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Abstract: Improving the effectiveness of green supply chains is a critical step towards minimizing waste, optimizing
resource use, and reducing the environmental impact of business operations. Sustainable practices should be imple-
mented throughout the entire supply chain, from product design and procurement to production and transportation,
in order to achieve these goals. By doing so, businesses can not only improve their environmental performance but
also reduce costs, increase customer satisfaction, and gain a competitive advantage in the market. However, due to
the existence of competing characteristics, imprecise information, and a lack of knowledge, selecting the appropriate
green provider is a complex and unpredictable decision-making issue. The primary objective of a linear-diophantine
fuzzy (LiDF) framework is to assist decision makers in selecting the optimal course of action. This paper introduces
several novel aggregation operators (AOs), namely the linear Diophantine fuzzy soft-max average (LiDFSMA) and
the linear Diophantine fuzzy soft-max geometric (LiDFSMG) operators. The proposed method is then demonstrated
through a simple example of a green supplier optimization technique containing linear Diophantine fuzzy content,
showing the utility and applicability of the approach. Overall, the proposed LiDF framework and AOs can aid
decision makers in selecting the most suitable green provider, thereby enhancing the efficiency of green supply
chains.

Keywords: Linear Diophantine fuzzy numbers; Soft-max function; Green supplier; Decision-making

1 Introduction

In every aspect of life, including academic, personal, and professional spheres, the ability to make decisions
is essential. The process of selecting the optimal course of action from a number of alternatives based on a
predetermined set of criteria is known as decision-making. Effective decision-making can have a significant impact
on an individual’s success in achieving their goals, as well as on the performance and profitability of an organization.
It involves analyzing and evaluating information, considering alternatives, and making rational decisions based
on available evidence. Developing strong decision-making skills is essential for success in both personal and
professional lives.

In ecological supply chain management, decision-making is crucial for achieving objectives. Decision-making
involves identifying objectives, evaluating available alternatives, and selecting the best course of action. In green
supply chains, decision-makers must consider environmental concerns, such as reducing pollution and emissions,
using renewable energy, and minimizing environmental impact. Decision-makers in green supply chains face the
challenge of balancing environmental and economic considerations. In some cases, environmentally responsible
alternatives may be more expensive than conventional ones. For example, renewable energy may be more expensive
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than conventional energy sources in the short term. The costs must be weighed against the benefits of environmental
sustainability to determine the best course of action.

Accurate and timely information is crucial for effective decision-making in ecological supply chains. This
information may come from various sources, including suppliers, consumers, and internal data systems. Data
analytics can help decision-makers analyze this data and identify patterns and trends that can inform their decisions.
For example, data analytics can be used to determine the most environmentally responsible suppliers, reducing
the environmental impact of procurement. Collaboration is another essential element of effective decision-making
in green supply chains. To achieve shared goals, collaboration requires supply chain stakeholders to exchange
information and resources. Collaboration can assist organizations in identifying areas where they can reduce waste
and increase productivity by cooperating. For example, suppliers and manufacturers can collaborate to reduce
packaging waste and optimize transportation routes, respectively.

The problem of imprecise and misleading data has been a recurrent issue in numerous disciplines, including
business, management, social, medical, technological, emotional, and machine learning. Data aggregation is
essential for decision-making; however, the uncertainty of data makes data aggregation problematic. Multi-criteria
decision-making (MCDM) is a cognitive activity tool frequently used to choose among a finite number of alternatives
based on the preference information provided by decision-makers (DMs). Due to the complexity of human reasoning
abilities, MCDM tends to be erroneous and ambiguous, making it difficult for DMs to provide accurate evaluations
during the review process. Therefore, it is imperative to resolve this problem and deal with unpredictability.

Zadeh was a pioneer of fuzzy set (FS) theory as an alternative to crisp numbers or linguistic numbers [1].
Atanassov introduced the novel idea of intuitionistic fuzzy sets (IFS) [2, 3], while Yager extended it to Pythagorean
fuzzy sets (PFS) [4–6]. Yager also introduced the concept of q-ROFS, which is a further generalization of IFS
and PFS [7]. However, the limitation of q-ROFS is that the total of the membership degree (MD) power and the
non-membership degree (NMD) power of q may be less than or identical to one.

Numerous decision-making approaches for various extensions of fuzzy sets have been proposed by Alcantud and
Garcia [8], Xu [9] and Xu and Yager [10], Wang and Liu [11], Zhang et al. [12], Zhao et al. [13] and Garg [14].
Mahmood et al. [15] proposed a spherical fuzzy decision-making approach with a diagnosis application. Feng et
al. [16], Peng and Yang [17], Zhang and Xu [18], and Riaz et al. [19–22] proposed various decision-making
techniques. Simic et al. [23, 24] conducted extensive work in this area.

Riaz and Hashmi [19] introduced the concept of LiDFS as a generalized approach of IFS, PFS, and q-ROFS.
LiDFS is a new technique for analyzing uncertain decision-making, computational maximizing efficiency, and real-
world situations using reference parameters. Work related to LiDFS is presented in [20–22]. Riaz et al. [25–31]
introduced the concept of bipolar picture fuzzy. Simic et al. [23] introduced the normalized weighted geometric
Dombi Bonferoni mean operator with interval grey numbers, while Pamucar and Jankovic Riaz et al. [24] established
the hybrid interval rough weighted power-Heronian operator for MCDM.

Decision-makers often struggle with evaluating diverse alternatives due to the restrictions on the sum of mem-
bership and non-membership degrees of IFSs, PFSs, and q-ROFS. To overcome this limitation, the LiDFS theory
has been suggested, which allows decision-makers to select grades freely ranging from 0 to 1 due to the presence
of reference parameters. However, there is currently no tool available to deal with a linear prioritized relationship
among the criterion in LiDF data. To address this gap in research, several types of soft-max AOs have been proposed
to aggregate LiDF data. These AOs can significantly enhance the efficiency of green supply chains by facilitating
decision-making processes and providing accurate evaluations.

The remaining sections of this paper are organized as follows. Section 2 covers fundamental LiDFS concepts.
Section 3 develops various LiDF soft-max AOs. The fourth and fifth sections present an MCDM framework for the
suggested AOs, along with a numerical example. Finally, this section summarizes the main findings of the research
paper.

2 Preliminaries

In this part, we will go over some of the more important fundamental aspects of LiDFS.
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Definition 2.1. [19] A LiDFS ℜ in ℶ is defined as

ℜ =
{(

▽, ⟨Yℜ(▽),Xℜ(▽)⟩, ⟨Dℜ(▽),Zℜ(▽)⟩
)
: ▽ ∈ ℶ

}
,

where, Yℜ(▽),Xℜ(▽),Dℜ(▽),Zℜ(▽) ∈ [0, 1] are the MD, the NMD and the corresponding ”reference parameters
(RPs)”, respectively. Moreover,

0 ≤ Dℜ(▽) + Zℜ(▽) ≤ 1,

and
0 ≤ Dℜ(▽)Yℜ(▽) + Zℜ(▽)Xℜ(▽) ≤ 1

for all ▽ ∈ ℶ. The LiDFS
ℜℶ = {(▽, ⟨1, 0⟩, ⟨1, 0⟩) : ▽ ∈ ℶ}

is known the absolute LiDFS in ℶ. The LiDFS

ℜϕ = {(▽, ⟨0, 1⟩, ⟨0, 1⟩) : ▽ ∈ ℶ}

is known the null LiDFS in ℶ. The RPs may be utilised to characterise or categorise particular structures. By altering
the physical significance of the reference parameters, it is possible to categorise various systems.
Definition 2.2. [19] A ”linear Diophantine fuzzy number” (LiDFN) is a tuple ℏγ = (⟨Yℏγ ,Xℏγ ⟩, ⟨Dℏγ ,Zℏγ ⟩)
satisfying the following conditions:

(1) 0 ≤ Yℏγ ,Xℏγ ,Dℏγ ,Zℏγ ≤ 1;
(2) 0 ≤ Dℏγ + Zℏγ ≤ 1;
(3) 0 ≤ DℏγYℏγ + ZℏγXℏγ ≤ 1.

Definition 2.3. [19] Let ℏγ = (⟨Yℏγ ,Xℏγ ⟩, ⟨Dℏγ ,Zℏγ ⟩) be a LiDFN, then score function ✠(ℏγ) can be define by
the mapping ✠(ℏγ) : LiDFN(ℶ) → [−1, 1] and given by

✠(ℏγ) =
1

2
[(Yℏγ − Xℏγ ) + (Dℏγ − Zℏγ )]

where LiDFN(ℶ) is an assemblage of LiDFNs on ℶ.
Definition 2.4. [19] Let ℏγ = (⟨Yℏγ ,Xℏγ ⟩, ⟨Dℏγ ,Zℏγ ⟩) be a LiDFN, then accuracy function can be defined by the
mapping ψ : LiDFN(ℶ) → [0, 1] and given as

ψ(ℏγ) =
1

2

[(Yℏγ + Xℏγ

2

)
+ (Dℏγ + Zℏγ )

]

Definition 2.5. [19] Let ℏγ1 and ℏγ2 be two LiDFNs then by using the score function and accuracy function, we
have:
(i): If ✠(ℏγ1) < ✠(ℏγ2) then ℏγ1 < ℏγ2,
(ii): If ✠(ℏγ2) < ✠(ℏγ1) then ℏγ2 < ℏγ1,
(iii): If ✠(ℏγ2) = ✠(ℏγ1) then,
(a): If ψ(ℏγ1) < ψ(ℏγ2) then ℏγ1 < ℏγ2,
(b): If ψ(ℏγ2) < ψ(ℏγ1) then ℏγ2 < ℏγ1,
(c): If ψ(ℏγ1) = ψ(ℏγ2) then ℏγ1 = ℏγ2.
Definition 2.6. [19] Let ℏγ = (⟨Yℏγ ,Xℏγ ⟩, ⟨Dℏγ ,Zℏγ ⟩) be a LiDFN, another definition of score function is defined
as expectation score function (ESF) on LiDFN(ℶ) having range H : LiDFN(ℶ) → [0, 1] and define as

H(ℏγ) =
1

2

[ (Yℏγ − Xℏγ + 1)

2
+

(Dℏγ − Zℏγ + 1)

2

]

Definition 2.7. [19] Let ℏγi = (⟨Yi,Xi⟩, ⟨Di,Zi⟩) be two LiDFNs with i = 1, 2. Then
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• ℏγ1 ⊆ ℏγ2 ⇔ Y1 ≤ Y2,X2 ≤ X1,D1 ≤ D2,Z2 ≤ Z1;
• ℏγ1 = ℏγ2 ⇔ Y1 = Y2,X1 = X2,D1 = D2,Z1 = Z2;
• ℏγ1 ⊕ ℏγ2 = (⟨Y1 +Y2 −Y1Y2,X1X2⟩, ⟨D1 +D2 −D1D2,Z1Z2⟩);
• ℏγ1 ⊗ ℏγ2 = (⟨Y1Y2,X1 + X2 − X1X2⟩, ⟨D1D2,Z1 + Z2 − Z1Z2⟩).
• ℏγc1 = (⟨X1,Y1⟩, ⟨Z1,D1⟩);
• Xℏγ1 =

(
⟨1− (1−Y1)

X,XX
1 ⟩, ⟨1− (1−D1)

X,ZX
1 ⟩
)
;

• ℏγX1 =
(
⟨YX

1 , 1− (1− X1)
X⟩, ⟨DX

1 , 1− (1− Z1)
X⟩
)
.

2.1 Soft-Max Function

In the discipline of mathematics, the soft-max function is a kind of generalization that is derived from the logistic
function. It has been gradually used in a wide variety of areas of study, including, for example, computer vision and
strategic planning. The following is a representation of the soft-max function in its mathematical equation:

ϕk (j, ϑ1, ϑ2, . . . , ϑn) = ϕjk =
exp (ϑj/k)∑n
j=1 exp (ϑj/k)

, k > 0

For the LiDFNs ℏγj(j = 1, 2, 3, . . . , n), Sj is the score value of LiDFN ℏγj . Every ϑj is formulated by given the
equation.

ϑj =


∏j−1

i=1 Si, j = 2, 3, . . . , n

1 j = 1

where, k is the modulation parameter.

3 LDF Soft-Max AOs

This section introduces the concepts of LiDFSMA operator and LiDFSMG operator.

3.1 LiDFSMA Operator

Definition 3.1. Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) is the assemblage of LiDFNs, and LiDFSMA : £n →
£, be a n dimension mapping. if

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) =
exp[ℵℏ

1/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ1 ⊕
exp[ℵℏ

2/ ð]
n∑

1=ג

exp[ℵℏ
c/ ð]

ℏγ2 ⊕ . . . ,⊕ exp[ℵℏ
n/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ℏγn (1)

then the mapping LiDFSMA is called (LiDFSMA) operator, where ℵℏ
ג =

∏j−1

k=1H(ℏγk) (j = 2 . . . , n), ℵℏ
1 = 1

and H(ℏγk) is the expectation score function of kth LiDFN. We could also think about LiDFSMA operators using
the following theory, which is based on the operational law of LiDFN.

Theorem 3.2. Assume that ℏγℶ = (⟨Yℶ,Xℶ⟩ , ⟨Dℶ,Zȷ⟩) is the assemblage of LiDFNs, we can find LiDFSMA
by

LiDFSMA
(
ℏγ1 , ℏγ2,...ℏγ

n

)
=

(〈
1−

n∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

n∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)
(2)

Proof. Definition 3.1 and Theorem 3.2 are easily preceded by the first statement. This is shown in the following
aspects.
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LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) =

(
exp[ℵℏ

1/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ1 ⊕
exp[ℵℏ

2/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ2 ⊕ . . . ,
exp[ℵℏ

n/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγn

)

=

(〈
1−

n∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
n∏

1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)

We used mathematical induction to prove this theorem.
For n = 2

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ℏγ1 =

(〈
1− (1−Y1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1

〉
,

〈
1− (1−D1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1

〉)
exp[ℵℏ

2/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ2 =

(〈
1−(1−Y2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉
,

〈
1−(1−D2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉)
Then
exp[ℵℏ

1/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ1 ⊕
exp[ℵℏ

2/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ2

=

(〈
1− (1−Y1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1

〉
,

〈
1− (1−D1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1

〉)
⊕

(〈
1− (1−Y2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉
,

〈
1− (1−D2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉)

=

(〈
1− (1−Y1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

+ 1− (1−Y2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]
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−

(
(1− (1−Y1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð])(

(1− (1−Y2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð])

,

X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1 .X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉
,

〈
1− (1−D1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

+ 1− (1−D2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

−

(
(1− (1−D1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð])(

1− (1−D2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð])

, Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1 .Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉)

=

(〈
1− (1−Y1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

(1−Y2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1 .X

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉
,

〈
1− (1−D1)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

(1−D2)

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1 .Z

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2

〉)

=

(〈
1−

2∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

2∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

2∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

2∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)

This reveals that Eq. 2 is valid for n = 2; now suppose that Eq. 2 is true for n = k, i.e.,

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγk) =

(〈
1−

k∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

k∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)

Now n = k + 1, by operational laws of LiDFNs we have,

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγk+1) = LiDFSMA(ℏγ1, ℏγ2, . . . ℏγk)⊕
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγk+1
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=

(〈
1−

k∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

k∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)
⊕

(〈
1− (1−Yk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,X

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k+1

〉
,

〈
1− (1−Dk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,Z

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k+1

〉)

=

(〈
1−

k∏
1=ג

(1−Yk)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

+ 1− (1−Yk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

−

(
1−

k∏
1=ג

(1−Yk)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð])

(
1− (1−Yk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð])

,

k∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k .X

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k=1

〉
,

〈
1−

k∏
1=ג

(1−Dk)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

+ 1− (1−Dk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

−

(
1−

k∏
1=ג

(1−Dk)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð])(

1− (1−Dk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð])

,

k∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k .Z

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k=1

〉)

=

(〈
1−

k∏
1=ג

(1−Yk)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

(1−Yk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k .X

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k+1

〉
,

〈
1−

k∏
1=ג

(1−Dk)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

(1−Dk+1)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k .Z

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

k+1

〉)

=

(〈
1−

k+1∏
1=ג

(1−Yג)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k+1∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,
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〈
1−

k+1∏
1=ג

(1−Dג)

exp[ℵℏ
k+1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

k+1∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)

This shows that for n = k + 1, Eq. 2 holds. Then,
LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)

=

(〈
1−

n∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

n∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)

A few of LiDFSMA’s promising properties are described below.
Theorem 3.3. Assume thatℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) is the assemblage of LiDFNs, whereℵℏ

ג =
∏j−1

k=1 H(ℏγk)
(j = 2 . . . , n),ℵℏ

1 = 1 andH(ℏγk) is the expectation score function of kth LiDFN. If allℏγג are equal, i.e., ℏγג = ℏγ

for all j, then
LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) = ℏγ

Proof. From Definition 3.1, we have

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) =
exp[ℵℏ

1/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ1 ⊕
exp[ℵℏ

2/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ2 ⊕ . . . ,⊕ exp[ℵℏ
n/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ℏγn

=
exp[ℵℏ

1/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ ⊕ exp[ℵℏ
2/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ℏγ ⊕ . . . ,⊕ exp[ℵℏ
n/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ℏγ

= ℏγ

Corollary 3.4. If ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩), j = (1, 2, . . . n) is the assemblage of largest LiDFNs, i.e.,
ℏγג = (1, 0) for all j, then

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) = (⟨1, 0⟩, ⟨1, 0⟩)

Proof. We can easily obtain Corollary similar to the Theorem 3.3.
Corollary 3.5. (Non-compensatory) If ℏγ1 = (⟨Y1,X1⟩, ⟨D1,Z1⟩) is the smallest LiDFN, i.e., ℏγ1 =

(⟨0, 1⟩, ⟨0, 1⟩), then
LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) = (⟨0, 1⟩, ⟨0, 1⟩)

Proof. Here, ℏγ1 = (⟨0, 1⟩, ⟨0, 1⟩) then by definition of the score function, we have,

H(ℏγ1) = 0

Since,

ℵℏ
ג =

j−1∏
k=1

H(ℏγk) (j = 2 . . . , n), and ℵℏ
1 = 1

H(ℏγk) is the score of kth LiDFN.
We have,
ℵℏ

ג =
∏j−1

k=1 H(ℏγk) = H(ℏγ1)× H(ℏγ2)× . . .× H(ℏγj−1) = 0× H(ℏγ2)× . . .× H(ℏγj−1) (j = 2 . . . , n)

j∏
k=1

ℵℏ
ג = 1
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From Definition 3.1, we have

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) =
exp[ℵℏ

1/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ1 ⊕
exp[ℵℏ

2/ ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

ℏγ2 ⊕ . . . ,⊕ exp[ℵℏ
n/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ℏγn

=
1

1
ℏγ1 ⊕

0

1
ℏγ2 ⊕ . . .

0

1
ℏγn

= ℏγ1 = (0, 1)

The corollary 3.5 implied that if the higher priority requirements were met by the smallest LiDFN, incentives would
not be given to other criteria, even if they were met.
Corollary 3.6. (Monotonicity) Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) and ℏγ∗ג = (⟨Y∗

ג ,X
∗
,⟨ג ⟨D∗

ג ,Z
∗
(⟨ג are the

assemblages of LiDFNs, where ℵℏ
ג =

∏j−1
k=1 H(ℏγk), ℵℏ∗

ג =
∏j−1

k=1 H(ℏγ
∗
k) (j = 2 . . . , n), ℵℏ

1 = 1, ℵℏ∗
1 = 1,

H(ℏγk) is the expectation score function of ℏγk LiDFN, and H(ℏγ∗k) is the expectation score function of ℏγ∗k LiDFN.
If Y∗

ג ≥ Yג and X∗
ג ≤ Xג for all j, then

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) ≤ LiDFSMA(ℏγ∗1, ℏγ
∗
2, . . . ℏγ

∗
n)

Proof. Here, Y∗
ג ≥ Yג and X∗

ג ≤ Xג for all j, If Y∗
ג ≥ Yג.

⇔ Y∗
ג ≥ Yג ⇔ 1−Y∗

ג ≤ 1−Yג

⇔ (1−Y∗
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤ (1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

⇔
∏n

∗Y−1)1=ג
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤
∏n

(גY−1)1=ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

⇔ 1−
∏n

(גY−1)1=ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤ 1−
∏n

∗Y−1)1=ג
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

Again,
D∗

ג ≥ Dג and Z∗
ג ≤ Zג for all j, If D∗

ג ≥ Dג.
⇔ D∗

ג ≥ Dג ⇔ 1−D∗
ג ≤ 1−Dג

⇔ (1−D∗
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤ (1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

⇔
∏n

∗D−1)1=ג
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤
∏n

(גD−1)1=ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

⇔ 1−
∏n

(גD−1)1=ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤ 1−
∏n

∗D−1)1=ג
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

Now,
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X∗
ג ≤ Xג.

⇔ (X∗
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤ (Xג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

⇔
∏n

X)1=ג
∗
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤
∏n

(גX)1=ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

And,
Z∗
ג ≤ Zג.

⇔ (Z∗
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤ (Zג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

⇔
∏n

Z)1=ג
∗
(ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

≤
∏n

(גZ)1=ג

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

Let
ℏγ = LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)

and
ℏγ∗ = LiDFSMA(ℏγ∗1, ℏγ

∗
2, . . . ℏγ

∗
n)

We get that ℏγ∗ ≥ ℏγ . So,

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn) ≤ LiDFSMA(ℏγ∗1, ℏγ
∗
2, . . . ℏγ

∗
n)

Corollary 3.7. Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) and βג = (⟨ϕג, φג⟩, ⟨Kג,Mג⟩) are two familie of LiDFNs,
where ℵℏ

ג =
∏j−1

k=1 H(ℏγk) (j = 2 . . . , n), ℵℏ
1 = 1 and H(ℏγk) is the expectation score function of kth LiDFN. If

r > 0 and β = (⟨Yβ ,Xβ⟩, ⟨Dβ ,Zβ⟩) is an LiDFN, then

1. LiDFSMA(ℏγ1 ⊕ β, ℏγ2 ⊕ β, . . . ℏγn ⊕ β) = LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ β

2. LiDFSMA(rℏγ1, rℏγ2, . . . rℏγn) = r LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)

3. LiDFSMA(ℏγ1 ⊕ β1, ℏγ2 ⊕ β2, . . . ℏγn ⊕ βn) = LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ LiDFSMA(β1, β2, . . . βn)

4. LiDFSMA(rℏγ1 ⊕ β, rℏγ2 ⊕ β, . . .⊕ rℏγn ⊕ β) = r LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ β

Proof. By Theorem 3.2,
LiDFSMA(ℏγ1 ⊕ β, ℏγ2 ⊕ β, . . . ℏγn ⊕ β)

=

(〈
(1−

n∏
1=ג

(
(1−Yג)(1−Yβ)

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
XβXג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,

〈
(1−

n∏
1=ג

(
(1−Dג)(1−Dβ)

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
ZβZג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)
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=

(〈
(1−

(
1−Yβ

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
1−Yג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
(
Xβ

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
Xג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,

〈
(1−

(
1−Dβ

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
1−Dג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
(
Zβ

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
Zג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)

=

(〈
(1−

(
1−Yβ

) n∏
1=ג

(
1−Yג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
(
Xβ

) n∏
1=ג

(
Xג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,

〈
(1−

(
1−Dβ

) n∏
1=ג

(
1−Dג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
(
Zβ

) n∏
1=ג

(
Zג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)

Now, by operational laws of LiDFNs,

LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ β =

(〈
(1−

n∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
(1−

n∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
⊕ (⟨Yβ ,Xβ⟩, ⟨Dβ ,Zβ⟩)

)

=

(〈
(1−

(
1−Yβ

) n∏
1=ג

(
1−Yג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
(
Xβ

) n∏
1=ג

(
Xג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,

〈
(1−

(
1−Dβ

) n∏
1=ג

(
1−Dג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
(
Zβ

) n∏
1=ג

(
Zג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)

Thus,
LiDFSMA(ℏγ1 ⊕ β, ℏγ2 ⊕ β, . . . ℏγn ⊕ β) = LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ β

3.
According to Theorem 3.2,
q-ROFPWA(ℏγ1 ⊕ β2, ℏγ2 ⊕ β2, . . . ℏγn ⊕ βn)

=

(〈
1−

n∏
1=ג

(
(1−Yג)(1− ϕג)

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
φגXג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,
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〈
1−

n∏
1=ג

(
(1−Dג)(1− Kג)

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
MגZג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)

=

(〈
1−

n∏
1=ג

(
1− ϕג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
1−Yג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
φג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
Xג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,

〈
1−

n∏
1=ג

(
1− Kג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
1−Dג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
Mג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
Zג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)

Now,
LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ LiDFSMA(β1, β2, . . . βn)

=

(〈
1−

n∏
1=ג

(1−Yג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

X

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

n∏
1=ג

(1−Dג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

Z

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)
⊕

(〈
1−

n∏
1=ג

(1− ϕג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

φ

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉
,

〈
1−

n∏
1=ג

(1− Kג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

M

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג

〉)

=

(〈
1−

n∏
1=ג

(
1− ϕג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
1−Yג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,
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n∏
1=ג

(
φג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
Xג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉

,

〈
1−

n∏
1=ג

(
1− Kג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
1−Dג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]

,

n∏
1=ג

(
Mג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð] n∏

1=ג

(
Zג

)
exp[ℵℏ

/ג ð]
n∑

1=ג

exp[ℵℏ
/ג ð]〉)

Thus,

LiDFSMA(ℏγ1 ⊕ β2, ℏγ2 ⊕ β2, . . . ℏγn ⊕ βn) = LiDFSMA(ℏγ1, ℏγ2, . . . ℏγn)⊕ LiDFSMA(β1, β2, . . . βn).

3.2 LiDFSMG Operator

Corollary 3.8. Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) is the assemblage of LiDFNs, and LiDFSMG: $n → $,
be a n dimension mapping. if

LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn) = ℏγ

exp[ℵℏ
1/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

1 ⊗ ℏγ

exp[ℵℏ
2/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

2 ⊗ . . . ,⊗ℏγ

exp[ℵℏ
n/ ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

n (3)

then the mapping LiDFSMG is called (LiDFSMG) operator, where ℵℏ
ג =

∏j−1
k=1 H(ℏγk) (j = 2 . . . , n), ℵℏ

1 = 1

and H(ℏγk) is the expectation score function of kth LiDFN.
We could also think about LiDFSMG operators using the following theory, which is based on the operational

law of LiDFN.
Corollary 3.9. Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) is the assemblage of LiDFNs, we can find LiDFSMG by

LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn)

=

(〈
n∏

1=ג

Y

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג , 1−
n∏

1=ג

(1− Xג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]〉

,

〈
n∏

1=ג

D

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]

ג , 1−
n∏

1=ג

(1− Zג)

exp[ℵℏ
/ג ð]

n∑
1=ג

exp[ℵℏ
/ג ð]〉)

(4)

Proof. Same as Theorem 3.2.
A few of LiDFSMG’s promising properties are described below.

Corollary 3.10. (Monotonicity) Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) and ℏγ∗ג = (⟨Y∗
ג ,X

∗
,⟨ג ⟨D∗

ג ,Z
∗
(⟨ג are

the assemblages of LiDFNs, where ℵℏ
ג =

∏j−1
k=1 H(ℏγk), ℵℏ∗

ג =
∏j−1

k=1 H(ℏγ
∗
k) (j = 2 . . . , n), ℵℏ

1 = 1, ℵℏ∗
1 = 1,

H(ℏγk) is the expectation score function of ℏγk LiDFN, and H(ℏγ∗k) is the expectation score function of ℏγ∗k LiDFN.
If Y∗

ג ≥ Yג and X∗
ג ≤ Xג for all j, then

LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn) ≤ LiDFSMG(ℏγ∗1, ℏγ
∗
2, . . . ℏγ

∗
n)
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Corollary 3.11. (Idempotency) Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) is the assemblage of LiDFNs, where
ℵℏ

ג =
∏j−1

k=1 H(ℏγk) (j = 2 . . . , n), ℵℏ
1 = 1 and H(ℏγk) is the expectation score function of kth LiDFN. If all ℏγג

are equal, i.e., ℏγג = ℏγ for all j, then

LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn) = ℏγ

Corollary 3.12. If ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) j = (1, 2, . . . n) is the assemblage of largest LiDFNs, i.e.,
ℏγג = (⟨1, 0⟩, ⟨1, 0⟩) for all j, then

LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn) = (⟨1, 0⟩, ⟨1, 0⟩)

Proof. We can easily obtain Corollary similar to the Theorem 3.3.
Corollary 3.13. (Non-compensatory) If ℏγ1 = ⟨Y1,X1⟩ is the smallest LiDFN, i.e., ℏγ1 = (⟨0, 1⟩, ⟨0, 1⟩), then

LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn) = (⟨0, 1⟩, ⟨0, 1⟩)

The corollary 3.13 implied that if the higher priority requirements were met by the smallest LiDFN, incentives would
not be given to other criteria, even if they were met.

Corollary 3.14. Assume that ℏγג = (⟨Yג,Xג⟩, ⟨Dג,Zג⟩) and βג = (⟨ϕג, φג⟩, ⟨Kג,Mג⟩) are two familie of
LiDFNs, where ℵℏ

ג =
∏j−1

k=1 H(ℏγk) (j = 2 . . . , n), ℵℏ
1 = 1 and H(ℏγk) is the expectation score function of kth

LiDFN. If r > 0 and β = (⟨Yβ ,Xβ⟩, ⟨Dβ ,Zβ⟩) is an LiDFN, then

1. LiDFSMG(ℏγ1 ⊕ β, ℏγ2 ⊕ β, . . . ℏγn ⊕ β) = LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn)⊕ β

2. LiDFSMG(rℏγ1, rℏγ2, . . . rℏγn) = r LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn)

3. LiDFSMG(ℏγ1 ⊕β1, ℏγ2 ⊕β2, . . . ℏγn ⊕βn) = LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn)⊕LiDFSMG(β1, β2, . . . βn)

4. LiDFSMG(rℏγ1 ⊕ β, rℏγ2 ⊕ β, . . .⊕ rℏγn ⊕ β) = r LiDFSMG(ℏγ1, ℏγ2, . . . ℏγn)⊕ β

Proof. The proof of this theorem is same as Theorem 3.3.

4 Proposed Methodology

Let ξδ = {ξδ1 , ξδ2 , . . . , ξδm} be the assemblage of alternatives and ζϱ = {ζϱ1, ζϱ2, . . . , ζϱn} is the assemblage of
criterions, Priorities are assigned between the criteria provided by the linear orientation in this case. ζϱ1 ≻ ζϱ2 ≻
ζϱ3 . . . ζ

ϱ
n indicates criteria ζϱJ has a high priority than ζϱi if j > i. τ ς = {τ ς1, τ ς2, . . . , τ ςp} is a assemblage

of decision-makers (DMs) and DMs are not given the same priority. Prioritization is provided by a linear pattern
between the DMs given as, τ ς1 ≻ τ ς2 ≻ τ ς3 . . . τ

ς
p shows DM τ ς ζ has a high imprtance than τ ςϱ if ζ > ϱ. DMs

give a matrix according to their own standpointsD(p) = (B
(p)
ij )m×n, where B(p)

ij is given for the alternatives ξδi ∈ ξδ

with respect to the attribute ζϱג ∈ ζϱ by τ ςp DM. If all Performance criteria are the same kind, there is no need
for normalisation; however, since MCGDM has two different types of Evaluation criteria (benefit kind attributes τb
and cost kinds attributes τc), the matrix D(p) has been transformed into a normalise matrix using the normalisation
formula Y (p) = (P

(p)
ij )m×n,

(P
(p)
ij )m×n =

(B
(p)
ij )c; j ∈ τc

B
(p)
ij ; j ∈ τb.

(5)

where, (B(p)
ij )c show the compliment of B(p)

ij .
The suggested operators will be implemented to the MCGDM, which will require the preceding steps.
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Algorithm

Step 1:
Acquire a decision matrix D(p) = (B

(p)
ij )m×n in the form of LiDFNs from the decision makers.

ζϱ1 ζϱ2 ζϱn



K1 ξδ1 (⟨Y1
11,X

1
11⟩, ⟨D1

11,Z
1
11⟩) (⟨Y1

12,X
1
12⟩, ⟨D1

12,Z
1
12⟩) · · · · · · (⟨Y1

1n,X
1
1n⟩, ⟨D1

1n,Z
1
1n⟩)

ξδ2 (⟨Y1
21,X

1
21⟩, ⟨D1

21,Z
1
21⟩) (⟨Y1

22,X
1
22⟩, ⟨D1

22,Z
1
22⟩) · · · · · · (⟨Y1

2n,X
1
2n⟩, ⟨D1

2n,Z
1
2n⟩)

...
...

. . . . . .
...

ξδm (⟨Y1
m1,X

1
m1⟩, ⟨D1

m1,Z
1
m1⟩) (⟨Y1

m2,X
1
m2⟩, ⟨D1

m2,Z
1
m2⟩) · · · · · · (⟨Y1

mn,X
1
mn⟩, ⟨D1

mn,Z
1
mn⟩)

K2 ξδ1 (⟨Y2
11,X

2
11⟩, ⟨D2

11,Z
2
11⟩) (⟨Y2

12,X
2
12⟩, ⟨D2

12,Z
2
12⟩) · · · · · · (⟨Y2

1n,X
2
1n⟩, ⟨D2

1n,Z
2
1n⟩)

ξδ2 (⟨Y2
21,X

2
21⟩, ⟨D2

21,Z
2
21⟩) (⟨Y2

22,X
2
22⟩, ⟨D2

22,Z
2
22⟩) · · · · · · (⟨Y2

2n,X
2
2n⟩, ⟨D2

2n,Z
2
2n⟩)

...
...

. . . . . .
...

ξδm (⟨Y2
m1,X

2
m1⟩, ⟨D2

m1,Z
2
m1⟩) (⟨Y2

m2,X
2
m2⟩, ⟨D2

m2,Z
2
m2⟩) · · · · · · (⟨Y2

mn,X
2
mn⟩, ⟨D2

mn,Z
2
mn⟩)

Kp ξδ1 (⟨Yp
11,X

p
11⟩, ⟨D

p
11,Z

p
11⟩) (⟨Yp

12,X
p
12⟩, ⟨D

p
12,Z

p
12⟩) · · · · · · (⟨Yp

1n,X
p
1n⟩, ⟨D

p
1n,Z

p
1n⟩)

ξδ2 (⟨Yp
21,X

p
21⟩, ⟨D

p
21,Z

p
21⟩) (⟨Yp

22,X
p
22⟩, ⟨D

p
22,Z

p
22⟩) · · · · · · (⟨Yp

2n,X
p
2n⟩, ⟨D

p
2n,Z

p
2n⟩)

...
...

. . . . . .
...

ξδm (⟨Yp
m1,X

p
m1⟩, ⟨D

p
m1,Z

p
m1⟩) (⟨Yp

m2,X
p
m2⟩, ⟨D

p
m2,Z

p
m2⟩) · · · · · · (⟨Yp

mn,X
p
mn⟩, ⟨Dp

mn,Z
p
mn⟩)

Step 2:
Two kinds of criterion are described in the decision matrix: (τc) cost type indicators and (τb) benefit type indicators.
There is no need for normalisation if all indicators are of the same kind, but in MCGDM, there may be two types
of criteria. The matrix was updated to the transforming response matrix in this case Y (p) = (P

(p)
ij )m×n using the

normalization formula Eq. (5).
Step 3:
Calculate the values of ℵℏ(p)

ij by following formula.

ℵℏ(p)
ij =

p−1∏
k=1

H(P
(k)
ij ) (p = 2 . . . , n), (6)

ℵℏ(1)
ij = 1

Step 4:
Use one of the above mentioned AOs, to get one cumulative matrix W (p) = (Wij)m×n by aggregating all LiDF
decision matrices Y (p) = (P

(p)
ij )m×n.

Step 5:
Values of ℵℏ

ij determine by using given formula.

ℵℏ
ij =

j−1∏
k=1

H(Wik) (j = 2 . . . , n), (7)

ℵℏ
i1 = 1
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Step 6:
Aggregate the LiDF values Wij for each alternative ξδi by the LiDFSMA (or LiDFSMG) operator:
Step 7:
Compute all cumulative alternative assessments’s score.
Step 8:
The alternatives were rated using the score feature, and the best option was chosen.

5 Case Study

The significance of sustainable development and environmental protection in recent years has led to a greater
emphasis on green supply chain management. Green supply chain management entails the incorporation of environ-
mental concerns into every aspect of supply chain operations, including procurement, production, distribution, and
disposal. The need to maximise efficiency while minimising environmental impact is one of the greatest obstacles
organisations face in their pursuit of green supply chain objectives. This paper will examine the significance of
improving the efficacy of green supply chains and the role of decision-making in attaining this objective. Green
supply chain management relies heavily on efficiency to accomplish its objectives. Several strategies, including the
use of renewable energy, the reduction of waste and emissions, and the optimisation of logistics and transportation,
can increase the efficiency of green supply chains. Utilization of technology is a significant factor in the efficiency
of green supply chains. Technology can assist businesses in optimising their supply chain processes, reducing costs,
and minimising environmental impact.

The use of data analytics is one area where technology can have a significant impact on efficiency. Data
analytics entails the application of sophisticated algorithms and statistical models to analyse vast datasets and derive
actionable insights. In green supply chains, data analytics can be utilised to identify wasteful and inefficient areas
and develop strategies to resolve these problems. For instance, data analytics can be used to determine the most
cost-effective and environmentally friendly transportation routes and modes, thereby reducing the environmental
impact of transportation while minimising costs. Automation is another way in which technology can improve the
efficacy of green supply chains. Automation is the use of machines and automata to execute formerly manual tasks.
By eliminating errors, reducing cycle times, and increasing throughput, automation can help businesses reduce
waste and improve efficiency. For instance, automation can be used to sort and process recyclable materials, thereby
reducing the need for manual labour and enhancing sorting precision.

Green supply chain management (GSCM) is a critical approach for achieving sustainability in the supply chain
network. It involves the integration of environmental considerations into the supply chain operations to reduce
environmental impacts and enhance the economic and social performance of the supply chain. In this essay, we will
discuss the criteria for green supply chain management.

One of the most crucial criteria for GSCM is environmental performance. GSCM aims to reduce the environmen-
tal impact of supply chain operations, including the reduction of greenhouse gas emissions, water consumption, and
waste generation. Companies need to implement environmental management practices such as pollution prevention,
waste reduction, energy conservation, and water conservation to improve environmental performance. Another
critical criterion for GSCM is supplier management. Companies need to collaborate with their suppliers to ensure
that their environmental and social standards are aligned. The supplier selection process should consider the envi-
ronmental performance of the supplier, including their environmental policies, practices, and certifications. Green
procurement is a crucial criterion for GSCM. It involves the purchasing of environmentally friendly products and
services. Companies need to develop green procurement policies that consider the environmental impact of products
and services, including their life cycle assessment, carbon footprint, and environmental certifications. Stakeholder
engagement is another critical criterion for GSCM. It involves the participation of all stakeholders in the supply
chain, including customers, suppliers, employees, and local communities. Companies need to engage stakeholders
in the decision-making process to ensure that their concerns and perspectives are considered. Compliance with
environmental regulations is another critical criterion for GSCM. Companies need to comply with local, national,
and international environmental regulations, including laws related to air emissions, water discharge, and waste
disposal. Compliance with regulations is essential for protecting the environment and avoiding legal penalties.
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Risk management is an essential criterion for GSCM. Companies need to identify and mitigate environmental risks
in their supply chain operations. They need to develop risk management plans that consider potential environmental
risks, including natural disasters, climate change, and resource scarcity. Life cycle assessment (LCA) is a critical
criterion for GSCM. It involves the evaluation of the environmental impacts of a product or service throughout
its life cycle, from raw material extraction to end-of-life disposal. Companies need to conduct LCA to identify
opportunities for environmental improvement and make informed decisions regarding product design, sourcing, and
disposal. Green logistics is a critical criterion for GSCM. It involves the optimization of logistics operations to reduce
the environmental impact of transportation, warehousing, and distribution activities. Companies need to implement
green logistics practices such as route optimization, fuel-efficient transportation, and use of alternative transportation
modes. Performance measurement and reporting are essential criteria for GSCM. Companies need to measure and
report their environmental performance regularly to track their progress towards sustainability goals. Performance
indicators should include environmental metrics such as greenhouse gas emissions, water consumption, and waste
generation. Continuous improvement is a critical criterion for GSCM. Companies need to continuously improve
their environmental performance by implementing new environmental management practices and technologies.
Continuous improvement involves the development of an environmental management system that enables companies
to monitor and evaluate their environmental performance regularly.

GSCM has the potential to significantly impact the economy of a country. By implementing GSCM practices,
businesses can reduce their environmental impact while also increasing their efficiency and profitability. This can
lead to several economic benefits for the country as a whole. One key economic benefit of GSCM is cost savings.
GSCM practices can help businesses reduce their costs by identifying areas of inefficiency and waste in their supply
chain. For example, reducing energy consumption and water usage can lead to lower utility bills. Similarly, reducing
waste generation can reduce disposal costs. These cost savings can help businesses increase their profitability, which
in turn can stimulate economic growth. Another economic benefit of GSCM is increased competitiveness. As
more and more businesses adopt GSCM practices, those that fail to do so risk falling behind. By implementing
GSCM practices, businesses can differentiate themselves from their competitors and appeal to consumers who are
increasingly environmentally conscious. This can help businesses increase their market share and drive economic
growth.

GSCM can also lead to increased revenue streams. For example, businesses can develop new products or services
that are environmentally friendly, which can appeal to a growing market of consumers who prioritize sustainability.
Similarly, businesses can market their environmental initiatives to attract new customers and retain existing ones. By
tapping into these new revenue streams, businesses can increase their profitability and contribute to economic growth.
In addition to these direct economic benefits, GSCM can also have indirect economic benefits. For example, GSCM
can help businesses build strong relationships with their suppliers, customers, and other stakeholders. This can lead
to increased collaboration and knowledge-sharing, which can drive innovation and improve the overall efficiency of
the supply chain. This increased efficiency can benefit the economy as a whole by reducing costs and improving
productivity. Furthermore, GSCM can help businesses comply with environmental regulations, which can reduce the
risk of fines and legal action. This can help businesses avoid costly legal battles and maintain their reputation, which
can in turn increase their profitability and competitiveness. However, there are also potential challenges associated
with implementing GSCM practices. For example, there may be a higher upfront cost associated with investing in
new technologies or equipment to reduce environmental impact. Additionally, implementing GSCM practices may
require significant changes to the organization’s culture and processes, which can be challenging to manage. Finally,
there may be a lack of understanding or awareness among stakeholders about the benefits of GSCM, which can make
it difficult to gain buy-in and support for these initiatives.

5.1 Numerical Example

Consider a set of alternatives ξδ = {ξδ1 , ξδ2 , ξδ3 , ξδ4} and ζϱ = {ζϱ1, ζϱ2, ζϱ3, ζϱ4, ζϱ5, } is the finite set of cri-
terions, where ζϱ1= cost, ζϱ2=reputation, ζϱ3=innovation in services, ζϱ4=environment friendly, ζϱ5=geographical
specialization and ζϱ6=financial condition, Priorities are assigned between the criteria provided by the linear ori-
entation in this case. ζϱ1 ≻ ζϱ2 ≻ ζϱ3 . . . ζ

ϱ
6 indicates criteria ζϱJ has a high priority than ζϱi if j > i. In this
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example we use LiDFNs as input data for ranking the given alternatives under the given attributes. Here three DMs
are involved i.e τ ς1, τ ς2 and τ ς3. DMs are not given the same priority. Prioritization is provided by a linear pattern
between the DMs given as, τ ς1 ≻ τ ς2 ≻ τ ς3 shows DM τ ς ζ has a high imprtance than τ ςϱ if ζ > ϱ.
Step 1:
Compute the decision matrix D(p) = (B

(p)
ij )m×n in the form of LiDFNs, given in Table 1, Table 2 and Table 3.

Table 1. LiDF decision matrix from τ ς1

ζϱ1 ζρ2 ζϱ3 ζρ4 ζρ5

ξδ1(⟨0.21, 0.86⟩, ⟨0.16, 0.66⟩)(⟨0.96, 0.56⟩, ⟨0.46, 0.16⟩)(⟨0.86, 0.11⟩, ⟨0.51, 0.11⟩)(⟨0.46, 0.26⟩, ⟨0.61, 0.11⟩)(⟨0.86, 0.21⟩, ⟨0.81, 0.11⟩)
ξδ2(⟨0.11, 0.41⟩, ⟨0.26, 0.36⟩)(⟨0.61, 0.46⟩, ⟨0.66, 0.16⟩)(⟨0.66, 0.16⟩, ⟨0.31, 0.31⟩)(⟨0.56, 0.36⟩, ⟨0.41, 0.36⟩)(⟨0.66, 0.11⟩, ⟨0.16, 0.26⟩)
ξδ3(⟨0.21, 0.66⟩, ⟨0.36, 0.16⟩)(⟨0.41, 0.51⟩, ⟨0.31, 0.41⟩)(⟨0.51, 0.21⟩, ⟨0.46, 0.46⟩)(⟨0.66, 0.46⟩, ⟨0.26, 0.26⟩)(⟨0.41, 0.61⟩, ⟨0.30, 0.30⟩)
ξδ4(⟨0.30, 0.50⟩, ⟨0.16, 0.60⟩)(⟨0.60, 0.56⟩, ⟨0.16, 0.16⟩)(⟨0.66, 0.36⟩, ⟨0.20, 0.30⟩)(⟨0.86, 0.16⟩, ⟨0.40, 0.40⟩)(⟨0.86, 0.96⟩, ⟨0.10, 0.30⟩)

Table 2. LiDF decision matrix from τ ς2

ζϱ1 ζρ2 ζϱ3 ζρ4 ζρ5

ξδ1(⟨0.86, 0.46⟩, ⟨0.40, 0.36⟩)(⟨0.86, 0.46⟩, ⟨0.26, 0.46⟩)(⟨0.96, 0.86⟩, ⟨0.36, 0.66⟩)(⟨0.46, 0.26⟩, ⟨0.80, 0.66⟩)(⟨0.40, 0.26⟩, ⟨0.46, 0.26⟩)
ξδ2(⟨0.66, 0.36⟩, ⟨0.30, 0.46⟩)(⟨0.66, 0.50⟩, ⟨0.36, 0.26⟩)(⟨0.40, 0.30⟩, ⟨0.36, 0.56⟩)(⟨0.66, 0.36⟩, ⟨0.26, 0.36⟩)(⟨0.50, 0.66⟩, ⟨0.36, 0.20⟩)
ξδ3(⟨0.26, 0.46⟩, ⟨0.30, 0.30⟩)(⟨0.46, 0.96⟩, ⟨0.26, 0.46⟩)(⟨0.66, 0.26⟩, ⟨0.36, 0.26⟩)(⟨0.46, 0.46⟩, ⟨0.46, 0.26⟩)(⟨0.60, 0.36⟩, ⟨0.66, 0.16⟩)
ξδ4(⟨0.86, 0.60⟩, ⟨0.20, 0.46⟩)(⟨0.66, 0.40⟩, ⟨0.30, 0.66⟩)(⟨0.36, 0.66⟩, ⟨0.46, 0.46⟩)(⟨0.30, 0.86⟩, ⟨0.30, 0.40⟩)(⟨0.30, 0.40⟩, ⟨0.26, 0.46⟩)

Table 3. LiDF decision matrix from τ ς3

ζϱ1 ζρ2 ζϱ3 ζρ4 ζρ5

ξδ1(⟨0.46, 0.36⟩, ⟨0.46, 0.30⟩)(⟨0.66, 0.26⟩, ⟨0.66, 0.20⟩)(⟨0.66, 0.20⟩, ⟨036., 0.16⟩)(⟨0.86, 0.16⟩, ⟨0.30, 0.30⟩)(⟨0.66, 0.16⟩, ⟨0.36, 0.26⟩)
ξδ2(⟨0.26, 0.45⟩, ⟨0.30, 0.30⟩)(⟨0.46, 0.26⟩, ⟨0.20, 0.36⟩)(⟨0.36, 0.16⟩, ⟨0.66, 0.20⟩)(⟨0.26, 0.66⟩, ⟨0.40, 0.40⟩)(⟨0.60, 0.46⟩, ⟨0.20, 0.30⟩)
ξδ3(⟨0.86, 0.60⟩, ⟨0.20, 0.46⟩)(⟨0.60, 0.80⟩, ⟨0.60, 0.30⟩)(⟨0.26, 0.60⟩, ⟨0.36, 0.40⟩)(⟨0.36, 0.90⟩, ⟨0.26, 0.10⟩)(⟨0.60, 0.86⟩, ⟨0.46, 0.46⟩)
ξδ4(⟨0.40, 0.66⟩, ⟨0.16, 0.36⟩)(⟨0.46, 0.40⟩, ⟨0.26, 0.46⟩)(⟨0.16, 0.46⟩, ⟨0.30, 0.30⟩)(⟨0.40, 0.60⟩, ⟨0.20, 0.60⟩)(⟨0.40, 0.36⟩, ⟨0.60, 0.20⟩)

Step 2:
Normalize the decision matrixes using Eq. 5. First criteria is ζϱ1 cost type and other is benefit type, given in Table
4, Table 5 and Table 6.

Table 4. LiDF decision matrix from τ ς1

ζϱ1 ζρ2 ζϱ3 ζρ4 ζρ5

ξδ1(⟨0.86, 0.21⟩, ⟨0.66, 0.16⟩)(⟨0.96, 0.56⟩, ⟨0.46, 0.16⟩)(⟨0.86, 0.11⟩, ⟨0.51, 0.11⟩)(⟨0.46, 0.26⟩, ⟨0.61, 0.11⟩)(⟨0.86, 0.21⟩, ⟨0.81, 0.11⟩)
ξδ2(⟨0.41, 0.11⟩, ⟨0.36, 0.26⟩)(⟨0.61, 0.46⟩, ⟨0.66, 0.16⟩)(⟨0.66, 0.16⟩, ⟨0.31, 0.31⟩)(⟨0.56, 0.36⟩, ⟨0.41, 0.36⟩)(⟨0.66, 0.11⟩, ⟨0.16, 0.26⟩)
ξδ3(⟨0.66, 0.21⟩, ⟨0.16, 0.36⟩)(⟨0.41, 0.51⟩, ⟨0.31, 0.41⟩)(⟨0.51, 0.21⟩, ⟨0.46, 0.46⟩)(⟨0.66, 0.46⟩, ⟨0.26, 0.26⟩)(⟨0.41, 0.61⟩, ⟨0.30, 0.30⟩)
ξδ4(⟨0.50, 0.30⟩, ⟨0.60, 0.16⟩)(⟨0.60, 0.56⟩, ⟨0.16, 0.16⟩)(⟨0.66, 0.36⟩, ⟨0.20, 0.30⟩)(⟨0.86, 0.16⟩, ⟨0.40, 0.40⟩)(⟨0.86, 0.96⟩, ⟨0.10, 0.30⟩)

Step 3:
Calculate the values of ℏ̆(p)ij by Eq. (6).

ℏ̆(1)ij =


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1


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Table 5. LiDF decision matrix from τ ς2

ζϱ1 ζρ2 ζϱ3 ζρ4 ζρ5

ξδ1(⟨0.46, 0.86⟩, ⟨0.36, 0.40⟩)(⟨0.86, 0.46⟩, ⟨0.26, 0.46⟩)(⟨0.96, 0.86⟩, ⟨0.36, 0.66⟩)(⟨0.46, 0.26⟩, ⟨0.80, 0.66⟩)(⟨0.40, 0.26⟩, ⟨0.46, 0.26⟩)
ξδ2(⟨0.36, 0.66⟩, ⟨0.46, 0.30⟩)(⟨0.66, 0.50⟩, ⟨0.36, 0.26⟩)(⟨0.40, 0.30⟩, ⟨0.36, 0.56⟩)(⟨0.66, 0.36⟩, ⟨0.26, 0.36⟩)(⟨0.50, 0.66⟩, ⟨0.36, 0.20⟩)
ξδ3(⟨0.46, 0.26⟩, ⟨0.30, 0.30⟩)(⟨0.46, 0.96⟩, ⟨0.26, 0.46⟩)(⟨0.66, 0.26⟩, ⟨0.36, 0.26⟩)(⟨0.46, 0.46⟩, ⟨0.46, 0.26⟩)(⟨0.60, 0.36⟩, ⟨0.66, 0.16⟩)
ξδ4(⟨0.60, 0.86⟩, ⟨0.46, 0.20⟩)(⟨0.66, 0.40⟩, ⟨0.30, 0.66⟩)(⟨0.36, 0.66⟩, ⟨0.46, 0.46⟩)(⟨0.30, 0.86⟩, ⟨0.30, 0.40⟩)(⟨0.30, 0.40⟩, ⟨0.26, 0.46⟩)

Table 6. LiDF decision matrix from τ ς3

ζϱ1 ζρ2 ζϱ3 ζρ4 ζρ5

ξδ1(⟨0.36, 0.46⟩, ⟨0.30, 0.46⟩)(⟨0.66, 0.26⟩, ⟨0.66, 0.20⟩)(⟨0.66, 0.20⟩, ⟨036., 0.16⟩)(⟨0.86, 0.16⟩, ⟨0.30, 0.30⟩)(⟨0.66, 0.16⟩, ⟨0.36, 0.26⟩)
ξδ2(⟨0.45, 0.26⟩, ⟨0.30, 0.30⟩)(⟨0.46, 0.26⟩, ⟨0.20, 0.36⟩)(⟨0.36, 0.16⟩, ⟨0.66, 0.20⟩)(⟨0.26, 0.66⟩, ⟨0.40, 0.40⟩)(⟨0.60, 0.46⟩, ⟨0.20, 0.30⟩)
ξδ3(⟨0.60, 0.86⟩, ⟨0.46, 0.20⟩)(⟨0.60, 0.80⟩, ⟨0.60, 0.30⟩)(⟨0.26, 0.60⟩, ⟨0.36, 0.40⟩)(⟨0.36, 0.90⟩, ⟨0.26, 0.10⟩)(⟨0.60, 0.86⟩, ⟨0.46, 0.46⟩)
ξδ4(⟨0.66, 0.40⟩, ⟨0.36, 0.16⟩)(⟨0.46, 0.40⟩, ⟨0.26, 0.46⟩)(⟨0.16, 0.46⟩, ⟨0.30, 0.30⟩)(⟨0.40, 0.60⟩, ⟨0.20, 0.60⟩)(⟨0.40, 0.36⟩, ⟨0.60, 0.20⟩)

ℏ̆(2)ij =


0.7876 0.7600 0.7876 0.7600 0.8176

0.6760 0.6646 0.6460 0.6646 0.6146

0.6646 0.6460 0.6760 0.6600 0.6176

0.6646 0.6146 0.6600 0.6760 0.4460



ℏ̆(3)ij =


0.1064 0.1461 0.1644 0.4969 0.6648

0.1144 0.1747 0.1418 0.1094 0.1061

0.1616 0.4100 0.1694 0.4611 0.1696

0.1111 0.4060 0.4118 0.4478 0.1488


Step 4:
Use LiDFPWA to aggregate all individual LiDF decision matrices Y (p) =

(
P

(p)
ij

)
m×n

into one cumulative assess-

ments matrix of the alternatives W (p) = (Wij)m×n, given below

ζϱ1 ζϱ2 ζϱ3


ξδ1 (⟨0.6661, 0.4180⟩, ⟨0.4113, 0.3446⟩) (⟨0.8660, 0.4434⟩, ⟨0.6080, 0.3416⟩) (⟨0.8848, 0.3463⟩, ⟨0.4340, 0.3138⟩)
ξδ2 (⟨0.6306, 0.3181⟩, ⟨0.3686, 0.3636⟩) (⟨0.6486, 0.4183⟩, ⟨0.4016, 0.3066⟩) (⟨0.6386, 0.1866⟩, ⟨0.3643, 0.3388⟩)
ξδ3 (⟨0.6641, 0.3686⟩, ⟨0.3488, 0.3018⟩) (⟨0.6441, 0.6346⟩, ⟨0.3438, 0.3616⟩) (⟨0.4141, 0.3631⟩, ⟨0.4036, 0.3666⟩)
ξδ4 (⟨0.4634, 0.4881⟩, ⟨0.4180, 0.1640⟩) (⟨0.6006, 0.6083⟩, ⟨0.3066, 0.3646⟩) (⟨0.4343, 0.4680⟩, ⟨0.3666, 0.3368⟩)

ζϱ4 ζϱ5


ξδ1 (⟨0.6666, 0.3333⟩, ⟨0.6408, 0.3381⟩) (⟨0.6646, 0.3066⟩, ⟨0.6886, 0.1466⟩)
ξδ3 (⟨0.4460, 0.3866⟩, ⟨0.3484, 0.3468⟩) (⟨0.4663, 0.3406⟩, ⟨0.3363, 0.3366⟩)
ξδ3 (⟨0.4610, 0.4808⟩, ⟨0.3164, 0.3160⟩) (⟨0.6636, 0.4414⟩, ⟨0.4406, 0.3666⟩)
ξδ4 (⟨0.6641, 0.3366⟩, ⟨0.3440, 0.4106⟩) (⟨0.6408, 0.6661⟩, ⟨0.1864, 0.3333⟩)

Step 5:
Evaluate the values of ℏ̆ij by using Eq. (7).

ℏ̆ij =


1 0.3333 0.4314 0.3074 0.2272

1 0.3233 0.3338 0.2471 0.1334

1 0.3884 0.3073 0.1733 0.0314

1 0.3038 0.2333 0.1481 0.0832



26



Step 6:
Aggregate the LiDF values Wij for each alternative ξδi by the LiDFPWA operator using Eq. (2) given in Table 7.

Table 7. LiDF Aggregated values Wi

W1 (⟨0.7150, 0.3564⟩, ⟨0.5229, 0.2218⟩)
W2 (⟨0.2454, 0.2794⟩, ⟨0.4269, 0.2319⟩)
W3 (⟨0.6296, 0.3477⟩, ⟨0.3181, 0.3313⟩)
W4 (⟨0.5185, 0.5325⟩, ⟨0.3408, 0.2352⟩)

Step 7:
Calculate the score of all LiDF aggregated values Wi.

H(W1) = 0.6969

H(W2) = 0.6259

H(W3) = 0.5735

H(W4) = 0.5595

Step 8:
Rank by score function values.

W1 ≻ W2 ≻ W3 ≻ W4

So,
ξδ1 ≻ ξδ2 ≻ ξδ3 ≻ ξδ4

6 Conclusion

Green supply chain management is crucial for waste reduction, optimizing resources, and minimizing the
environmental impact of operations. A comprehensive strategy covering the entire supply chain, from product
design to transportation, is necessary to implement sustainable practices. By doing so, businesses can improve their
environmental performance, reduce costs, enhance customer satisfaction, and gain a competitive edge in the market.
However, selecting the optimal green provider is a complex and challenging decision-making issue due to competing
characteristics, uncertainties in the physical universe, and a lack of knowledge. To address this, we introduced novel
aggregation operators within a linear-diophantine fuzzy (LiDF) framework, such as the linear Diophantine fuzzy
soft-max average (LiDFSMA) operator and the linear Diophantine fuzzy soft-max geometric (LiDFSMG) operator.
The proposed method was validated using a simple example of a green supplier optimization technique with linear
Diophantine fuzzy content, showcasing the utility and applicability of the proposed method in aiding decision-makers
in selecting the optimal course of action.

The introduction of novel aggregation operators can increase the effectiveness of green supply chains by allowing
decision-makers to choose the best alternative. In conclusion, the proposed method provides a potential means of
improving the efficacy of green supply chains.
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