuracies make reliable multi-source analysis at all stages very difficult. Additional costs,
infrastructure, and technological capability gaps greatly limit its operational use. Therefore, in times of widespread
disasters, it is imperative to address these obstacles to fully utilize remote sensing as a timely, accurate, and
effective tool for management. The challenges of remote sensing, which plays a crucial role in all stages of disaster
management, are complex, as they involve many conflicting criteria.

In our problem, we want to find the most important criteria and determine an accurate ranking of different disaster
mitigation options. For this, we considered 4 criteria and their corresponding 4 alternatives. Here, two MCDM
methodologies, namely MEREC and MABAC, are used. Applying the MEREC approach, we have obtained the
criteria weight. After that, the MABAC method is used to rank the considered alternatives, which are alternative
mechanisms for various disaster mitigation. In this problem, we have also developed a new de-fuzzification of BTFN,
which is given in Eq. (13). After numerical calculations, we have obtained the result that “Limited Real-Time Data
Availability (Cs)” is the most weighted criteria and “High Cost of Data and Technology (C3)” is the least weighted
criteria. Besides this, ”Disaster Recovery and Mitigation (D,4)” got the first rank among all alternatives. Moreover,
in the comparative and sensitivity analysis, “Disaster Recovery and Mitigation (D,)” and “Disaster Prediction and
Early Warning (D1 )” rank first in this research work.

There are some limitations or constraints of this study which help to expand this work in future research. The
scope of possible future research is discussed below, i.e.:

1. We select four criteria with four alternative types to process this problem. We may consider many other
criteria and alternatives in future.
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2. More disaster mitigation processes and important criteria can be adopted for future analysis. We may expand
our overall dataset to ensure exact results.

3. Many other MCDM techniques can be used to determine criterion weights and rank alternatives.

4. Various fuzzy numbers, such as triangular, trapezoidal, pentagonal, hexagonal, heptagonal, intuitionistic, etc.,
can be considered to reflect the ambiguity of data collection. Furthermore, various de-fuzzification processes can
also be considered to obfuscate the considered fuzzy numbers.

5. For comparative and sensitivity analysis of the proposed model, more cases may be taken in future studies.
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