
Journal of Green Economy and Low-Carbon Development
https://www.acadlore.com/journals/JGELCD

Optimization of Charging-Station Location and Capacity Determination
Based on Optical Storage, Charging Integration, and Multi-Strategy
Fusion
Rui Wang , Zhuang Wu* , Zheng Sun

School of Management and Engineering, Capital University of Economics and Business, 100070 Beijing, China

* Correspondence: Zhuang Wu (wuzhuang@cueb.edu.cn)

Received: 11-05-2023 Revised: 12-30-2023 Accepted: 01-13-2024

Citation: R. Wang, Z. Wu, and Z. Sun, “Optimization of charging-station location and capacity determination based
on optical storage, charging integration, and multi-strategy fusion,” J. Green Econ. Low-Carbon Dev., vol. 3, no. 1,
pp. 1–14, 2024. https://doi.org/10.56578/jgelcd030101.

  2024 by the author(s). Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free 
download and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license.

Abstract: To reduce electric vehicle carbon dioxide emissions while charging and increase charging pile utilization,
this study proposes an optimization method for charging-station location and capacity determination based on
multi-strategy fusion that considers the optical-storage charging station. By analyzing the characteristics of vehicle
trajectory data, the dwell points that support charging are extracted; the center point of the dwell area is obtained
through k-means clustering, indicating the candidate site of a charging station and optical-storage charging station. The
process for determining demand points and quantities is described as follows. Set the parking lot as the demand point;
select the period with the most vehicle stops, and determine the demand according to the proximity principle. Using
the investment cost, user time cost, and total carbon dioxide emissions from charging as the targets, a data-driven
co-evolutionary model is established. It is solved using the multi-objective particle swarm optimization algorithm.
Further, the analytic hierarchy process is used to determine the optimal location and sizing scheme. Empirical
analysis is completed using Beijing taxi track data as an example. The experiments show that after constructing
an optical-storage charging station, the number of charging piles can be reduced by improving the charging pile
utilization rate, and the investment cost can be effectively controlled. The station is built at a location with a large
demand, effectively reducing the carbon dioxide emissions caused by charging and indirectly reducing user time cost.

Keywords: Optical-storage charging station; Co-evolutionary model; k-means clustering; Multi-objective particle
swarm optimization; Analytic hierarchy process

1 Introduction

Energy bundling is critical in national development. However, with continuous exploitation of fossil fuels, it has
become less common. In addition, the world is experiencing an energy crisis, which has led to increasing prices.
Environmental pollution, greenhouse gas (GHG) efficiency, and other issues are becoming an increasing concern. As
a result, electric vehicles (EVs) have emerged. Faced with three major challenges of global fossil energy depletion,
low energy utilization efficiency, and environmental pollution, China has formulated the “dual carbon” strategic
goal of carbon peaking and neutralization. Development of the EV industry has become an important measure for
achieving this goal. In development of new EV technology routes, construction and use of charging stations play a
vital role. However, construction of EV stations impacts the power grid and generates carbon emissions. To promote
new energy and suppress this impact, the “integrated optical storage and charging station” was proposed. Reasonable
planning for charging stations and optical-storage charging stations in cities is important in solving environmental and
traffic problems. Charging stations improve the utilization rate of photovoltaic resources, reduce EV demand for grid
power, and promote low-carbon EV development.

This study comprehensively considers site selection and capacity determination for ordinary and optical-storage
charging stations. Charging-station candidate sites and charging demand points were established to improve the
utilization rate of charging posts through in-depth mining of vehicle trajectory data. To comprehensively consider
other factors and simultaneously minimize the total cost of charging-station investment and operation, user time cost,
and system carbon emissions from charging, multi-objective particle swarm optimization (MOPSO) was used to
determine the location and capacity of charging stations and optical-storage charging stations. The final location
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and capacity were determined using the analytic hierarchy process (AHP). The practicality and effectiveness of the
method were demonstrated through case analysis and verification. The impact of establishing an optical-storage
charging station was analyzed in terms of investment cost, user cost, and carbon dioxide emissions.

The remainder of this paper is organized as follows. Section 2 summarizes previous related research. Section 3
introduces the data acquisition and charging-station siting and sizing methods. The charging-station siting and sizing
model is constructed in Section 4. Section 5 presents the empirical analysis. Section 6 presents the conclusions,
limitations of the study, and future research directions.

2 Related Research
2.1 Charging-Station Location Optimization Based on Big Data

Optimization of the charging-station location and capacity is restricted by practical factors; thus, researchers have
optimized charging-station location using actual data. Huang et al. [1] proposed a location-selection method for EV
charging stations based on a high-density urban geographic information system (GIS) and determined the location
and capacity of charging stations considering existing charging stations and renewable potential. Pagany et al. [2]
investigated charging-station location based on GIS data and determined the demand according to the number of visits
by users to potential points of interest (POI) and their stay time to choose the best location. Zhang et al. [3] proposed a
hybrid method using a GIS and Bayesian network (BN) to develop a charging-station location scheme. The BN model
comprised nine standards. Singapore was used as an example to verify its applicability and effectiveness. Researchers
have also studied charging-station location and capacity using vehicle trajectories and user data. Kong et al. [4] used a
community network to mine user interest points, vehicle parking lot information mined in a GPS track, and clustering
to locate EV charging stations. Yang et al. [5] divided the map into equidistant grids, used mobile location data to
extract potential traffic demand locations, including the starting points and destinations of taxi users, and matched
them with the map. A grid with large demand indicated a candidate site for a charging station. The experiments
showed that this method could accurately locate potential traffic locations with high demand. Liu et al. [6] considered
environmental factors and minimized CO2 emissions in a system using GPS-enabled trajectory data. They proposed
an intelligent optimization method based on a data-driven particle swarm optimization to locate charging stations.
Zhang and Zhu [7] used taxi GPS data statistics and analysis and the Monte Carlo method to extract the charging
demand. They comprehensively considered the construction cost, taxi waiting cost, and impact of a charging station
to establish a mathematical model and used a genetic algorithm to solve it. Based on the taxi track data of Fuzhou,
Luo et al. [8] extracted taxi stops that could support an EV charging duration greater than 30 min and clustered the
stops in non-road areas to obtain the charging-station location area. The rationality of the method was demonstrated
through a rationality analysis of charging convenience for the driver and the economy of the charging station. The
time distribution of the dwell points was analyzed; the charging-station capacity was determined by the peak dwell
points in the charging-station area. Su et al. [9] extracted the distribution characteristics of resident taxi demand
points through analysis of taxi track data and urban traffic data, establishing a spatio-temporal distribution prediction
model of electric taxi charging demand through simulation. The model was established using the operation cost, taxi
arrival time, and waiting time cost as targets to complete site-selection planning for the charging station. Vazifeh et
al. [10] optimized the location of EV charging stations by grid-processing urban traffic and determined the spatial
distribution of parking times according to the call records of EV users. Based on historical EV ownership, Yan et
al. [11] used a BP neural network to predict the time distribution of EVs in the target planning area, determined the
spatial distribution of EVs using measured traffic data in the target area, and established a charging-station location
and capacity model with charging-station cost and user economic loss as the targets.

2.2 Multi-Objective Charging-Station Location Optimization

In addition to charging-station location and capacity research based on actual data, researchers have used
multi-objective location optimization. Liang et al. [12] built a simulation optimization model for location of EV
charging stations and configuration of charging piles with the goal of minimizing the total net present value of
charging stations and the number of customer churns in the planning period. A two-stage simulation optimization
algorithm based on the tabu search algorithm optimized the charging-station location and charging-pile configuration
and ensured charging efficiency. Ai et al. [13] established a charging-station location and capacity planning model
considering the comprehensive interests of charging-station operators, EV users, and power grid enterprises, proposing
a chaos-simulated annealing particle swarm optimization algorithm to solve the problem. Based on the travel chain
and Dijkstra’s shortest path algorithm, Wang et al. [14] proposed a charging-station location and capacity model that
considered the driver travel chain by analyzing the change in the number of vehicles in residential, working, and
commercial areas in different periods. With the grid revenue and average user charging distance as objective functions,
a fuzzy double-objective optimization method that considered the priority of objectives was proposed to determine the
optimal planning scheme for EV charging stations. Considering the economy of operators, driver charging satisfaction,
EV power loss, traffic efficiency, and grid security as comprehensive objectives, Kong et al. [15] proposed a two-layer
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model for location and scale planning of EV charging stations. Dynamic real-time data replaced static statistical
data, and a simulation platform was established for location planning of EV charging stations in different cities and
regions. Lee et al. [16] comprehensively considered charging demand capability, user convenience, and installation
convenience indices and developed a final charging-station location scheme using the charging infrastructure location
index (CILI). Xiao et al. [17] optimized the location of charging stations with the goal of minimizing the sum of the
annual total cost of charging stations and the annual loss cost of EV users, divided the service scope of each charging
station with the goal of minimizing user travel distance to the station, and combined the simulated annealing and
Dijkstra algorithms to solve the planning model. Xu et al. [18] established a charging-station location model based
on analysis of urban population kernel density with the goal of EV user satisfaction and charging convenience, and
optimized the immune algorithm to solve the model. The results showed that compared with the traditional model,
the proposed EV charging-station location model better met user needs.

2.3 Charging-Station Optimization Research Based on Environmental Factors

EV charging stations provide electrical energy primarily through thermal power generation. EVs consume
electrical energy and indirectly produce carbon dioxide emissions. Thus, some researchers consider environmental
factors and renewable energy as influencing factors in charging-station optimization, considering the following: (1)
Environmental emissions. Hafez and Bhattacharya [19] established a charging-station location model to minimize the
life-cycle cost of the charging station, considered environmental emissions, analyzed the impact of different types
of energy generation, and analyzed the charging behavior of plug-in hybrid electric vehicles (PHEVs). Shaaban
et al. [20] established a two-level model of mixed-integer nonlinear programming for remote communities with
the goal of minimizing investment and operation costs considering greenhouse gas emissions, and determined the
location and capacity of distributed generator sets and charging stations. Feng and Ye [21] developed upper- and
lower-level models from the perspective of system optimization and user equilibrium, aiming to minimize system-level
travel time and greenhouse gas emissions to build a bi-objective, bi-level programming model for location of EV
charging stations. The Frank–Wolfe algorithm and NSGA II algorithm were used to solve the problem. Luo and
He [22] built a bi-level planning model to determine the location and capacity of EV charging stations with the overall
social and economic cost and carbon emissions as the decision-making objectives. They proposed an improved
coyote optimization algorithm to solve the planning model, verifying its feasibility and effectiveness. (2) Renewable
energy supplies power to the charging station. Ugirumurera and Haas [23] studied a green-planning EV charging
system, explained the intermittency of solar power generation based on a three-dimensional Markov chain model,
established a mathematical model, and determined the optimal number of solar panels and energy-storage capacity
with the goal of minimizing the investment cost and meeting the performance indicators of the charging system.
Li and Hu [24] aimed to minimize the operating cost, determine optimal scheduling for charging and discharging
of the energy-storage system, and provide the initial state of charge for energy storage during the day. Based on
the updated forecast of photovoltaic and charging demand, they proposed a rolling optimization strategy for the
optical-storage charging station. Chaudhari et al. [25] proposed a hybrid optimization algorithm for integrated
energy-storage management of optical storage and charging aimed at minimizing the cost degradation model of
the energy-storage system and the horizontal cost of photovoltaic power generation. Based on the charging station
of a photovoltaic (PV) microgrid, Sechillarin et al. [26] considered the mutual benefits of the integrated charging
station, public distribution network, EV users, and surrounding buildings, and considered user needs and demands
as the basis for evaluating the efficiency of integrated charging stations, related services, and power networks of
various sizes. Fathabadi [27] designed a new type of independent charging station powered by a combination of solar
and wind energy when a fuel-cell system was present, and analyzed the charging behavior of the PHEV. Yang et
al. [28] optimized the number of chargers in an optical-storage charging station based on statistical distribution data of
the traffic flow of the intercity expressway network and EV charging decisions after using the charging guidance
system, and optimized the optical-storage equipment capacity according to the lighting conditions and load levels at
each station. In combination with the time-sharing electricity price, they proposed an energy-exchange strategy for
an optical-storage charging station. Zhao et al. [29] proposed a two-stage optical-storage charging station location
and capacity determination method based on data-driven distributed robust optimization. The location of charging
points was determined using a Monte Carlo simulation method; the location of charging stations was determined
using an integer programming model. Considering the charging-station interests and user satisfaction, a data-driven
distributed robust optimization constant-capacity model was established. Using risk theory, the distributed robust
optimization model was transformed into a mixed-integer linear programming problem, and the number of charging
piles and optical-storage capacity in the charging station were optimized. Liu et al. [30] proposed a capacity allocation
method for optical-storage equipment that considered demand response and carbon emissions. Based on the charging
subsidy price and response time, they established an EV demand-response model. To minimize the annual investment
operation cost and carbon emissions of optical-storage charging stations, they established an optimization model for
capacity allocation of optical-storage charging stations, considering demand-response operation strategies.
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Vehicle trajectory data mining and comprehensive location and capacity determination for charging stations and
optical-storage charging stations are less common in the literature. Thus, vehicle trajectory data were used in this
study to determine the location and capacity of ordinary charging stations and optical-storage charging stations.

3 Data Acquisition and Location and Capacity Determination Method
3.1 Vehicle Parking-Point Detection

Vehicle track data can be divided into driving track data and parking track data, according to the vehicle driving
speed. When the vehicle speed is not zero, the vehicle is in a driving state; otherwise, it is static. The daily speed
changes of the vehicles are shown in Figure 1. To minimize the impact on user economy and time efficiency while the
vehicle is charging, most drivers charge when the vehicle is stationary. Thus, dwell data were extracted from the
vehicle trajectory data and clustered to determine the dense region of vehicle dwell points to obtain a candidate point
set for the charging station.

Figure 1. Changes in vehicle speed in one day

According to current battery technology in new energy vehicles, rapid charging of EVs for 30 min restores 80% of
the battery capacity. To save time, most car owners choose a fast-charging mode. Thus, the dwell time extracted in this
study should be sufficient to support EV charging behavior; that is, the vehicle dwell time should be at least 30 min.

The dwell-point detection method extracts the change time of the vehicle driving state, calculates the dwell time,
extracts dwell-point track records with dwell times of at least 30 min, and deletes the other dwell-point records. The
detection method for dwell-point extraction is shown in Figure 2.

3.2 Determination of Candidate Charging Stations and Demand Points

To meet the requirements that most EV drivers complete EV charging while parked and effectively improve the
utilization rate of charging piles, the candidate charging stations should be located where vehicles often park. Thus,
k-means clustering was conducted for all vehicle stops that met the conditions. k-means is defined as: giving the
dwell point set Xstop = {xi} for all vehicles to meet the charging requirements, selecting cluster centers (candidate
charging station locations) and recording them as µ(0)

1 , µ
(0)
2 , . . . , µ

(0)
k . Through continuous iteration, the loss function

J converges, as expressed in Eq. (1). Each sample xi in the dwell-point set is allocated to the nearest candidate
charging-station site, as shown in Eq. (2). For each cluster center k, the center of the class is recalculated, as expressed
in Eq. (3).

J(c, µ) = min

m∑
i=1

∥xi − µci∥2 (1)

Ct
i = argmin

k

∥∥xi − µt
k

∥∥2 (2)

µ
(t+1)
k = argmin

µ

b∑
i:Ct

i=k

∥xi − µ∥2 (3)
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Figure 2. Dwell-point extraction process

For most vehicles, parking spaces include temporary road parking lots, shopping malls, markets, squares, and
hospitals. Thus, the period with the most stops was selected as the research period after analyzing the time distribution
of vehicle tracks. According to the longitude and latitude distance formula shown in Eq. (4), the vehicle stop point-set
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Xstop = {xi} is stored in the demand point set Xdemand = {xj} according to the minimum distance mindis, and is
recorded in the demand volume for this point.

dis =R ∗ arccos [cos cos (latm) ∗ cos (latn) ∗ cos cos (latm − latn) + sin sin ( lon m) ∗ sin sin ( lon n)] (4)

where, R represents the Earth’s radius, latm/n represents the longitude of the m stop-point or n demand-point, and
lonm/n represents the latitude of the m stop-point or n demand-point.

3.3 Site Selection and Capacity Determination Method

The candidate charging stations were located in an area with dense vehicle parking; the demand point and demand
were determined according to the distance between the parking lot and parking-point. The location and capacity
determination model were established; MOPSO was used to solve the problem. The final location and capacity
determination scheme of the charging station was determined using AHP. The process is illustrated in Figure 3.

Figure 3. Procedures for site selection and capacity determination for charging stations and optical-storage charging
stations

The mathematical expression of MOPSO in this study is presented as follows. Assume that the particle swarm size
is M∗N , where the number of particles is M , and the charging station has a total of N candidate sites. Searching in
the target space of D dimension, the position of each particle at t time is n (xt) = {n (xt1) , n (xt2) , . . . , n (xtN )};
For xti = 1, ordinary charging stations are built at the candidate charging station site; for xti = 0, the candidate
charging station site has storage charging stations; n (xti) indicates the scale of the charging station (number of
charging posts). The particle velocity is vti = (vt1, vt2, . . . , vtN ), where pbest (t) is the optimal value of a single
particle in the search process, and gbest (t) represents the optimal value of all particles in the search process. The
velocity and position of each particle in the particle swarm are given by Eqs. (5) and (6).

v(t+1)i = vti + c1 ∗ r1 (pbest (t)− n (xti)) + c2 ∗ r2 (gbest (t)− n (xti)) (5)

n
(
x(t+1)i

)
= xti + v(t+1)i (6)

where, c1 and c2 are the learning factors of particle swarm individuals and social cognition, respectively, also known
as acceleration constants; r1 and r2 are random numbers uniformly distributed in the range [0, 1].
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The multi-objective optimization in this study must optimize three objective functions simultaneously: investment
cost, user time cost, and additional CO2 emissions caused by charging. However, there are contradictions between
them, and they cannot be optimized simultaneously. Thus, it is necessary to find a group of balanced charging-station
locations and capacities such that the three objective functions are well-balanced.

For any two charging-station locations and capacity determination schemes xv and xu solved by the proposed
co-evolutionary model, if and only if the three objective functions f(x) all meet f (xv) ≤ f (xu) and there is one
f (xv) < f (xu), then xv governs xu. xv is the dominating solution, and xu is a non-dominating solution. For
any feasible charging-station location and capacity, if no other solution dominates, the solution is a Pareto-optimal
solution. The Pareto front of the charging-station location and capacity corresponds to the optimal solution for site
selection using MOPSO.

4 Model Creation
4.1 Investment Cost

minFI =

n∑
i=1

r ∗ (1 + r)t

(1 + r)t − 1
∗ [Cli ∗ S ∗ (Npi +Noi) +Fp ∗Npi + Fo + Fs ∗Xsi] ∗Xbi (7)

where, FI represents the total investment cost of building charging stations and optical-storage charging stations; Cli

represents the unit land cost of the area where the i candidate charging station will be built; S refers to the average
floor area required by a charging pile to charge an EV;Npi represents the number of charging posts in the i candidate
charging station; Noi represents the land area of the remaining facilities of the i candidate charging station (land area
of energy storage facilities, roads, etc.); Fp is the cost of one charge point; Fo represents other operating costs of
each charging station; Fs represents the cost of solar panels and optical-storage systems required by optical-storage
charging stations; Xsi is a variable from 0 − 1. If Xsi = 1, the i candidate charging station is an optical-storage
charging station; if Xsi = 0, the i candidate charging station is an ordinary charging station. r is the depreciation
rate; t is the service life of the charging station; Xbi is a variable from 0− 1. If Xbi = 1, a charging station is built at
the i candidate charging-station location; if Xbi = 0, no charging station is built at the i candidate charging-station
location; n represents the total number of candidate charging stations.

4.2 User Time Cost

Each candidate charging station was chosen for the EVs based on the number of available charging piles and
the proximity principle. If there were remaining EVs that did not meet the charging demand after the EVs in the j
demand point was selected, nearby candidate charging stations were selected to complete charging according to the
principle of proximity.

minFT = FD + FW (8)

where, FT represents the cost of user arrival and waiting time, FD and FW represent the EV distance cost from the
demand point to the candidate charging station and the EV waiting time cost after arriving at the charging station,
respectively, expressed as:

FD =

n∑
i=1

m∑
j=1

Ncj ∗ C∗fij ∗Dij +

m∑
j=1

(
1−

n∑
i=1

fij

)
∗ C ∗minDj (9)

where, Ncj represents the number of EVs to be charged in the j demand point; fij represents the proportion of the j
demand point being met by the i candidate charging station; Dij represents the distance from the j demand point to
the i candidate charging station; minDj represents the nearest distance from the j demand point to the candidate
charging station to be built; m represents the total number of EV demand points; C is the vehicle cost per kilometer.

FW =

n∑
i=1

z∑
b=1

P ∗ (coni −b ∗ nc ∗Npi) (10)

where, P represents the user unit waiting time cost; coni represents the total number of EVs from different demand
points to the i candidate charging station; nc refers to the number of EVs that can be charged by one charging pile at
the same time; nc is taken as 2; b = (coni/nc ∗Npi), indicating the number of charging batches for all EVs that have
reached the jjj candidate charging station.
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4.3 Indirect CO2 Emissions

minFE =

n∑
i=1

m∑
j=1

[Dij ∗ fij ∗Ncj + (1− fij) ∗minDj ∗Ncj ] ∗ q ∗ e ∗ (1−Xsi) (11)

where, FE represents the total carbon dioxide emissions of the system; q represents the electricity consumption per
kilometer of EV travel; e is the carbon dioxide emissions per kilowatt-hour of electricity produced.

5 Case Study
5.1 Case Study

This study used track data from 4,933 taxis in Beijing from August 1, 2020, to August 10, 2020, with a total of
4,263,030 records. Ideally, a vehicle completes charging with minimal impact on user economic and time efficiency;
most drivers chose to complete charging when the vehicle was stationary, which can indirectly improve the utilization
efficiency of a charging pile. A total of 36,840 stops with a taxi dwell time of 30 min or more were considered.
However, continuous 24-hour data were only available from August 2–7; 24,031 stops remained after deleting stops
outside this range, and stops outside of Beijing or with abnormal longitude and latitude, as shown in Figure 4.

Figure 4. Taxi stops in Beijing

5.2 Determination of Candidate Charging Stations and Taxi Demand Points

Using taxi track data in Beijing from August 2-7, non-operating time was stopped with a taxi dwell time exceeding
30 min. To maximize taxi driver profit, candidate sites for EV charging stations were selected in areas with a high
density of taxis. k-means clustering was performed on 24,236 stops to obtain the candidate charging station sites. For
convenience in the subsequent analysis, k=10 was selected, as shown in Figure 5.

Most taxis stay in public parking lots during non-operating hours; thus, reptile technology was used to crawl 1,160
temporary parking lots, shopping malls, fairs, squares, and public parking lots at hospitals in Beijing. To consider the
constant capacity of each candidate charging station, 24 h was divided into six time periods: 1:00–5:00, 5:00–9:00,
9:00–13:00, 13:00–17:00, 17:00–21:00, and 21:00–1:00 the next day. The charging demand of electric taxis in each
period is shown in Figure 6. The period with the highest charging demand for electric taxis (August 2, 9:00–13:00)
was selected, as shown in Figure 7. The areas where taxis stay during this period can reflect the areas where EVs are
often parked. The distributions of each demand point and demand quantity were obtained by determining the demand
points.
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Figure 5. Determining charging-station candidate sites

Figure 6. Taxi charging demand in different time periods

Figure 7. Distribution of stops and demand points in study period
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5.3 Model Solution and Results Analysis

To simplify the charging-station location and sizing model, the following assumptions were made:
(1) With current optical-storage charging station energy-storage technology, only a few electric taxis can be

charged simultaneously. Thus, it was assumed that the scale of an optical-storage charging station was smaller than
that of an ordinary charging station. At this stage, it was not considered that the charging pile in the optical-storage
charging station used energy-storage facilities or accessed the grid for charging.

(2) To complete charging, all electric taxis used the principle of proximity and selected charging stations based on
their scale.

(3) The remaining EV power was sufficient to reach the charging station.
In this study, MOPSO was used to solve the data-driven co-evolutionary model. The ordinary charging stations are

large in scale; the number of charging piles is not more than 50. The number of charging piles in the optical-storage
charging station is not more than 10; fast-charging time is 30 min; that is, each taxi is fully charged in 30 min.

Figure 8 shows the relationship between the number of ordinary charging stations, optical-storage charging
stations, and investment cost. As the total number of charging stations decreases, the total investment cost decreases.
When the number of charging stations in the entire system is the same (e.g., m=10, where m represents the total
number of charging stations, m1 represents the number of ordinary charging stations, and m2 represents the number
of optical-storage charging stations), with an increase in the number of optical- storage charging stations, the total
investment cost exhibits an overall upward trend, including special cases. If the investment cost of charging piles and
land is not considered, the more optical storage and charging power stations, the higher is the investment cost, owing
to the high cost of photovoltaic power generation and energy-storage facilities. However, because the overall scale of
the optical-storage charging stations not connected to the grid is small, some optical-storage charging stations contain
fewer charging piles, require fewer photovoltaic panels and energy-storage facilities for power generation, and their
overall floor area is small. For example, when m1=2 and m2=8, the maximum investment cost reaches 278,373,093.7
yuan, and the total number of charging stations is 113. When m1=1 and m2=9, although the number of optical-storage
charging stations increases, the total number of charging stations is 59, and the investment cost is lower. Thus, even
if the cost of photovoltaic power generation and energy-storage equipment is high, the total investment cost can be
reduced by improving the utilization efficiency of the charging piles and reducing their number.

Figure 8. Investment cost for different numbers of charging stations

The relationship between the number of charging stations and time cost and the relationship between the number
of charging stations and carbon emissions are shown in Figure 9 and Figure 10, respectively. The time cost is inversely
proportional to the number of charging piles in the system. When the total number of charging stations is the same,
the number of charging piles in the system decreases, resulting in a constant increase in the user waiting time cost.
Due to the small size of optical-storage charging stations, the number of charging piles in the system decreases, and
the user time cost increases to a certain extent. However, if the number of charging piles in the system with different
site selection and capacity determination schemes is similar and smaller charging stations are built at appropriate
locations, the user time cost is lower. With multiple large-scale charging stations in places with large demand (one or
two places with large demand can be selected to build large-scale charging stations), many EVs in the system are
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in a waiting state. At this time, the waiting time cost in the system is far greater than the user arrival time in other
conditions, such as m1=3, m2=7. Two fixed-capacity schemes are shown in Table 1 and Table 2. The total number of
charging stations is 75. The user time costs are 806,628.966 yuan and 943,694.049 yuan, respectively. Candidate sites
2, 5, 6, and 10 have a small demand. Scheme 1 does not build a large-scale charging station at candidate sites with
high demand; Scheme 2 builds a large-scale charging station at candidate sites with high demand. This results in many
EVs waiting for a long time, increasing the total user waiting time cost of the system. However, if all candidate sites
with low demand are built with oversized charging stations, the arrival time and waiting time of users are increased,
and low charging-station utilization may result. As shown in Table 3, this scheme builds oversized charging stations
at all four candidate sites with low demand, which creates investment pressure and leads to many users arriving at
charging stations from afar, increasing their arrival time. Similarly, building oversized charging stations with high
demand increases the user waiting time.

Figure 9. User time cost for different numbers of charging stations

Figure 10. CO2 emissions caused by charging and driving for different numbers of charging stations

Table 1. Candidate site sizing when m1=3, m2=7, scheme 1

Number of Candidate Sites 1 2 3 4 5 6 7 8 9 10
Charging Pile/Set 7 33 1 2 8 6 6 3 5 4
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Table 2. Candidate site sizing when m1=3, m2=7, scheme 2

Number of Candidate Sites 1 2 3 4 5 6 7 8 9 10
Charging Pile/Set 5 5 11 8 1 1 30 4 2 8

Table 3. Over-construction and large-scale charging-station plan

Number of Candidate Sites 1 2 3 4 5 6 7 8 9 10
Charging Pile/Set 10 38 19 2 48 29 9 9 31 30

The carbon dioxide emissions caused by charging in the entire system show an upward trend with a decrease in
the total number of charging stations. When the total number of charging stations was the same, with an increase
in the number of optical-storage charging stations, CO2 emissions caused by charging and driving in the system
decreased. When the entire system used optical-storage charging stations, the carbon dioxide emissions caused by
charging reached zero. Optical-storage charging stations were built in locations with large demand; EV charging at
optical-storage charging stations is preferable. Owing to the small scale of optical-storage charging stations, many
EVs are not in a waiting state simultaneously. Thus, building an optical-storage charging station at a location with
large demand reduces CO2 emissions in the system caused by charging and driving and indirectly reduces the waiting
costs of many EVs.

This study comprehensively considered investment cost, user time cost, and carbon emissions caused by charging
and driving. Although construction of an optical-storage charging station was considered, these objectives can be
maintained at low levels within a certain range. Considering challenges based on environmental factors, and that
charging-station service should be user-oriented, AHP was used to determine the weights of the three objectives, with
importance ranked as CO2 emissions > time cost > investment cost. The weights were 0.6333, 0.2605, and 0.1062,
respectively. C.R.=0.0373 < 0.1; thus, the consistency of the judgment matrix was acceptable. The fitness values of
all non-inferior solutions were dimensionless, producing the optimal location and capacity determination scheme for
ordinary charging stations (BCS1 − BCSn) and optical-storage charging stations (GWM1 −GWMn), as shown in
Table 4.

Table 4. Optimal location and capacity determination scheme for ordinary and optical-storage charging stations

Charging Station Longitude and
Latitude (◦)

Number of Charging
Posts (set) Charging Station Longitude and

Latitude (◦)
Number of Charging

Posts (set)

BCS1
117.096,
40.1556 7 GWM5

116.671,
39.8235 3

GWM1
116.461,
39.9491 9 GWM6

116.291
40.0868 4

GWM2
116.106,
39.768 8 GWM7

116.322
39.9177 1

GWM3
116.626
40.1289 4 GWM8

116.404,
39.8044 7

GWM4
116.883
40.4245 9 GWM9

116.037
40.4817 7

Total investment cost (yuan/year) 253883942.0
User time cost in study period (yuan) 709870.7

CO2 emissions caused by charging in study period (kg) 5.3

As shown in Table 4, the system consists of 59 charging stations, one ordinary charging station, and seven
charging stations. There are nine optical-storage charging stations and 52 charging stations; thus, the investment
cost does not increase with an increase in the number of optical-storage charging stations. Compared to schemes
with more charging stations in the system, the user time cost is lower and effectively controlled. GWM1-GWM3

and GWM6-GWM8 were built in areas with high charging requirements. Thus, most EVs complete charging at
optical-storage charging stations, effectively controlling CO2 emissions caused by charging and indirectly reducing
the cost of user waiting time in the system to a certain extent. GWM4 and GWM5 were built in low-demand areas.
Building small optical-storage charging stations can reduce public resource waste and investment costs, and help
reduce CO2 emissions in the system. To reduce investment costs, regular charging stations were built in areas with
low demand to prevent investment pressure caused by construction of optical-storage charging stations. Owing to the
large number of optical-storage charging stations in the system and the small number of ordinary charging stations, the
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user time and investment costs of this scheme are higher than those of other site selection and capacity determination
schemes; however, indirect CO2 emissions are significantly reduced.

6 Conclusion and Future Research

This study proposes an optimization method for determining the location and capacity of charging stations and
optical-storage charging stations based on multi-strategy fusion. By mining vehicle trajectory data, the utilization
rate of charging posts was improved, and the vehicle dwell time was fully utilized to determine candidate charging
stations and demand point sets. In comprehensively considering other factors, a data-driven co-evolutionary model
was established with investment cost, user time cost, and CO2 emissions caused by charging as targets. The final
site-selection scheme was determined based on an AHP using a MOPSO solution. Based on track data from taxis in
Beijing, the following conclusions were drawn: (1) After constructing optical-storage charging stations, the main
investment costs were charging piles, photovoltaic power generation panels, and energy-storage facilities. Thus, the
utilization rate of each charging pile improved, the number of charging piles in the system was effectively controlled,
and increasing the number of optical-storage charging stations did not produce investment pressure. (2) Optical-storage
charging stations should be built at locations with large charging demand to reduce additional CO2 emissions caused
by charging and control the user waiting time cost in the system.

This study used only taxi track data for verification. However, the proposed method is applicable to all types of
city vehicles. To facilitate analysis, only ten candidate sites were selected for verification, and only optical-storage
charging stations not connected to the power grid were considered, without considering simultaneous power supply
from the power grid or energy-storage facilities. Future research will address these limitations.
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