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Abstract: In the face of escalating resource scarcity driven by the consumption of non-renewable resources, the
industrial circular economy (ICE) emerges as a vital paradigm shift, pivotal for fostering resource-efficient societies
and ensuring national resource security. This integrative review aims to critically assess the evolution and challenges
inherent within the ICE over recent years, with a specific focus on the burgeoning role of machine learning (ML)
in this domain. By synthesizing extant literature, this examination reveals several key findings. Firstly, the ICE
significantly contributes to cost reduction through enhanced recycling and secondary utilization, underscoring its
environmental stewardship. Secondly, it is evident that ML exhibits substantial promise in the manufacturing sector,
not only augmenting production processes but also elevating product precision, reducing defect rates, and minimizing
the likelihood of production mishaps. Most crucially, the application of ML within the ICE is identified as a potent
catalyst, driving advancements across various facets - data analysis, model development, technological innovation,
and equipment refinement. This analysis further elucidates the intrinsic value of ML in resource recycling and
waste management, yielding improvements in resource recycling rates and methodologies, which in turn curtails
production costs and amplifies output efficiency. Despite the strides made in replacing traditional industrial models
with more sustainable ICE practices, challenges persist, particularly regarding the suboptimal levels of resource
recycling and the continued generation of industrial waste. The integration of ML within ICE frameworks is posited
as a transformative approach, offering not only enhanced resource recycling capabilities and superior product quality
but also a sustainable trajectory for future industrial development. This study, therefore, contributes to the growing
discourse on sustainable industrial practices, underscoring the synergistic potential of ML in revolutionizing the ICE,
thereby aligning with the broader objectives of sustainable economic development.
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1 Introduction

Industry has long been recognized as the primary catalyst for economic growth. The escalation of industrial
production correlates strongly with rapid national economic development and the enhancement of a country’s
economic prowess. However, the sustainability of this growth is increasingly challenged by the pressing issue of
resource limitations. In the context of escalating resource scarcity, the imperative to optimize product life cycles
has emerged as a critical concern, as delineated by Burggraf et al. [1]. The circular economy, as a novel paradigm
encompassing the social, environmental, and economic facets of sustainable development, presents a viable solution
to mitigate the resource constraints and socio-environmental ramifications inherent in the prevailing linear economic
model. This is substantiated by Guarnieri et al. [2], who highlight the circular economy’s effectiveness in addressing
resource scarcity. A key characteristic of this model is waste recycling, a practice facing significant challenges across
various global economies, both in developing and developed nations, as identified by Ansar et al. [3]. The ICE,
forming the nucleus of this broader circular paradigm, exerts a direct influence on a nation’s overall development
trajectory. This is particularly evident in energy-intensive industries such as steel, electricity, and cement. In these
sectors, even marginal enhancements in resource utilization efficiency and recycling levels can yield substantial
improvements in economic benefits and the lifecycle of production processes.
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The role of circular economy in the transformation of industrial production has been extensively examined across
various sectors. In the textile industry, the paradigm shift towards a circular model is documented by Jia et al. [4],
while similar transitions in the leather industry are explored by Bai et al. [5]. The automobile sector, as detailed by
Zhao [6], and the steel industry, investigated by Liu et al. [7], also reflect significant strides in integrating circular
economy principles. Furthermore, the adoption of these practices within the field of chemical materials is articulated
by Yang et al. [8]. Parallel to these industry-specific studies, critical challenges in industrial production have also
been identified. These include continuous manufacturing processes, as discussed by Lim et al. [9], and concerns
surrounding economic security, highlighted by Lu et al. [10]. Energy transformation, a pivotal aspect in the current
ecological landscape, is analyzed by Xie et al. [11], while the enhancement of resource efficiency is scrutinized by
Chen et al. [12]. The pursuit of cleaner production methods is another area of focus, investigated by Lim et al. [13],
and the intricate processes of waste treatment are detailed by Yao et al. [14].

The utilization of ML presents a promising avenue for the future evolution of the ICE. One can envision an
ideal manufacturing scenario as a self-contained system equipped with assembly robots, IoT sensors, and a suite of
automated machinery. In this model, raw materials are introduced at one end, and finished products emerge seamlessly
at the other. The only human intervention required would be routine maintenance of the equipment. ML stands as a
pivotal tool in realizing this vision, offering insights into optimizing such a system. Given the burgeoning growth and
expansive potential of ML within industrial production, this study aims to conduct a thorough review of its application
in enhancing the ICE. This investigation not only outlines the development and current implementations of ML in this
context but also probes into prospective future directions and possibilities in the industrial realm. While this study
delineates the attributes of the ICE, elucidating the myriad strategies proposed by researchers to optimize it remains a
complex challenge. Through a comprehensive review of pertinent research in the field, this analysis seeks to refine the
understanding of the ICE. By engaging with the literature at its forefront, this study contributes to deepening the
knowledge base, thereby facilitating future advancements and optimization in the sector.

Figure 1. Keywords and combination of circular economy and ML in recent years

Figure 1 illustrates that, despite significant advancements within their respective domains, the intersection between
circular economy and ML remains relatively unexplored. The evolution of the circular economy is not only a
fundamental requirement for the establishment of a modern economic system but also plays a crucial role in shifting
development paradigms. It emerges as an inevitable strategy for reducing pollution and carbon emissions, fostering
green growth, and is a critical component in addressing climate change.

In an endeavor to delve deeper into this subject, this study has collated journal articles pertaining to circular
economy and ML published over the past two years. The search parameters included key terms such as “circular
economy + machine learning”, “industrial circular economy”, “intelligent manufacturing”, “industry 4.0”, and
“industry 5.0”. Post the exclusion of duplicate articles, news reports, conference proceedings, and work reports, a
total of 353 articles were selected for analysis. This investigation primarily focuses on high-frequency keywords,
employing the keyword co-occurrence method to identify and examine the focal areas and interconnections between
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ICE and ML. Table 1 shows the high-frequency keywords in the literature related to ICE and ML. The aim is to
clarify existing research trajectories, offer insights for advancing relevant studies, and assist in charting viable future
directions for the development of the ICE.

Table 1. High-frequency keywords of circular economy and ML

Serial Number Keyword Frequency of Occurrence
1 Sustainable resource management 54
2 Recovery management 53
3 Predictive analysis 51
4 Regression model 50
5 Big data 48
6 Sustainable 47
7 Utilization of resources 41
8 Quality management 39
9 Supply-chain 38

10 Production efficiency 35

The structure of this paper is outlined as follows. Following the introduction, Section 2 presents a comprehensive
overview of the circular economy. This includes its origins, evolution, and defining characteristics, along with an
examination of specific aspects pertinent to the ICE. Section 3 is dedicated to a critical review and synthesis of the
applications of ML within the ICE. In Section 4, the focus shifts to a discussion on the prospective future applications
of ML in enhancing the ICE. Section 5 anticipates potential future scenarios and challenges, based on the results and
application prospects discussed previously. The paper concludes with Section 6, which synthesizes the findings to
provide strategic guidance for future research and practical applications in this field.

2 Overview of Circular Economy
2.1 The Origin of Circular Economy

The concept of a circular economy encompasses an economic production model that emphasizes the reuse and
regeneration of resources to extract value, facilitate recycling, and minimize waste. This concept traces its origins
to the mid-1960s, with American economist Kenneth Polding pioneering the notion in his seminal work, “The
Economics of the Coming Spaceship Earth,” Polding’s metaphorical comparison of Earth to a spacecraft encapsulates
the essence of the circular economy. In his analogy, Polding posits that a spacecraft, constrained by limitations such
as distance, velocity, and human lifespan, is not capable of extensive universe exploration. However, by constructing
a significantly large spaceship equipped with a self-sufficient, closed-loop ecosystem, continuous processing and
utilization of all onboard resources, including astronauts’ waste, would be possible. This setup would enable astronauts
to live and explore the cosmos across generations. Similarly, Earth is likened to a vast spacecraft with finite resources
and a prolonged, but ultimately limited, lifespan. Polding cautions that without judicious use of these resources,
Earth’s reserves will inevitably deplete. Furthermore, Polding draws parallels between the relationship of humans
with the environment and that of a “spaceship” with its “crew”, underlining the intertwined fate within an ecological
economy. The finite resources and production capacity of Earth necessitate the establishment of a circular production
system, geared towards sustainability and resource conservation. The metaphor underscores the imminent risks of
unsustainable resource exploitation and environmental degradation, likening them to a spacecraft’s eventual crash. In
this context, the pursuit of a circular economy is presented not only as a sustainable development strategy but as an
imperative for human survival.

2.2 Characteristics of Circular Economy

The circular economy, as an emergent model of economic development, is distinguished by its unique characteristics,
which manifest in several key aspects. Firstly, the circular economy introduces a novel systemic perspective. This
system encompasses humans, natural resources, and science and technology, forming an integrated whole. Within
this framework, individuals are encouraged to perceive production and consumption not as external activities, but as
integral components of this larger system, aligning economic principles with objective natural laws. Secondly, the
circular economy adopts a fresh economic paradigm. Rooted in ecological principles, this approach advocates for
economic development that respects and operates within the ecological carrying capacity, ensuring that resource
utilization does not exceed nature’s regenerative capabilities. Thirdly, the circular economy is underpinned by new
value systems. These values call for the preservation of a healthy ecosystem cycle, considering the role of science
and technology in ecosystem restoration, and promoting human development in harmony with nature. This holistic
approach aims to foster a balanced coexistence between human progress and the natural world. Fourthly, the circular
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economy redefines the concept of production. Production processes are reimagined to prioritize the conservation
of natural resources, enhancement of resource utilization efficiency, and promotion of resource recycling. The
effectiveness of these practices is measured through various indicators, including final disposal rates, actual recycling
rates, waste energy recovery rates, resource recycling rates, and resource productivity. This approach seeks to achieve
a sustainable and rational utilization of resources [15]. Finally, the circular economy revolutionizes consumption
concepts. Advocating for moderate and tiered material consumption, this model emphasizes the importance of
integrating waste recycling into consumption processes, thus establishing a comprehensive cycle of production and
consumption that is both sustainable and efficient.

2.3 Circular Economy and Industrial Production

The ICE, pivotal for the inclusive and sustainable development of nations and regions, embodies a vital condition
for progress. It synergizes economic growth with environmental stewardship, thereby emerging as a focal point in
development strategies across numerous countries and regions. This prioritization reflects a global recognition of the
necessity to balance economic advancement with ecological sustainability.
2.3.1 The operation mode of ICE

Contrasting markedly with the linear economy’s unidirectional ‘resource-product-waste’ flow, the ICE eschews the
inefficiencies where unutilized resources transition to waste, consequently consuming vast resources and precipitating
environmental pollution. In this alternative model, the emphasis is placed on maximizing reuse across resources,
products, and waste, striving to unearth their potential for repeated utility [16]. As delineated in Figure 2, the
ICE commences with resource extraction from nature for product fabrication. These products, once their lifecycle
culminates in scrapping or disposal by consumers, are not relegated to waste. Instead, they undergo classification and
decomposition, reentering the cycle as resources, or are treated to revert back to natural resources.

Figure 2. Process of ICE

2.3.2 Technical basis of ICE
The technological underpinnings of the ICE can be primarily categorized into three domains: cleaner production

technology, waste utilization technology, and pollution treatment technology. Cleaner production technology
encompasses methods that substantially reduce or even eradicate the generation of pollution and its toxicity. Waste
utilization technology entails processes that facilitate the recycling and reuse of materials within the production
cycle. Meanwhile, pollution treatment technology is concerned with methods addressing pollution generated
throughout the entire production process [17]. It is imperative, however, that the technologies underpinning the ICE
continue to evolve and progress. Future developments in this realm ought to focus more intensely on addressing
challenges and overcoming existing limitations. This includes advancements in areas such as new energy and
separation technology [18], and the enhancement of intelligent manufacturing technology alongside refined production
modes [19]. The sustained evolution and breakthroughs in these technological spheres are essential for ensuring the
viability and continued progression of the ICE.
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3 ICE and ML

As industrial digitization advances, the prevalence of machine-assisted production in industrial manufacturing is
increasing markedly. This shift plays a pivotal role in enhancing the productivity of manufacturing enterprises and
in shaping future production strategies. This section delves into the critical function of ML in bolstering industrial
production, with a specific focus on its contribution to the advancement of the ICE. Pertinent literature on this subject
is also reviewed, offering a comprehensive understanding of the interplay between ML and industrial practices.

3.1 Data Analysis

ML possesses the capability to swiftly process extensive datasets, extracting trends, rules, and patterns critical for
informing enterprise decision-making. Leveraging data support, businesses can craft production strategies aligned
with emerging trends, dynamically adjust outputs, and mitigate losses stemming from either overproduction or
supply shortfalls. A prerequisite for ensuring predictive accuracy involves identifying key variables influencing
production, such as meteorological conditions, environmental factors, policy shifts, or fluctuations in resource
availability. Employing ML to analyze substantial datasets facilitates the derivation of relevant predictive models.
Production plans calibrated based on these models can lead to significant resource conservation [20]. Nonetheless,
the efficacy of these models necessitates validation, particularly in assessing the impact of the identified variables and
the accuracy of the predictive outcomes. Addressing these challenges remains a pertinent area for future research,
which this discussion does not explore in depth.

3.2 Prediction and Planning

ML offers strategic planning and decision-making support for the ICE, with decision trees being one of the most
prevalent methods employed. A decision tree is a tool for risk assessment and feasibility evaluation of projects. It
is constructed to calculate the probability that the expected net present value will exceed zero, based on known
probabilities of various scenarios. The decision tree methodology encompasses three core steps: feature selection,
decision tree construction, and pruning of the decision tree. This approach identifies information that maximally
reduces uncertainty by analyzing the variability of random variables under specific conditions, thereby aiding
decision-makers in formulating informed decisions and plans [21]. ML, in tandem with decision trees, enables
manufacturers to navigate complex and dynamic environments, making informed decisions to minimize resource use
and reduce costs. The features and applications of the decision tree are illustrated in Figure 3.

Figure 3. Features and applications of decision tree

3.3 Automation

ML enables enterprises to automate their production processes, enhancing efficiency, minimizing resource
consumption and waste, and fostering the development of a circular economy. In the context of an escalating consumer
economy globally, there is a growing demand for higher production efficiency in workshops [22]. However, many
factories continue to rely on a blend of outdated equipment and manual labor. This mode of production is not only less
efficient, but as production technology advances and the demand for precision in products increases, the drawbacks of
manual labor become increasingly evident. Automation, powered by ML, addresses these shortcomings effectively.
It offers workers intuitive human-computer interaction and can adapt to various production processes with agility.
Moreover, automated production can mitigate issues such as low efficiency, high defect rates, and safety risks in
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manufacturing [23]. Consequently, this shift not only boosts production efficiency and safety but also reduces losses
and pollution, playing a significant role in the economic advancement of businesses.

3.4 Intelligent Manufacturing

ML plays a pivotal role in realizing intelligent manufacturing, a process that significantly reduces resource waste
and enhances resource utilization through automated and intelligent production methods. Intelligent manufacturing
represents a new generation of industrial technology, globally acknowledged as a key driver in transforming and
upgrading industrial systems. In response to the rapid evolution of emerging technologies, several countries
have initiated strategic plans to foster and develop intelligent manufacturing. Notable examples include the ‘Re-
industrialization’ initiative of the United States, Japan’s ‘New Robot Strategy’, Germany’s ‘Industry 4.0’, and ‘Made
in China 2025’. At the heart of intelligent manufacturing lies the product life cycle value chain. This approach
leads to the establishment of intelligent factories characterized by dynamic sensing, real-time analysis, autonomous
decision-making, and precise execution capabilities. These factories are designed for intelligent production, aiming to
achieve efficient, high-quality, low-consumption, environmentally friendly, and safe manufacturing and services. This
approach significantly contributes to the advancement of the ICE [24, 25]. The impact of intelligent manufacturing
on the ICE is illustrated in Figure 4. Additionally, Table 2 presents a review of literature focusing on the key roles of
ML within the ICE.

Figure 4. Intelligent manufacturing and ICE

Table 2. The application of ML in ICE

Researchers Application
Domain

Effects Pros

Data Analysis

Ahmed et al. [26] Petroleum and gas Ensure production safety,
reduce costs

Automate the processing of
targeted survey data

Li et al. [27] Aircraft fuel-system Guide maintenance through
data analysis

Avoid the loss caused by
untimely maintenance

Li et al. [28] Blast furnace-
ironmaking Processing huge and complex Adjust the mode of production,

save costs

Saco et al. [29] Energy development
Provides the best-solution to-
explore hidden knowledge-

from the generated data

Improve the utilization
efficiency of -alternative -energy

sources and reduce costs

Mowbray et al. [30] Industrial process
detection Monitoring product quality Reduce production defect rate

Forecaste and Plan

Deffrennes et al. [31] Metal-liquidus Provide a general framework
for predicting binary liquidus

Optimizing the design and
processing of materials

Osei et al. [32] shear-critical RC beams
and slabs

Provide well-informed-
decisions for RC -damage

assessment

Accurately predict critical
values and reduce waste

Yang et al. [33] Biodiesel production

Leverage the accuracy and-
credibility of machine-

learning to make informed
decisions

Improve the conversion rate and
utilization of resources
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Researchers Application
Domain

Effects Pros

Amini et al. [34] Wind turbine

Predicts the probability of
failure and reduces
troubleshooting and

diagnostic time

Prolong machine life and reduce
scrapping

Gahm et al. [35] Metal-working industr
Adjust the upper and lower

decision-making in the -
hierarchical plan

Plan ahead and verify credibility

Automation

Kamm et al. [25] Industrial automation Processing heterogeneous
data

Provide promising solutions and
methods

Gloeser-Chahoud et al. [36] Electric vehicle battery
Accelerate the industrial

cycle of waste batteries with
automation

Accelerate the recovery and
utilization of resources, while-

reducing environmental-
pollution.

Kumar et al. [37] Waste recovery
Solve the possible hazards

when recycling waste
through automation

Accurately classify the
recovered materials to increase

the recovery cost

Alejandrino et al. [38] Economic transition

Automation is the most
ecological and efficient
solution for economic

transformation.

Provides a reference for the
transformation of industrial-
linear economy to circular

economy

Al Shahrani et al. [39] Industrial automation

Improve industry’s ability to
control and monitor the-

industrial environment with
machine learning and -

automation

Reduce major risk management
and inefficiency of traditional

processes

Li et al. [40] Industrial automation

Design a reliable, efficient
and automated defect-

detection system to achieve-
full automation

Automatic defect detection and
reduced material loss

Intelligent Manufacturing

Poschmann et al. [41] Intelligent robot Using intelligent robots to
participate in production

Robots will make optimal
decisions according to different
situations to maximize the use

of resources

Xu et al. [42] Cement production
Adjust production capacity to

save costs and reduce
emissions

Intelligent adjustment combined
with data, while optimizing the

production process

Chand and Ravi [43] Disassembly sequence
planning

Optimal disassembly
sequence is obtained by

machine planning

Reducing the ecological and
economic impact of products in

the remanufacturing industry

Turner et al. [44] production process
optimization

Using machines to provide-
workers with decision-

making or physical activities

Rapid decision-making while
improving the sustainable reuse

of resources

4 Application Prospect
4.1 Product Design and Production

ML offers transformative solutions for designing greener and more sustainable products in the circular economy, achieved by
accurately predicting market demands and optimizing production processes.

The strength of ML lies in its capability to assimilate vast amounts of historical data through sophisticated algorithms,
subsequently developing empirical models that can guide production. A prime example is demand forecasting. Zhao et al. [45]
utilized extensive user data from home appliance manufacturers to create ML models. These models predict future customer
demands and consumption behaviors. Through these predictive insights, manufacturers are empowered not only to fine-tune
their production plans but also to grasp customer behavior. This understanding enables them to design highly personalized
products, optimizing resource utilization. It also facilitates anticipating product use, thereby enabling timely product recycling
and accelerating resource circulation. Another critical application of ML in the ICE is the optimization of production processes.
Modern products often entail complex production steps with varied standards and requirements. ML utilizes previous production
experiences to gain a holistic view of the industry. It meticulously controls factors such as production temperature, duration, and
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environmental humidity, thereby pinpointing optimal process conditions. This approach ensures maximum resource utilization
while enhancing product quality and production rates [46].

While ML has the potential to significantly impact production and the ICE, many models face challenges due to the involvement
of numerous variables, limiting their practical application. However, as more industries begin integrating ML into their production
processes, we can anticipate further development and exploration of the ICE, propelled by ML innovations.

4.2 Energy Management
ML offers innovative solutions for intelligent energy management within the circular economy, achieving energy conservation

and emission reduction by optimizing energy consumption and enhancing efficiency.
Energy is fundamental to modern society. In recent decades, the world has witnessed a rapid surge in energy consumption,

fueled by population growth and increasing demands for comfort. Without effective energy-saving strategies, this trend could
severely impact the environment and deplete resources. Grim et al. [47], Amasyali and El-Gohary [48] utilized ML to forecast
energy consumption, providing valuable insights for energy utilization and planning. As the depth of study into ML expands, its
methods are increasingly recognized as the most suitable for achieving accurate predictions. In this context, Olu-Ajayi et al. [49]
employed ML techniques to develop efficient energy usage models. These models not only facilitate more effective energy use but
also empower workers to make informed decisions. Further, numerous scholars have applied ML technologies to maximize the use
of renewable energy sources, thereby substituting non-renewable options. This shift not only reduces production costs but also
encourages resource recycling and sustainability [50].

4.3 Sustainable Supply Chain
ML can significantly enhance the sustainability of enterprise supply chains by optimizing and real-time monitoring of raw

material usage, production processes, and product transportation.

Figure 5. Application examples of ML in supply chain

In the rapidly evolving information age, the efficacy of supply chain ecosystems is increasingly critical for the manufacturing
industry. However, many enterprises face challenges such as low operational efficiency in supply chains, high logistics costs,
fragmented information across upstream and downstream channels, and a lack of coordination. Furthermore, decision-making
processes in supply chains often lack intelligence, agility, and flexibility, making it difficult to manage sudden risks. Govindan and
Hasanagic [51] emphasized the significance of supply chains in the circular economy of the manufacturing sector, exploring the
driving forces, hurdles, and practices influencing circular economy implementation within supply chain contexts. Building on
this, Nascimento et al. [52] developed a business model focused on reusing and recycling waste materials, leveraging ML and
circular economy principles. ML is also instrumental in understanding causal relationships within circular supply chains and
comprehensive resource management, leading to effective frameworks for a sustainable circular supply chain [53]. By harnessing
rich qualitative data through ML, models can be established and validated to integrate network technology, reincorporate waste into
the supply chain, manufacture products on demand, and enhance business sustainability. Moreover, ML facilitates the planning of
multifaceted and cross-industrial supply chains, thereby extending sustainable practices across various sectors and promoting a
global circular economy [54]. Figure 5 shows an application example of machine learning in supply chain.

While industrial production supply chains face numerous challenges, these also represent opportunities. Global economic
integration and liberalization policies have enabled manufacturing enterprises worldwide to participate in constructing ’world
factories’ and global supply chain networks [55]. From a policy perspective, the efficiency and security of supply chains are
increasingly central. For intelligent manufacturing industries, prioritizing supply chain management is essential. In the future,
with the trend towards customized products, manufacturers must adapt to diverse customer needs, frequent production line changes,

129



and small-scale, varied production. This presents a significant challenge in balancing production flexibility and cost – an enduring
issue for supply chains. Addressing these challenges necessitates integrating supply chains with emerging technologies. Birkel
and Muller [56] explored the convergence of industrial supply chains and emerging technologies, highlighting vast potential for
the future. Their findings suggest that the integration of ML with supply chains still has significant untapped potential, offering
promising avenues for aiding the ICE.

4.4 Social Value
ML can significantly contribute to the circular economy by providing relevant educational and training resources, enhancing

environmental awareness and skills, and promoting circular economy development. It is also instrumental in evaluating the social
impact of circular economy initiatives, thereby offering a scientific basis for decision-making by governments and enterprises. Merli
et al. [57] conducted a comprehensive review of literature on the impact of the circular economy, observing that most studies only
marginally consider the social and institutional impacts. ML can aid industries in developing a hierarchical framework for assessing
management effectiveness, addressing policies related to reduction, reuse, and recycling, and ensuring the implementation of waste
minimization and resource recovery plans. Furthermore, Negash et al. [58] have developed an assessment framework specifically
for waste management in the construction industry. This framework continually provides standards for waste management, guided
by expert evaluations. It is important to note that as science and technology advance, the complexity and number of challenges
we face are increasing. Integrating ML into the circular economy to analyze and address these complex issues holds immense
potential for fostering human development and advancing the circular economy.

5 Future Work
The potential of ML in the ICE for sustainable development is immense. As explored and summarized in the initial sections,

numerous scholars have contributed significantly to the advancement of the ICE. They have identified existing issues and outlined
areas for future research. Ren et al. [59] delved into the future prospects of the circular economy and discovered its profound
interconnection with Industry 4.0 and sustainable development goals. In addressing the impending challenge of resource scarcity
and the consequent resource demands of future production, there is a pressing need for an effective integration of ML with the ICE.
This integration is vital to meet the stringent requirements posed by these challenges. Table 3 presents a summary of various
applications of ML in the industrial sector, along with anticipated trends in its future development.

Table 3. The application of ML in the industrial field and its future development trend

Application Domain In Use
Today

Change over the Next
Five Years

In Use in Five
Years

Predictive maintenance 28% +38% 66%
Big data driven process and quality

optimization 30% +35% 65%

Process visualization/automation 28% +34% 62%
Connected factory 29% +31% 60%
Integrated planning 32% +29% 61%

Data-enabled resource optimization 52% +25% 77%
Digital twin of the factory 19% +25% 44%

Digital twin of the production asset 18% +21% 39%
Digital twin of the product 23% +20% 43%

Autonomous intra-plant logistics 17% +18% 35%
Flexible production methods 18% +16% 34%

Transfer of production parameters 16% +16% 32%
Modular production assets 29% +7% 36%

Fully autonomous digital factory 5% +6% 11%

Several frontiers in the research of ML and its application in the ICE remain to be fully explored. Currently, the main focus is
on the lawful use of data, enhancement of production processes, improvement of product quality, and the comprehensive recovery
and utilization of materials. This section will concentrate on presenting significant cutting-edge advancements that address existing
challenges, thereby enhancing the practical application of ML in manufacturing. Additionally, we will briefly introduce some
promising avenues for future developments in this domain, highlighting directions that hold potential for significant advancements
in the field.

5.1 Data Collection and Processing
The utilization of ML in the ICE critically hinges on the handling of large datasets. Consequently, the forthcoming challenges

include the acquisition of extensive data for modeling, its reasonable use, and effective and correct data utilization [60].
With the enactment of the General Data Protection Regulations, users have gained unequivocal ownership of their data. This

regulation stipulates that any institution or organization cannot use a user’s data without explicit consent [61]. Furthermore, in
the processes of data formation, analysis, and utilization, issues such as data silos arise. These are often caused by asymmetry,
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redundancy, and other factors leading to closed or semi-closed data environments. These challenges result from a mix of subjective
initiative, technological limitations, policy environment, and system construction, impeding data communication within and
between enterprises, confining the data to their respective databases.

Federated learning represents a novel approach in ML, designed to address the challenges of data silos while safeguarding data
privacy. It involves a decentralized framework where multiple clients (such as mobile devices, institutions, organizations, etc.)
collaborate with one or more central servers. Hatzivasilis et al. [62] introduced a green blockchain model utilizing a federated
learning framework to foster a circular economy. Similarly, Li et al. [63] examined the feasibility and application prospects of
federated learning in various manufacturing industries. The potential synergy of federated learning with the ICE can enhance
data privacy and utilization while fostering a vast data-sharing network. However, challenges remain, such as the high energy
consumption associated with federated learning, which can adversely affect device battery life and risk sensitive information
leakage. Therefore, systems based on federated learning urgently require mechanisms to protect sensitive information effectively
while improving energy efficiency [64]. Another concern is the potential for participants with specific motivations to engage briefly
in the training process, gaining access to the global model while contributing minimally. This situation creates a fairness issue,
disadvantaging participants who have been involved more extensively in federated learning. Future developments must thoroughly
consider the performance, fairness, and security aspects of federated learning to optimize data collection and utilization [65].

5.2 Model Improvement and Supply Chain Improvement
ML models, primarily built on existing data, face the challenge of enhancing their effectiveness and generating additional

value. Incorporating expert knowledge and advice is a promising approach for model improvement. For instance, Moktadir et
al. [66] identified and assessed the key success factors for a circular economy, later validating these with expert insights. Similarly,
Hofmann and Jaeger-Erben [67] consulted numerous experts on various circular economy issues to develop a conceptual model.

In recent years, the intersection of Big Data and Industry 4.0 is poised to revolutionize traditional supply chains. However,
in the context of a circular economy, the sustainability of digital supply chains has not been adequately addressed. Patil et
al. [68] employed the fuzzy best-worst method to evaluate multiple factors impacting sustainable supply chains, as determined
by an expert group, ultimately identifying key elements crucial for sustainable supply chain development. These findings aid
stakeholders in strategizing and planning for digital supply chain transitions. Nevertheless, due to the complex nature of these
factors and challenges in precise assessments, the results are somewhat region-specific. Kumar et al. [69] utilized grey correlation
theory in evaluation laboratories to minimize uncertainties and ambiguities in expert judgments. Tseng et al. [70] introduced
and applied a hybrid methodology combining FDM and FDEMATEL, balancing subjective and objective considerations, and
converting qualitative data into fuzzy values for processing, thereby enhancing supply chain management. However, this research
is not without limitations. Firstly, the selection of criteria based on previous studies might not encompass all relevant factors,
necessitating the inclusion of additional variables. Secondly, the knowledge, familiarity, and judgment biases of experts can
somewhat skew conclusions, indicating the need for supplementary methods.

The insights and recommendations from experts are invaluable. In the future, refining ML models with expert opinions and
merging data analysis with expert knowledge can mitigate the subjectivity of conclusions, addressing more challenges within the
circular economy domain effectively.

5.3 Resource Utilization and Waste Management
The application of ML in the ICE primarily aims to enhance actual production processes. Lu et al. [71] proposed a practical

approach to recycle industrial products using ML. Baduge et al. [72] integrated ML to improve the entire production lifecycle. In a
similar vein, Rakhshan et al. [73] utilized supervised ML to facilitate the recycling of materials in industry, showcasing ML’s
ability to fully leverage resources for the development of an ICE. Additionally, ML can identify alternative materials to replace
non-renewable resources, thereby reducing resource consumption in production. However, these models and methods are still in
their infancy, and the resource issues can be further addressed by combining scientific research outcomes with ML.

Beyond resource utilization, ML also holds promise in waste management. Liang et al. [74] applied ML to predict waste
generation and characteristics, optimize waste collection and transportation, and simulate waste-to-energy processes. Velis et
al. [75] employed ML techniques, such as multivariate random forests and univariate nonlinear regression, to enhance urban waste
management. However, without new policies promoting decoupling, per capita waste production could increase substantially.
While prediction algorithms based on ML, diversified waste management frameworks, and data-driven waste management systems
can significantly advance the ICE, several limitations exist. Firstly, many waste management frameworks are incomplete and could
benefit from incorporating more comprehensive models for improvement. Secondly, numerous knowledge frameworks applied to
the circular economy often overlook the full industrial process, impacts on other stakeholders and society, and interactions with the
ICE, limiting their ability to identify waste reduction and resource efficiency opportunities. In the future, a more holistic approach,
integrating ML and artificial intelligence, is necessary for comprehensive consideration in this field.

5.4 Equipment Upgrade
ML’s role in the ICE extends beyond process improvement, offering significant contributions to production equipment. Khan

et al. [76] provide a value-added alternative to conventional equipment upgrades. Utilizing a resource-based perspective, their
approach enhances device performance to align with evolving customer preferences. Zacharaki et al. [77] introduced a novel
concept for refurbishing and remanufacturing industrial equipment using ML and other advanced technologies. This approach
revitalizes older equipment, reintegrating it into the production system and considerably reducing the opportunity costs of retaining
such equipment in terms of both finances and resources. Additionally, Mercadillo et al. [78] employed classic ML for product
feature identification, showcasing how computer vision can be applied for rapid and accurate quality control on the factory floor. A
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critical future consideration is how manufacturers can effectively discern and cater to consumer preferences. Furthermore, some
older equipment might not be compatible with emerging technologies, necessitating manual intervention or equipment replacement
to ensure uninterrupted production.

Machine tools are pivotal in the manufacturing industry, as their performance directly impacts product quality and production
efficiency. In the context of Industry 4.0, these tools are expected to achieve higher levels of accessibility, connectivity, intelligence,
adaptability, and autonomy. Liu et al. [79] highlighted future development directions for machine tools in terms of digitalization
and servitization, encompassing data acquisition, digital twin modeling, intricate human-machine interactions, and service-oriented
development methods. The incorporation and application of ML are crucial to address these aspects effectively.

The advent of Industry 4.0 has brought manufacturing, particularly sectors with a large inventory of old equipment, into sharp
focus. Industry 4.0 elevates manufacturing automation by integrating customization and intelligent production technologies, as
discussed by Möller et al. [80]. However, looking towards Industry 5.0, there is a growing need to further merge ML with the ICE.
This integration will enhance existing equipment, optimize resource usage, and advance the development of personalized, custom
production and services in the future.

5.5 Digital Twin Technology
Digital twin technology effectively simulates the entire production process in a digital format, creating a digital “clone” of

a device or system. This “clone,” or digital twin, is integral to all phases of a product’s life cycle, including the simulation,
monitoring, diagnosis, prediction, and control of physical products’ formation and behavior in real-world settings. Through
ongoing information exchange between digital twins and their physical counterparts, enhancements in product maintenance,
upgrades, control, and optimization are achieved. Mügge et al. [81] leveraged digital twin technology to devise solutions for
the circular economy, addressing issues related to information loss in end-of-life products. This approach enhances efficiency,
sustainability, and the implementation of circular economy practices. Furthermore, digital twin technology has been shown to
extend product lifespans. Kerin et al. [82] implemented digital twin models throughout product life cycles, utilizing data from
various instances for optimization, remanufacturing, and predicting products’ remaining service lives. They also posited that if the
intelligent tools in digital twin technology could access current product states and reliable remanufacturing process information, it
would significantly aid in product decision-making. In this context, the fusion of ML with digital twin technology across the
entire product life cycle offers substantial benefits. It enables the replacement of actual R&D processes with digital twins, which
conserves materials, elevates product quality, and extends product lifespan.

As a pioneering technology grounded in simulation, digital twinning plays a pivotal role in advancing industrial production.
By integrating digital twin technology with ML, and substituting digital production for practical research, new product possibilities
emerge while conserving resources. The digital twin concept not only inspires future work but also broadens the horizons for the
future of the ICE.

6 Conclusion
This study has provided a comprehensive review and synthesis of the current integration and progression of ML within the

ICE. It has also proposed several prospective directions for the future enhancement of ML in the industrial and manufacturing
sectors. These include the promotion of greater data sharing, enhanced resource and equipment utilization, the acceleration of
sustainable supply chain development, and more efficient waste recycling methodologies. The findings of this research contribute
to a summative understanding of ML applications in the ICE and offer reference points for future developmental trajectories. The
continuous evolution of ML in this realm is anticipated to yield substantial economic value-additions and foster the sustainable
management of natural resources and environmental protection.

As a nascent technology, ML is garnering increasing attention. The insights presented herein aim to assist researchers in
addressing the challenges currently faced in the manufacturing domain. Nevertheless, this study acknowledges certain limitations.
The future developmental pathways delineated herein represent a selection of possible directions, without exhaustive exploration
of other significant application prospects. Furthermore, it is observed that the intersection of ML and the circular economy
predominantly resides within industrial and manufacturing spheres. Future research is encouraged to extend this integration across
diverse sectors and industries, catalyzing a transition to sustainable and high-quality societal development. Additionally, both ML
and the circular economy serve humanity at their core. With the evolution of lifestyle aspirations, individual needs are becoming
increasingly nuanced. It is therefore hoped that future research in ML will increasingly cater to these individualized human
requirements.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare no conflict of interest.

References
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[24] C. Mejı́a-Moncayo, J. P. Kenné, and L. A. Hof, “On the development of a smart architecture for a sustainable manufacturing-
remanufacturing system: A literature review approach,” Comput. Ind. Eng., vol. 180, p. 109282, 2023. https://doi.org/10.101
6/j.cie.2023.109282

[25] S. Kamm, S. S. Veekati, T. Müller, N. Jazdi, and M. Weyrich, “A survey on machine learning based analysis of heterogeneous
data in industrial automation,” Comput. Ind., vol. 149, p. 103930, 2023. https://doi.org/10.1016/j.compind.2023.103930

[26] M. I. Ahmed, R. A. Zaghdoud, M. S. Ahmed et al., “Intelligent directional survey data analysis to improve directional data

133

https://doi.org/10.1016/J.JCLEPRO.2023.137094
https://doi.org/10.1016/j.jclepro.2021.129582
https://doi.org/10.1016/j.jclepro.2020.120728
https://doi.org/10.1109/ACCESS.2021.3074931
https://doi.org/10.1088/1742-6596/1852/2/022035
https://doi.org/10.1016/j.ecolind.2021.108011
https://doi.org/10.1016/j.ensm.2020.12.019
https://doi.org/10.1016/j.spc.2021.12.001
https://doi.org/10.1016/j.jenvman.2019.110048
https://doi.org/10.1021/acssuschemeng.0c07119
https://doi.org/10.1021/acssuschemeng.0c07119
https://doi.org/10.1002/cssc.202100652
https://doi.org/10.1016/j.jclepro.2021.130161
https://doi.org/10.1016/j.jenvman.2022.117166
https://doi.org/10.1177/0958305X19876055
https://doi.org/10.3390/su15043109
https://doi.org/10.1051/bioconf/20224801024
https://doi.org/10.1016/j.jenvman.2023.117850
https://doi.org/10.1016/j.compind.2021.103596
https://doi.org/10.1016/j.compind.2021.103596
https://doi.org/10.1016/j.ecolinf.2023.102194
https://doi.org/10.3390/su11226207
https://doi.org/10.3390/su11226207
https://doi.org/10.1038/s41598-023-38535-6
https://doi.org/10.1016/j.cie.2023.109282
https://doi.org/10.1016/j.cie.2023.109282
https://doi.org/10.1016/j.compind.2023.103930


acquisition,” Math. Model. Eng. Probl., vol. 10, no. 2, pp. 482–490, 2023. https://doi.org/10.18280/mmep.100214
[27] J. Li, S. King, and I. Jennions, “Intelligent fault diagnosis of an aircraft fuel system using machine learning—A literature

review,” Machines, vol. 11, no. 4, p. 481, 2023. https://doi.org/10.3390/machines11040481
[28] H. Li, X. Li, X. Liu, X. Bu, H. Li, and Q. Lyu, “Industrial internet platforms: Applications in BF ironmaking,” Ironmak.

Steelmak., vol. 49, no. 9, pp. 905–916, 2022. https://doi.org/10.1080/03019233.2022.2069990
[29] A. Saco, P. S. Sundari, and A. Paul, “An optimized data analysis on a real-time application of PEM fuel cell design by using

machine learning algorithms,” Algorithms, vol. 15, no. 10, p. 346, 2022. https://doi.org/10.3390/a15100346
[30] M. Mowbray, H. Kay, S. Kay, P. C. Caetano, A. Hicks, C. Mendoza, A. Lane, P. Martin, and D. Zhang, “Probabilistic machine

learning based soft-sensors for product quality prediction in batch processes,” Chemom. Intell. Lab. Syst., vol. 228, p. 104616,
2022. https://doi.org/10.1016/j.chemolab.2022.104616

[31] G. Deffrennes, K. Terayama, T. Abe, E. Ogamino, and R. Tamura, “A framework to predict binary liquidus by combining
machine learning and CALPHAD assessments,” Mater. Des., vol. 232, p. 112111, 2023. https://doi.org/10.1016/j.matdes.202
3.112111

[32] J. B. Osei, M. Adom-Asamoah, J. O. Twumasi, P. Andras, and H. Zhang, “A machine learning-based structural load estimation
model for shear-critical RC beams and slabs using multifractal analysis,” Constr. Build. Mater., vol. 394, p. 132250, 2023.
https://doi.org/10.1016/j.conbuildmat.2023.132250

[33] Y. Yang, L. Gao, M. Abbas, D. H. Elkamchouchi, T. Alkhalifah, F. Alturise, and J. J. Ponnore, “Innovative composite
machine learning approach for biodiesel production in public vehicles,” Adv. Eng. Softw., vol. 184, p. 103501, 2023.
https://doi.org/10.1016/j.advengsoft.2023.103501

[34] A. Amini, J. Kanfoud, and T. H. Gan, “An artificial intelligence neural network predictive model for anomaly detection
and monitoring of wind turbines using SCADA data,” Appl. Artif. Intell., vol. 36, no. 1, p. 2034718, 2022. https:
//doi.org/10.1080/08839514.2022.2034718

[35] C. Gahm, A. Uzunoglu, S. Wahl, C. Ganschinietz, and A. Tuma, “Applying machine learning for the anticipation of
complex nesting solutions in hierarchical production planning,” Eur. J. Oper. Res., vol. 296, no. 3, pp. 819–836, 2022.
https://doi.org/10.1016/j.ejor.2021.04.006
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