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Abstract: This study constructs a comprehensive evaluation framework encompassing the ecological transformation
of industrial structure, the degree of energy consumption structure optimization, and their respective evolutionary
characteristics. Employing a vector autoregression (VAR) model, the paper systematically investigates the dynamic
coupling relationship between industrial ecological evolution and energy structure optimization in the Beijing-
Tianjin-Hebei (BTH) region. The findings indicate that the region has experienced a sustained improvement in
the ecological orientation of its industrial structure, alongside a significant degree of spatial interdependence. In
the long term, industrial ecologization exerts a notable positive influence on the optimization of the local energy
consumption structure. In the short term, energy structure optimization in Beijing and Tianjin generates effective
feedback that further facilitates their own industrial ecological upgrading. Distinct differences are observed across
the three sub-regions in terms of evolutionary pathways and adjustment mechanisms, highlighting the critical role
of regional functional positioning in shaping the coupled evolution of the industrial–energy system. The study not
only enriches the empirical understanding of ecological economic interactions at the regional scale, but also offers
theoretical guidance and policy insights for advancing low-carbon, green, and coordinated development across the
BTH region.

Keywords: Beijing-Tianjin-Hebei (BTH); Industrial structure; Ecologization; Energy consumption structure; VAR
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1 Introduction

The ecologization of industrial structure, grounded in ecological economics, refers to the restructuring and
optimization of resource allocation and factor flows across industries in accordance with ecological development
principles. The goal is to enhance production efficiency while ensuring the sustainable utilization of environmental
and resource capacities, thereby supporting long-term, stable economic growth. The structure of energy consumption
denotes the proportional composition of various energy types—such as coal, oil, natural gas, and electricity—within
total energy usage. Industrial upgrading has the potential to steer energy consumption toward cleaner and more
efficient configurations, while improvements in the energy consumption structure, in turn, provide critical support
for further industrial transformation. The two systems are inherently interdependent and mutually reinforcing. As
the Beijing-Tianjin-Hebei (BTH) regional integration strategy advances into a more substantive phase, accurately
identifying the trajectory of industrial restructuring and facilitating the optimization of energy consumption has
become essential. Such efforts are crucial for propelling the region toward deeper, higher-quality, and more
sustainable collaborative development.

A considerable body of scholarship has explored the relationship between industrial transformation and energy
consumption optimization. Domestically, Zhang [1] developed an ”industry–energy” interaction model to examine
the spatial distribution of carbon emissions in China, revealing that the evolution and diversification of industrial
structures significantly shape the layout and growth dynamics of regional energy consumption. The studies [2, 3]
provided empirical evidence that industrial structure is a key driver of changes in energy consumption patterns.
Zou et al. [4] further elucidated the mechanism through which industrial structure influences energy systems,

https://doi.org/10.56578/jgelcd040204

102

https://www.acadlore.com/journals/JGELCD
https://crossmark.crossref.org/dialog/?doi=10.56578/jgelcd040204&domain=pdf
https://orcid.org/0009-0006-6321-3566
https://doi.org/10.56578/jgelcd040204
https://doi.org/10.56578/jgelcd040204


highlighting the positive impacts of both structural rationalization and sophistication at the national level. Zhou et
al. [5] identified a significant degree of spatial correlation in regional energy consumption structures. Focusing on
the BTH region, Han and Ma [6] constructed a novel set of indicators based on rationalization and sophistication
dimensions to evaluate the progress of industrial restructuring. Their findings suggest that Beijing’s structural
transformation outpaces that of Tianjin and Hebei. Wang and Zhang [7] observed that changes in the shares of
the primary and secondary sectors have hindered reductions in energy intensity, while expansion of the tertiary
sector plays a facilitative role; they thus advocate the development of green agriculture and strategic emerging
industries. Bai et al. [8], based on empirical analysis of data from 2000 to 2011, found that industrial structure is
a major determinant of energy consumption in the BTH region. On the international front, scholarly perspectives
have expanded beyond traditional concerns with economic efficiency to encompass ecological efficiency, integrating
environmental impacts and resource constraints. There is also growing attention to the role of digital platforms in
enhancing the coordination and efficiency of industry–energy systems [9, 10]. Methodologically, industrial ecology
provides a foundational framework for analyzing material and energy flows within industrial systems [11, 12], while
advanced econometric models are increasingly employed to investigate complex system dynamics [13, 14].

Despite these advancements, several gaps remain. First, most existing studies emphasize either ”sophistication”
(such as increasing the proportion of the tertiary sector) or ”rationalization” (coordination and balance among sec-
tors), while largely overlooking ”ecologization” as a comprehensive core dimension. In contrast to output-focused
approaches, the concept of ecologization incorporates environmental constraints and sustainability imperatives, of-
fering a more holistic lens for examining structural transformation. Second, the majority of prior studies adopt
national-level or static comparative frameworks, which limit the ability to uncover dynamic evolutionary processes
and spatial heterogeneity within functionally differentiated regions like BTH. Third, from a methodological perspec-
tive, prior research tends to focus on unidirectional causality or static correlations, lacking robust investigation into
the dynamic, bidirectional feedback mechanisms between industrial ecologization and energy consumption structure
optimization—particularly those based on time-series modeling.

In response to these shortcomings, this study adopts an integrative ecological perspective to construct a mul-
tidimensional indicator system for measuring industrial structure ecologization, encompassing dimensions such
as resource consumption, environmental pressure, and ecological performance—thus addressing the limitations
of economic-centric approaches. A VAR model is employed to capture the dynamic, bidirectional interactions
between industrial ecologization and energy consumption structure optimization in the BTH region. Impulse re-
sponse functions (IRF) and variance decomposition techniques are used to identify the pathways and intensities
of interdependence. Furthermore, the distinct evolutionary patterns observed across BTH are analyzed to reveal
how differentiated functional roles under a coordinated development framework shape unique trajectories in in-
dustry–energy coupling. The findings provide both empirical insights and theoretical foundations for formulating
region-specific policies aimed at advancing a green, low-carbon, and synergistically integrated development model.

2 Framework for Assessing the Ecologization of Industrial Structure

Based on ensuring data accessibility and completeness, and in line with regional output efficiency and the goal of
sustainable environmental resource utilization, this study extends traditional measures of industrial structure—namely
rationalization and sophistication—by incorporating a sustainability dimension that accounts for energy consumption
and pollutant emissions. Based on this framework, a composite index of industrial structure ecologization is
developed from three interrelated dimensions: rationalization, sophistication, and sustainability. This integrated
index is designed to comprehensively capture the multifaceted characteristics of industrial structure optimization.
A non-parametric geometric aggregation method is adopted to measure the ecologization level of the industrial
structure across BTH.

2.1 Rationalization Index

The rationalization of industrial structure reflects the degree to which factor inputs are efficiently allocated across
industries, i.e., whether the distribution and utilization of resources among different sectors approach an optimal
state. Drawing upon the concept of industrial structure deviation [1], this study constructs a rationalization indicator
Ht that accounts for the proportion of different industries comprehensively in the regional economy:

Ht =
1∑n

i yi

(
yi

li
− 1
) (1)

where, Ht denotes the rationalization level of the industrial structure in period t, yi represents the output share of
sector i and li denotes the employment share of the same sector. A smaller value of this index implies a higher
degree of rationalization, indicating better alignment between resource input and output across sectors.
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2.2 Upgrading Index

With the rapid advancement of information technologies, the shift toward a service-oriented economy has
become a hallmark of industrial upgrading. The sophistication of industrial structure captures the extent to which
an economy transitions from primary to secondary and tertiary industries. Following standard methodologies for
measuring industrial advancement [15], the sophistication indicator Wt is constructed as follows:

Wt =
v3
v1

+
v3
v2

(2)

where, Wt represents the sophistication level in period t; vi denotes the GDP share of the primary (i = 1), secondary
(i = 2), and tertiary (i = 3) industries, respectively. A higher value of this index indicates greater industrial
sophistication and a more advanced structural composition.

2.3 Sustainability Index

Regional economies can enhance sustainability by phasing out high-energy, high-emission industries and fostering
low-consumption, low-emission sectors through innovation, technological progress, and rational resource allocation.
Drawing on the relative potential evaluation model [16], two core indicators are selected: (1) energy intensity (Eq),
which measures coal, oil, and natural gas consumption per unit of GDP; and (2) pollution intensity (Pz), which
reflects the volume of wastewater, gas emissions, and solid industrial waste per unit of GDP. The sustainability
indicator Mt is constructed as:

Mt =
1

2

(
3∑

q=1

E∗ − Eq

E∗ +

3∑
z=1

P ∗ − Pz

P ∗

)
(3)

where, Mt denotes the level of industrial structure sustainability in region during period t; E∗ and P ∗ are the regional
average energy and pollution intensities, respectively. This indicator is inversely related to the level of industrial
structure sustainability.

2.4 Composite Ecologization Index

This study conceptualizes industrial structure ecologization from the perspective of the “three transforma-
tions”—rationalization, sophistication, and sustainability. Accordingly, a geometric aggregation method is employed
to integrate these three core dimensions into a composite index, denoted as St, for measuring the overall level of
industrial structure ecologization.

St = Ht +Wt +Mt (4)

where, the index St represents the degree of industrial structure ecologization in a given region during period t,
serving as a comprehensive and intuitive metric for assessing both the effectiveness and differences in industrial
structure optimization across BTH. Based on quarterly statistical data from 2001 to 2024, the St values for the three
regions were calculated using Eq. (4), and the resulting trends are illustrated in Figure 1.

Figure 1. Industrial structure ecologization levels in the BTH region
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3 Energy Structure Indicators

Given the spatial interdependence and coordinated dynamics across the BTH region, ecological adjustments
in the regional industrial structure are expected to directly promote the optimization and upgrading of the energy
consumption structure in neighboring areas. The BTH Coordinated Development Plan explicitly calls for a substantial
increase in the share of clean energy and the establishment of a green, low-carbon energy supply system dominated
by electricity and natural gas, with supplemental contributions from solar, geothermal, and biomass energy. The
plan emphasizes principles of low-carbon development, energy efficiency, and technological advancement to guide
the optimization of energy consumption patterns. Statistical data indicate that, alongside notable shifts in industrial
structure, the share of coal consumption has decreased significantly in both Beijing and Tianjin. Meanwhile, the
consumption shares of petroleum and natural gas have stabilized across all three regions, and the shares of electricity
and other green energy sources have increased markedly—especially in Beijing and, to a lesser extent, Tianjin.
This ongoing structural evolution has also been accompanied by continuous improvements in air quality, reflecting
steady progress toward a cleaner and more efficient energy mix. Based on these trends, energy consumption in this
study is categorized into three groups: coal (Ec), petroleum and natural gas (Eog), and electricity plus other green
energy sources (Ep), and the weights are assigned based on the ecological desirability of each energy source, with
higher weights given to cleaner sources. Drawing upon quarterly energy consumption data from the China Energy
Statistical Yearbook spanning 2001 to 2024, the study aggregates and standardizes regional statistics. Following the
methodology used to construct the industrial sophistication indicator, a composite index is developed to represent
regional energy consumption structure optimization:

Et =
Eogt

Ect + Eogt
+

Ept

Eogt + Ept
(5)

where, Et denotes the degree of energy consumption structure optimization in region during period t; Ect, Eogt,
and Ept respectively represent the proportions of coal, petroleum and natural gas, and electricity plus other green
energy sources in total energy consumption. A higher value of Et thus reflects a more optimized and sustainable
energy consumption structure.

Quarterly data from 2001 to 2024 were used to calculate the Et values for BTH according to Eq. (5), and the
resulting time series are presented in Figure 2.

Figure 2. Energy consumption structure optimization index in the BTH region

The data reveal that all three regions have experienced a gradual decline in coal consumption shares, while
the share of fossil fuels (petroleum and natural gas) has stabilized. In contrast, the proportion of electricity and
other green energy has increased, though with marked regional variation: Beijing has exhibited the most significant
upward trend, followed by Tianjin, with Hebei showing only a modest increase. To further capture the differential
efficiency of energy consumption structure improvement—driven by variations in industrial ecologization levels
across regions—this study introduces an additional indicator Et, the Energy Consumption Structure Optimization
Evolution Index, denoted as Rt:

Rt = Et ∗ Ept (6)

TheRt index serves to characterize regional disparities in energy optimization performance that are attributable to
differences in industrial structure ecologization. It reflects the extent to which improvements in industrial ecological
structure translate into actual gains in energy structure optimization.
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4 Empirical Analysis
4.1 Model and Variables

The VAR model, a non-structural system of equations, does not require any a priori restrictions on the endogenous
variables. It is primarily used to estimate the dynamic relationships among jointly endogenous variables and to
analyze the responses of the system to stochastic shocks, thereby enabling the interpretation of how various economic
disturbances affect key variables over time [17]. The VAR model is particularly suitable for capturing short- and
long-term dynamic interactions among interrelated variables, offering robust empirical support for hypothesis testing
and policy inference. The standard VAR(p) model can be expressed as:

ys = φ1ys−1 + φ2ys−2 + · · ·+ φpys−p +Hxs + µs (s = 1, 2, · · ·n) (7)

where, ys is a k-dimensional vector of endogenous variables; xs is a σ-dimensional vector of exogenous variables;
p denotes the number of lags; and s is the number of samples. The matrices φ1, . . . φp, of dimension k × k, and the
matrix H of dimension k× d, represent the coefficients to be estimated. The vector µs is a k-dimensional error term
capturing the residuals of the system.

This study adopts the VAR framework to uncover the intrinsic dynamic relationships between industrial structure
ecologization and energy consumption structure optimization in the BTH region. To maintain model parsimony and
concentrate on the core research objective, potential exogenous variables—such as policy factors and technological
innovation—are not included in the VAR system. Instead, the model focuses exclusively on key endogenous variables
that directly represent the core dynamics of the system. The first variable, industrial structure ecologization, captures a
region’s transition toward a greener, low-carbon, and circular economy by integrating three core dimensions: resource
use efficiency (rationalization), industrial upgrading (sophistication), and environmental performance (sustainability).
This composite indicator goes beyond conventional measures of structural advancement by incorporating principles
from ecological economics and industrial ecology to assess the sustainability of the industrial system [18, 19]. The
second variable, energy consumption structure optimization, is a composite index based on the relative shares of three
major energy categories. It is designed to reflect how structural changes in industry influence the composition and
quality of energy demand. As an intermediate variable linking industrial transformation to environmental outcomes
such as carbon emissions and pollution levels, this index provides a direct measure of energy system optimization.
The third variable, energy consumption structure optimization evolution, captures the marginal rate of improvement
in energy consumption structure as driven by changes in industrial ecologization. In other words, it quantifies the
efficiency of optimization—i.e., how effectively shifts in industrial structure translate into progress in energy system
reform. This indicator not only reflects the static level of optimization but also reveals the system’s dynamic capacity
to evolve, offering deeper insights into the strength of industrial transformation as a driver of energy transition [20].

Together, these three variables form a logical and empirically tractable chain:
• Industrial ecologization transformation (driver).
• Energy consumption structure optimization (static outcome).
• Optimization evolution (dynamic efficiency).
• This chain captures the internal mechanisms of their coordinated evolution.
Accordingly, to investigate the dynamic evolutionary relationships and underlying mechanisms, this study con-

structs a three-variable VAR model using quarterly data for BTH from 2001 to 2024. The three core variables include
the industrial structure ecologization index (St), the energy consumption structure optimization index (Et), and the
energy consumption optimization evolution index (Rt). All data are drawn from the Beijing Statistical Yearbook,
Tianjin Statistical Yearbook, Hebei Statistical Yearbook, and the China Statistical Yearbook. To eliminate potential
heteroscedasticity in the time series, all variables are transformed using natural logarithms. The log-transformed
variables are denoted as LnSt, LnEt and LnRt, respectively. The revised VAR model incorporating these three
variables is specified as:

Yt = µ+ ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕkYt−k + εt (8)

where, specifically, let Yt = (LnSt, LnEt, LnRt) , µ = (µ1, µ2, µ3), and assume that εt is a white noise process,
i.e., E (εt) = 0.

4.2 Empirical Results
4.2.1 Unit root test

To avoid spurious regression results caused by non-stationary time series, the Augmented DickeyFuller (ADF)
test is employed to assess the stationarity of the time series data for the BTH region. The ADF test is first applied to
the level series of the three variables (denoted as LnSt, LnEt and LnRt). As shown in Table 1, the test statistics for
all three variables are greater than their respective critical values at the 1% significance level, indicating the presence
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of unit roots-that is, the original series are non-stationary. Subsequently, the first-differenced series (denoted as
DLnSt, DLnEt and DLnRt) are subjected to ADF tests. The results demonstrate that all three differenced
variables pass the stationarity test at the 1% significance level. Moreover, the P -values associated with each variable
are below the 0.05 threshold, confirming that the first-differenced series are stationary. These findings indicate that
the original time series are integrated of order one, i.e., I(1).

Based on the Akaike Information Criterion (AIC) and the Schwarz Criterion (SC), all three variables for the BTH
region are identified as integrated of order one, i.e., I(1). Accordingly, the first-differenced series of these variables
are used to conduct the Johansen cointegration test and to establish the subsequent VAR model.

Table 1. Results of ADF unit root tests for variables in the BTH region

Region Variable Log-Level Series First-Difference Series
ADF Statistic P-Value Conclusion ADF Statistic P-Value Conclusion

Beijing
St -1.85114 0.6714 Non-stationary -4.6987 0.0014 Stationary
Et -1.2738 0.8881 Non-stationary -3.1433 0.0007 Stationary
Rt -2.8300 0.1906 Non-stationary -11.6712 0.0000 Stationary

Tianjin
St 0.7178 0.9920 Non-stationary -9.5996 0.0000 Stationary
Et -2.9055 0.1657 Non-stationary -12.7530 0.0000 Stationary
Rt -12.3658 0.0000 Non-stationary -12.3658 0.0000 Stationary

Hebei
St -2.9571 0.1501 Non-stationary -2.8588 0.0008 Stationary
Et -3.1962 0.0917 Non-stationary -9.9755 0.0000 Stationary
Rt -2.9063 0.1655 Non-stationary -11.2478 0.0000 Stationary

4.2.2 Johansen cointegration and granger causality tests
Given that all variables are confirmed to be integrated of order one based on the ADF unit root tests, the optimal

lag length for Model (8) is determined using the Akaike Information Criterion (AIC) [12]. At the selected lag order,
the Johansen cointegration test is employed to examine whether a long-run equilibrium relationship exists among
the selected variables.

(1) Cointegration Test for Industrial Structure Ecologization Indicators in BTH
Given the spatial correlation and interconnectivity across the BTH region—and in light of the ongoing coordinated

development strategy and long-term policy efforts such as the relocation of non-capital functions—this section begins
by testing the industrial structure ecologization indicators for the three regions as endogenous variables.

Table 2. Results of the Johansen cointegration test

Null Hypothesis Eigenvalue Trace Statistic 5% Critical Value P-Value
None * 0.3420 74.3080 29.7970 0.0000

At most 1 * 0.2110 35.7893 15.4947 0.0000
At most 2 * 0.1410 13.9828 3.8414 0.0002

Note: *denotes rejection of the null hypothesis at the 5% significance level.

Figure 3. AR root stability test for the VAR(5) model
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Based on AIC results, the optimal lag length for the cointegration test is set to 5. The Johansen test results
in Table 2 show that at the 5% significance level for LnSt of the BTH region, the trace statistics for the three
variables exceed the critical values, rejecting the null hypothesis of no cointegration. Specifically, the results support
the existence of three cointegrating relationships. This indicates that the ecologization of industrial structures in
BTH share a stable long-term equilibrium relationship, underscoring the strong interdependence of their structural
transformation processes.

The results of the AR root test for the VAR(5) model are shown in Figure 3. All characteristic roots lie within
the unit circle, indicating that the model satisfies the condition of stability.

The Granger causality results in Table 3 reveal that industrial structure ecologization in Beijing Granger-causes
corresponding changes in both Tianjin and Hebei, while the reverse is not true—ecologization efforts in Tianjin and
Hebei do not Granger-cause changes in Beijing. Additionally, Tianjin exerts a unidirectional Granger causal effect on
Hebei, but not vice versa. These findings underscore the asymmetric influence of regional structural transformation,
with Beijing acting as the leading driver in the ecologization process across the BTH region.

Table 3. Granger causality test results for industrial structure ecologization in BTH

Null Hypothesis F-Statistic P-Value Conclusion
STJt does not granger-cause SBJt 8.2713 0.0160 Accepted
SHBt does not granger-cause SBJt 1.1472 0.0007 Accepted
SBJt does not granger-cause STJt 0.6284 0.7304 Rejected
SHBt does not granger-cause STJt 15.6457 0.0004 Accepted
SBJt does not granger-cause SHBt 0.1302 0.9370 Rejected
STJt does not granger-cause SHBt 2.0221 0.3638 Rejected

Note: Variables are denoted as follows: SBJt-Beijing, STJt-Tianjin, SHBt-Hebei.

(2) Regional-Level Variable Testing
In parallel, the Johansen cointegration test is conducted separately for each of the three regions using their

respective indicator variables: LnSt, LnEt and LnRγ . Based on AIC values, the optimal lag lengths for the
cointegration test are determined to be 4, 3, and 4 for BTH, respectively. The results, as shown in Table 4,
indicate that for all three regions, the null hypothesis of no cointegration can be rejected at the 5% significance
level. Specifically, each region exhibits three cointegrating vectors, thereby confirming the existence of long-run
equilibrium relationships among the three variables in each region.

Table 4. Johansen cointegration test results by region

Region Null Hypothesis Eigenvalue Trace Statistic 5% Critical Value P-Value

Beijing
None 0.2742 55.7650 29.7970 0.0000

At most 1 0.2129 22.2815 15.4947 0.0008
At most 2 0.0451 4.2473 3.8414 0.0393

Tianjin
None 0.2710 49.3628 29.7970 0.0001

At most 1 0.1625 20.2767 15.4947 0.0088
At most 2 0.0421 3.9559 3.8414 0.0467

Hebei
None 0.6112 112.3088 29.7970 0.0000

At most 1 0.1668 25.3896 15.4947 0.0012
At most 2 0.0892 8.5998 3.8414 0.0034

Note: Critical values at the 5% significance level. “None”, “At most 1”, etc., denote the number of cointegrating relationships.

The AR root tests of the VAR models for each region (VAR(4) for Beijing, VAR(3) for Tianjin, and VAR(4)
for Hebei) are shown in Figure 4. In all cases, the roots lie within the unit circle, confirming the stability of the
respective models.

As shown in Table 5, the Granger causality test results for each region reveal the following:
• Beijing: Neither energy consumption structure optimization (Et) nor its evolution (Rt) Grangercause industrial

structure ecologization (St). However, industrial structure ecologization is found to be a Granger cause of both Et

and Rt. In addition, there is a bidirectional Granger causality between Et and Rt, indicating mutual feedback
between energy structure optimization and its evolutionary capacity.

• Tianjin: Similar to Beijing, Et and Rt do not Granger-cause St, but St significantly Grangercauses both Et

and Rt. Again, a bidirectional Granger causal relationship is observed between Et and Rt.
• Hebei: Unlike Beijing and Tianjin, all three variables show mutual Granger causality. That is, Et and Rt both

Granger-cause St, and St in turn Granger-causes both Et and Rt. Additionally, Et and Rt Granger-cause each other,
reflecting a fully bidirectional relationship among the three dimensions.
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Figure 4. AR root test results for the VAR models of the three regions

Table 5. Granger causality test results for the indicator variables of BTH region

Region Null Hypothesis F-Statistic P-Value Conclusion

Beijing

Et does not granger-cause St 6.1693 0.0057 Accepted
Rt does not granger-cause St 7.1293 0.0283 Accepted
St does not granger-cause Et 4.4353 0.1089 Rejected
Rt does not granger-cause Et 0.8767 0.6451 Rejected
St does not granger-cause Rt 4.5255 0.1041 Rejected
Et does not granger-cause Rt 0.3825 0.8259 Rejected

Tianjin

Et does not granger-cause St 10.8818 0.0043 Accepted
Rt does not granger-cause St 10.1093 0.0064 Accepted
St does not granger-cause Et 0.3066 0.8579 Rejected
Rt does not granger-cause Et 0.1309 0.9366 Rejected
St does not granger-cause Rt 0.1781 0.9148 Rejected
Et does not granger-cause Rt 0.8300 0.6603 Rejected

Hebei

Et does not granger-cause St 0.4349 0.8046 Rejected
Rt does not granger-cause St 1.6106 0.4469 Rejected
St does not granger-cause Et 3.7639 0.1523 Rejected
Rt does not granger-cause Et 3.4390 0.1792 Accepted
St does not granger-cause Rt 3.5123 0.1717 Rejected
Et does not granger-cause Rt 3.9905 0.1360 Rejected

4.2.3 Impulse response
The IRF of the VAR model enables the measurement of the impact of a shock to one variable on itself and on

other variables, while holding the remaining variables constant. This allows for a dynamic examination of short-term
relationships among variables. To accurately assess the dynamic linkages among industrial structure ecologization,
energy consumption structure optimization, and the evolution of energy consumption optimization in the BTH region
from 2001 to 2024, this study estimates the IRFs based on the established VAR model. The IRFs capture the dynamic
characteristics inherent in the VAR system, and describe how shocks to endogenous variables affect both their current
and future values, as well as those of other variables in the system.

(1) Impulse Response Analysis of Industrial Structure Ecologization in the BTH Region
As shown in Figure 5, when each of the three variables representing industrial structure ecologization in BTH

experiences a one-standard-deviation shock to itself, a sharp and positive response appears in the first period. This
response gradually weakens and converges toward zero around the sixth period. This indicates that the ecologization
of industrial structures in all three regions exhibits a self-reinforcing mechanism that facilitates their own development.

In terms of regional spillovers:
• Beijing’s industrial structure ecologization generates a significant positive spillover effect on Tianjin in the

second and third periods, while exerting a slight negative impact on Hebei, which is likely associated with mismatches
in industrial structures caused by Hebei absorbing part of the non-capital functions from Beijing.

• Tianjin’s industrial structure ecologization produces mild positive spillovers to Beijing in the first and second
periods, with the effects approaching zero after the third period. It also exerts a significant positive spillover to Hebei
in the second period, which weakens thereafter.
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• Hebei’s industrial structure ecologization yields mild positive spillovers to Beijing during the first and second
periods, with the influence dissipating after the fourth period. It has a marginally positive impact on Tianjin in the
first period, and becomes negligible afterward.

Figure 5. IRFs for industrial structure ecologization

In general, the industrial structure differences among the three regions are evident. The overall degree of
industrial structure ecologization development ranks as Beijing > Tianjin > Hebei. Beijing has demonstrated
superior performance in industrial transformation and upgrading, and its advantages in comprehensive development
have become increasingly pronounced over time—consistent with its role as a national innovation hub. Tianjin has
also achieved moderate progress, although it has not yet reached optimal performance. Hebei, due to its function as
a receiving area for relocated industries, shows more pronounced mismatches in its industrial structure. In the short
term, the ecologization of industrial structures in Beijing and Tianjin has an inhibitory effect on Hebei’s industrial
ecologization. However, in the long term, the positive spillover effects from Beijing and Tianjin become more
prominent, demonstrating leading and demonstrative roles in driving Hebei’s industrial upgrading.

The IRFs reveal the nuanced interaction patterns among the three regions, reflecting the phased characteristics
of the BTH coordinated development process. For example, Beijing’s ecologization exerts a short-term suppressive
effect on Hebei, which transitions into a long-term positive spillover. This aligns closely with the core policy
of “relocating non-capital functions.” In the early stages of industrial relocation, traditional manufacturing sectors
or high-energy-consuming and high-emission industries transferred to Hebei may not initially match in terms of
technical standards, management capabilities, or environmental infrastructure, thus causing a temporary decline in
Hebei’s ecologization index—a phenomenon referred to as the “inhibitory effect.” However, over the long run, these
transfers are not merely spatial relocations but are accompanied by technology diffusion, managerial spillovers, and
improved green standards. Beijing’s long-term positive spillover effects on Tianjin and Hebei substantiate its role as
an innovation and high-end service hub. This observation is in line with the spatial structure outlined in the BTH
Coordinated Development Plan, specifically the “one core, two cities, three axes, four zones, and multiple nodes”
strategic layout, which emphasizes using core urban areas as growth poles to drive the upgrading of the entire region.

(2) Impulse Response Analysis of the Three Core Indicators in BTH
Figure 6 illustrates the impulse response relationships among Beijing’s three key variables. A shock to industrial

structure ecologization (St) produces a slight negative impact on energy consumption structure optimization (Et)
in periods 1 and 2, followed by a sustained positive effect from period 3 onward. This indicates that ecologization
exerts a long-term promoting effect on energy optimization in Beijing. Regarding St → Rt (evolution of energy
optimization), the response is significantly positive during periods 1 to 3, and gradually fades afterward. For Et (self-
shock), the strongest positive response occurs in period 1, followed by gradual attenuation, suggesting that Beijing’s
energy consumption structure exhibits a self-reinforcing dynamic. Et also has a short-term positive influence on
St during periods 1–2, which diminishes after period 3. Additionally, Et → Rt shows moderate positive effects in
periods 2 to 4, with the influence fading over time. For Rt (self-shock), the largest response occurs in period 1, and
then declines, indicating that Rt also follows a self-reinforcing pattern. Rt exerts positive effects on St in periods 1
to 3, with the influence disappearing after period 4. This implies that energy optimization evolution can effectively
drive the ecologization process in the short term. Moreover, Rt has a significant and lasting positive impact on Et,
highlighting its central role in upgrading the region’s energy structure.

These findings are consistent with Beijing’s industrial development pathway as the capital’s core function zone.
From 2014 to 2024, the proportion of tertiary industry rose from 77.9% to 83.5%, with low-carbon sectors such as
finance and information services accounting for over 40%—a structural shift that directly promoted the optimization
of energy consumption. For instance, coal consumption fell from 13.2% in 2015 to 3.8% in 2023, while the share
of electricity and other green energy sources increased to 58%. However, the short-term negative response can be
attributed to energy consumption rigidities during structural transition—e.g., from 2016 to 2018, rapid clustering of
headquarters economy led to a surge in commercial energy use, pushing annual natural gas consumption growth to
over 12%, which temporarily slowed the pace of energy structure optimization.

As shown in Figure 7, a shock to Tianjin’s St produces slight positive effects on Et in periods 1 and 2, which
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gradually dissipate thereafter. This suggests that the long-term impact of ecologization on energy optimization in
Tianjin is limited, consistent with its existing second- and third-sector structures and current energy use profiles. For
St → Rt, there are notable negative effects in periods 2 and 3, which also disappear over time. Et in Tianjin shows
a strong self-reinforcing response: the largest effect occurs in period 1 and weakens thereafter. Et → St displays a
weak long-term positive effect, while Et → Rt has virtually no influence over the long run. Rt also shows a positive
selfresponse, peaking in period 1. As for Rt → St, a slight long-run positive effect is observed, while Rt → Et

exhibits a significant long-term positive effect, suggesting that evolutionary improvements in energy consumption
structure do contribute to sustained optimization.

Overall, the weak long-run effect of St on Et in Tianjin reflects path dependence on its “Heavy Industry +
Port Economy” composite structure. As of 2022, petrochemical industries still accounted for 18% of Tianjin’s
large-scale industrial output, and diesel consumption from port logistics remained around 25%. These traditional
energy demands diluted the greening effects of structural upgrades. Furthermore, Tianjin’s natural gas share in
energy consumption reached 32% in 2023, leaving limited room for further optimization—a pattern echoed in the
rapidly fading positive effects observed in the impulse responses.

Figure 6. IRFs for Beijing

Figure 7. IRFs for Tianjin

Figure 8. IRFs for Hebei

Figure 8 highlights the distinct impulse dynamics in Hebei compared to Beijing and Tianjin. Specifically:
• A shock to St yields positive effects on Et in periods 3, 6, and 9, which gradually decline. Conversely, St → Rt

shows negative effects, suggesting trade-offs between structure greening and optimization evolution in the short term.
• Et → St is significantly positive in period 1, diminishing after period 5. Et (self-shock) exhibits a modestly

positive long-term self-response, while Et → Rt shows a negative long-run effect, possibly due to inefficiencies in
resource reallocation.

• Rt → St is significantly positive in period 1, but fades after period 5. Rt → Et shows a positive long-run
effect, while Rt (self-shock) has a negative long-term response, indicating adjustment pressure within the energy
system.
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These dynamics reveal the unique challenges faced by resource-based regions like Hebei. In the short term,
energy-saving upgrades in traditional sectors (e.g., steel, cement) significantly enhance energy structure optimiza-
tion—by 2021, 90% of Hebei’s steel industry had completed ultra-low emissions upgrades. However, the long-term
effects of ecologization on the energy structure are cyclical. Between 2016 and 2019, capacity reduction policies
promoted optimization; between 2020 and 2022, post-pandemic rebounds in heavy industries reversed some gains;
since 2023, green transition policies have regained momentum. These cycles are reflected in the multi-peak patterns
observed in the IRFs.

On the whole, industrial structure ecologization in BTH exerts long-term positive effects on their respective
energy consumption structure optimization. Conversely, energy structure optimization also positively influences
ecologization in each region to a certain extent—particularly in Beijing and Tianjin, where short-term effects are
strong and significant. Additionally, the evolutionary aspect of energy optimization (Rt) consistently shows positive
long-term impacts on St across all three regions. Notably, short-term effects are strongest in Beijing and Hebei,
suggesting that enhancing the share of electricity and other green energy sources—while reducing reliance on coal and
petrochemical energy—offers an internally driven and sustainable path toward high-quality economic development
in the BTH region.
4.2.4 Variance decomposition

Variance decomposition analysis enables further examination of the relative contribution of each variable to the
forecast error variance of the others. Specifically, it allows quantification of the extent to which industrial structure
ecologization (LnS) contributes to the optimization of energy consumption structure (LnE), and vice versa, in BTH.

Variance decomposition is employed to further evaluate the extent to which industrial structure ecologization
(LnS) contributes to the variation in energy consumption structure optimization (LnE), and vice versa, in the three
subregions of the BTH region. As shown in Table 6, Table 7, and Table 8, in Beijing, the influence of industrial
structure ecologization on energy consumption optimization gradually increases—from 0.005% in period 2 to
2.146% in period 10. Conversely, the contribution of energy consumption optimization to the changes in industrial
structure ecologization declines from 23.78% in period 1 to 14.99% in period 10. In Tianjin, a similar upward
trend is observed: the influence of industrial structure ecologization on energy consumption optimization rises from
0.667% in period 2 to 1.639% in period 10. Meanwhile, the explanatory power of energy consumption optimization
for industrial structure ecologization decreases from 14.891% in period 1 to 12.893% in period 10. In Hebei, the
mutual dynamic is more pronounced. The contribution of industrial structure ecologization to energy consumption
optimization rises sharply—from 2.768% in period 2 to 21.075% in period 10. Conversely, the contribution of
energy consumption optimization to industrial structure ecologization declines from a very high 87.026% in period 1
to 67.609% in period 10. These results reveal that the degree and direction of interaction between industrial structure
ecologization and energy consumption optimization vary significantly across regions, largely depending on their
respective stages of development and industrial complexity.

Table 6. Forecast error variance decomposition of LnS and LnE in Beijing

Period Variance Decomposition of LnS (%) Variance Decomposition of LnE (%)
S.E LnS LnE S.E LnS LnE

1 0.0051 100.0000 0.0000 0.0088 23.7826 76.2174
2 0.0053 99.9943 0.0055 0.0094 23.0404 76.9596
3 0.0053 99.0736 0.9263 0.0104 18.9113 81.0887
4 0.0054 98.6105 1.3894 0.0108 17.5488 82.4512
5 0.0054 98.2967 1.7032 0.0112 16.4926 83.5074

6 0.0054
0.0054 98.1441 1.8558 0.0113 15.9281 84.0719

7 0.0054
0.0054 98.0289 1.9710 0.0115 15.5341 84.4659

8 0.0054 97.9495 2.0504 0.0116 15.2815 84.7185

9 0.0054
0.0054 97.8925 2.1074 0.0116 15.1084 84.8916

10 0.0054
0.0054 97.8539 2.1461 0.0117 14.9928 85.0072

The variance decomposition further quantifies the intrinsic drivers of the ”industry–energy” system in the BTH
region:

• In Hebei, the contribution of energy consumption optimization to industrial structure ecologization is substan-
tially higher than in Beijing or Tianjin. This validates the earlier findings that Hebei’s developmental stage renders
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its industrial transformation more sensitive to changes in energy structure. Policy shifts in the energy domain are
rapidly transmitted to the industrial system, yielding visible structural responses.

• In contrast, industrial structure ecologization in Beijing and Tianjin is predominantly driven by internal inertia.
This indicates that their industrial systems are more complex and mature, with transformation relying more on
endogenous forces such as technological innovation, knowledge accumulation, and the input of high-end production
factors. In these two regions, energy structure optimization serves more as a coordinated result, rather than the
primary driving force.

This divergence provides a quantitative foundation for region-specific policy design:
• For Hebei, emphasis should be placed on energy infrastructure development and clean energy substitution to

trigger structural transformation.
• For Beijing and Tianjin, policies should prioritize technological innovation and institutional reforms to activate

endogenous dynamics within their advanced industrial ecosystems.

Table 7. Forecast error variance decomposition of LnS and LnE in Tianjin

Period Variance Decomposition of LnS (%) Variance Decomposition of LnE (%)
S.E LnS LnE S.E LnS LnE

1 0.0093 100.0000 0.0000 0.0161 14.8916 85.1084
2 0.0097 99.3334 0.6665 0.0171 14.8738 85.1362
3 0.0097 98.8889 1.1110 0.0189 14.8617 85.1383
4 0.0097 98.7498 1.2501 0.0195 13.7981 86.2019
5 0.0097 98.5859 1.4141 0.0201 13.4729 86.5271

6 0.0098
0.0054 98.5045 1.4955 0.0204 13.9288 86.0712

7 0.0098
0.0054 98.4423 1.5558 0.0206 13.5747 86.4253

8 0.0098 98.4042 1.5958 0.0207 12.4895 87.5105

9 0.0098
0.0054 98.3778 1.6221 0.0208 12.3285 87.6715

10 0.0099
0.0054 98.3609 1.6391 0.0209 12.8936 87.1064

Table 8. Forecast error variance decomposition of LnS and LnE in Hebei

Period Variance Decomposition of LnS (%) Variance Decomposition of LnE (%)
S.E LnS LnE S.E LnS LnE

1 0.0061 100.0000 0.0000 0.0109 87.0260 12.9740
2 0.0064 97.2314 2.7686 0.0122 83.1779 16.8221
3 0.0069 82.7217 17.2783 0.0132 71.7188 28.2812
4 0.0072 80.0300 19.9699 0.0136 68.7520 31.2480
5 0.0072 79.6778 20.3222 0.0137 68.3056 31.6944

6 0.0072
0.0054 79.2441 20.7559 0.0138 67.9185 32.0815

7 0.0073
0.0054 79.0235 20.9765 0.0138 67.7110 32.2890

8 0.0073 78.9663 21.0337 0.0139 67.6498 32.3502

9 0.0073
0.0054 78.9392 21.0608 0.0139 67.6233 32.3767

10 0.0074
0.0054 78.9243 21.0757 0.0139 67.6093 32.3907

5 Conclusions and Recommendations
5.1 Key Findings

The empirical analysis confirms that industrial structure ecologization and energy consumption structure opti-
mization in the BTH region are characterized by significant spatial interdependence and dynamic feedback mecha-
nisms. In the short term, Hebei experiences structural adjustment pressures as it absorbs relocated industries from
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Beijing and Tianjin, resulting in temporary inhibitory effects. However, in the long run, spillovers in knowledge,
technology, and institutional experience become dominant, positioning Beijing and Tianjin as leading forces in
Hebei’s industrial upgrading. This validates the strategic value of regional coordination in advancing long-term
ecological transformation.

The causal relationships between variables are bidirectional: industrial ecologization drives both energy opti-
mization and its evolutionary progression, and these, in turn, contribute back to structural transformation. Particularly
in Beijing and Tianjin, short-term effects from energy optimization on industrial ecologization are strong, while Hebei
exhibits greater long-term sensitivity. These differences stem from the regions’ distinct industrial maturity levels. In
Hebei, transformation is more responsive to energy policy adjustments, whereas in Beijing and Tianjin, upgrading
is primarily driven by endogenous forces such as innovation, advanced services, and institutional quality.

Variance decomposition results quantify these dynamics, highlighting that the influence of energy optimization on
industrial structure is strongest in Hebei, while Beijing and Tianjin rely more on internal mechanisms. These findings
underscore the need for differentiated regional approaches to achieve integrated “industry–energy” transitions.

5.2 Policy Advice

To facilitate green and coordinated development across the BTH region, a region-specific strategy must be
adopted. Beijing should leverage its advantages in innovation and high-end services to pilot urban-rural integrated
smart energy systems, including distributed solar and geothermal applications. These models should be designed for
replication in Tianjin and Hebei. Tianjin should focus on low-carbon transformation of port logistics and advanced
manufacturing, implementing technologies such as shore power and digital process upgrading to reduce industrial
carbon intensity. Hebei should enhance its role as a green industrial receiver by attracting low-carbon projects
aligned with its supply chains and supporting them with clean infrastructure.

A spatially coordinated governance mechanism should be established to amplify positive spillovers. Regional
platforms are needed to convert Beijing’s demonstration effect into endogenous growth across the region. A
unified monitoring and early warning system for “industry–energy–environment” interaction should be developed,
integrating real-time data from all three regions to track system imbalances and guide timely policy adjustment.

Finally, energy structure optimization should be used as a key lever for driving industrial upgrading. In Hebei,
policy should emphasize clean energy infrastructure as a forcing mechanism for transformation. In Beijing and
Tianjin, efforts should focus on stimulating internal innovation through enhanced R&D capacity and institutional
reform. These measures will reinforce regional spillover effects and promote sustainable and high-quality economic
growth across the BTH region.
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