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Abstract: The attention of many researchers has been drawn to Pythagorean fuzzy information, which involves
Pythagorean fuzzy numbers and their aggregation operators. In this study, the concept of the Pythagorean fuzzy set
is discussed, along with the Hamacher t-norm and t-conorm operators. Furthermore, novel aggregation operators are
developed using the operational rules of the Hamacher t-norm and t-conorm. The primary objective of this article is
to develop a multi-attribute decision-making method in a Pythagorean fuzzy environment using Pythagorean fuzzy
Hamacher aggregation operators. It is noted that the Hamacher operator, which is a generalization of the algebraic
Einstein operator and contains a parameter, is more potent than some existing operators. Finally, an example of an
enterprise application software selection problem is presented to demonstrate the proposed method.

Keywords: Pythagorean fuzzy set; Pythagorean fuzzy number; Hamacher operation; Pythagorean fuzzy Hamacher
aggregation operator; Multi-attribute decision making

1 Introduction

The important and efficient role of the MADM problem in various decision-making domains, such as engineering
and social science, has been widely recognized. MADM approaches are utilized to process and attribute information
to compute a suitable alternative or rank alternatives for decision support. These approaches are exercised in different
domains, including engineering technology, operation research, and management science.

Table 1. List of abbreviations

Abbreviation Full form
AO Aggregation Operator

DEM Decision Matrix
DE Decision Expert
FS Fuzzy Set
IFS Intuitionistic Fuzzy Set

MADM Multi-Attribute Decision Making
MCDM Multi-Criteria Decision Making

MF Membership Function
NMF Non-Membership Function
OR Operational Rule

PyFE Pythagorean Fuzzy Environment
PyFI Pythagorean Fuzzy Information
PyFN Pythagorean Fuzzy Number
PyFS Pythagorean Fuzzy Set

In the Pythagorean Fuzzy Environment (PyFE), various types of traditional decision-making approaches are
available. For instance, Liang et al. [1] developed a new extension of the TOPSIS (The Technique for Order of
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Preference by Similarity to Ideal Solution) approach with the hesitant PyFE, Zhang [2] proposed decision-making
based on similarity measur, Garg [3] proposed strategic decision making with immediate probabilities along with the
Pythagorean Fuzzy Numbers (PyFNs), Yu et al. [4] proposed the TOPSIS method in the interval-valued Pythagorean
fuzzy environment, Zhang [5] proposed the hierarchical QUALIFLEX (The qualitative flexible multiple criteria )
approach in the PyFE, Ren et al. [6] proposed the Pythagorean fuzzy TODIM approach, and Khan et al. [7] proposed
the extension of TOPSIS based on the Choquet integral (See Table 1).

The MCDM approach has also been used in some research papers. Fodor and Roubens [8] elaborated on
axiomatic concepts and procedures of MCDM in a book, while Greco et al. [9] proposed an MCDM approach
that is interpreted in rough set theory. Ho et al. [10] proposed a review article based on supplier evaluation and
selection using the MCDM technique, and Kahraman et al. [11] proposed supplier selection using the Analytic
Hierarchy Process. Malczewski [12] conducted a GIS based MCDM survey from 1990 to 2004, and Mardani et
al. [13] reviewed the literature on studies on energy management problems from 1995 to 2015. Myint et al. [14]
proposed the idea of land use and land cover change using the MCDM approach with the help of Markov chain
and cellular automata analysis. Pohekar and Ramachandran [15] reviewed works of literature on sustainable energy
planning using MCDM, while Rey-Valette et al. [16] proposed an MCDM with a participation-based methodology
for selecting sustainable development indicators. Silvestri [17] proposed a multi-criteria risk analysis technique to
improve safety in manufacturing systems.

In this present article, the Pythagorean Fuzzy Information (PyFI) is used to solve the MADM problem.
Atanassov [18] introduced the notion of Interval Fuzzy Sets (IFS) in 1983, which consist of Membership Function
(MF) and Non-Membership Function (NMF) to deal with the uncertainty of an element’s belongingness to an FS. The
concept of Zadeh’s Fuzzy Sets (FS) [19], which was introduced in 1965 and consisted only of MF, was generalized
by IFS. Yager [20] introduced the notion of Pythagorean Fuzzy Sets (PyFS), which include more fuzzy information
than that of FS and IFS [18]. In other words, PyFS is superior to both FS and IFS in terms of possessing information.
For example, while an IFS does not include the fuzzy information ⟨0.7, 0.5⟩ as 0.7 + 0.5 ̸≤ 1, it can be included in
the PyFS as 0.72 + 0.52 ≤ 1. It is important to note that a member of an IFS belongs to a PyFS, but the converse
may not be valid (see Figure 1).

The Aggregation Operator (AO) is crucial in combining fuzzy information into a single datum and solving a
MADM issue. Various research works have been conducted on the MADM approach in the Pythagorean Fuzzy
Environment (PyFE) based on Dombi averaging and geometric operators. Jana et al. [21] and Khan et al. [22]
proposed Pythagorean fuzzy Dombi AOs. Similarly, Jana et al. [23] introduced Dombi AOs in a bipolar fuzzy
environment [24–26], while Rahman et al. [27] developed Pythagorean fuzzy Einstein weighted geometric AOs to
solve MCDM problems.

Many research works have utilized Hamacher AOs. Gao [28] proposed Pythagorean fuzzy Hamacher prioritized
aggregation operators in MCDM, and Gao et al. [29] introduced dual hesitant bipolar fuzzy Hamacher prioritized
aggregation operator in MCDM. Other studies developed intuitionistic fuzzy Hamacher aggregation operators [30],
single-valued neutrosophic trapezoidal Hamacher aggregation operators [31], picture fuzzy Hamacher aggregation
operators [32], dual hesitant Hamacher aggregation operators [33], Hamacher aggregation operators in the interval-
valued intuitionistic fuzzy environment [34], Hamacher aggregation operators using generalized neutrosophic
numbers [35], hesitant Pythagorean fuzzy Hamacher aggregation operators [36], hesitant fuzzy Hamacher aggregation
operators [37], linguistic intuitionistic fuzzy Hamacher aggregation operators [38], analytical articles regarding the
Hamacher AOs in uncertain MCDM problems [39], m-polar fuzzy Hamacher AOs [40], picture fuzzy Hamacher
AOs [41], bipolar fuzzy Hamacher AOs [42], and dual hesitant Pythagorean fuzzy Hamacher AOs [43]. Additionally,
Wei [44] proposed Hamacher AO in the PyFE, while Wu et al. [45] developed single-valued neutrosophic 2-tuple
linguistic Hamacher AOs in MCDM, and Zhou et al. [46] proposed hesitant fuzzy Hamacher AOs in MCDM.

However, the use of Hamacher AOs with the Pythagorean Fuzzy Information (PyFI) is a novel work in the
MADM approach, which is discussed in this present article. The authors introduced various Pythagorean fuzzy
Hamacher operators, such as Pythagorean fuzzy Hamacher weighted averaging (PyFHWA) operator, Pythagorean
fuzzy Hamacher ordered weighted averaging (PyFHOWA) operator, Pythagorean fuzzy Hamacher hybrid averaging
(PyFHHA) operator, Pythagorean fuzzy Hamacher weighted geometric (PyFHWG) operator, Pythagorean fuzzy
Hamacher ordered weighted geometric (PyFHOWG) operator, and Pythagorean fuzzy Hamacher hybrid geometric
(PyFHHG) operator.

In this research article, the PyFI is used in the aggregation process based on Pythagorean fuzzy Hamacher
averaging and geometric operators to choose the best alternative of enterprise application software, considering the
predefined attributes proposed by the Decision Experts (DEs).

This paper is organized as follows: In section 2, we review some fundamental concepts of Pythagorean Fuzzy
Sets (PyFS), including t-norm and t-conorm operators, as well as Pythagorean fuzzy weighted averaging operator,
Pythagorean fuzzy ordered weighted averaging operator, Pythagorean fuzzy hybrid averaging operator, Pythagorean
fuzzy weighted geometric operator, Pythagorean fuzzy ordered weighted geometric operator, and Pythagorean fuzzy
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hybrid geometric operator.
In section 3, Hamacher t-norm and t-conorm operators are defined. Section 4 discusses three types of Pythagorean

fuzzy averaging operators and their properties, including some theorems. Similarly, section 5 discusses three types
of Pythagorean fuzzy geometric operators and their properties, including some theorems.

In section 6, an algorithm is presented for solving a MADM problem based on the Pythagorean fuzzy Hamacher
weighted averaging (PyFHWA) operator and Pythagorean fuzzy Hamacher weighted geometric (PyFHWG) operator.
A numerical example of selecting the best enterprise application software is provided in the same section. Finally,
in section 7, we draw a conclusion.

Figure 1. Graphical presentation of PyFS, IFS and FS.

2 Preliminaries

A concise review has been done along with triangular norm (t-norm) and triangular connorm (t-conorm)
operators [47, 48].

Definition 2.1 [20, 49, 50] (PyFS)
PyFS on the universe of discourse U is defined by P̃ =

{〈
ϱ,TP̃(ϱ),ℵP̃(ϱ)

〉
: ϱ ∈ U

}
, where the MFTP̃ :

U → [0, 1], NMFℵP̃ : U → [0, 1] are constrined as 0 ≤ T2
P̃
(ϱ) + ℵ2

P̃
(ϱ) ≤ 1. Another function πP̃ : U → [0, 1] is

arisen which is related to the MF and NMF functions by the relation T2
P̃
(ϱ)+ℵ2

P̃
(ϱ)+ π2

P̃
(ϱ) = 1 for all ϱ ∈ U i.e.,

πP̃(ϱ) =

√
1−

(
T2
P̃
(ϱ) + ℵ2

P̃
(ϱ)

)
, which is called the degree of hesitation margin or indeterminacy function. For

given ϱ ∈ U,
〈
TP̃(ϱ),ℵP̃(ϱ)

〉
is called the Pythagorean fuzzy value corresponding to the PyFS, P̃ and it is denoted

as P̃ =
〈
TP̃,ℵP̃

〉
in short and named as PyFN.

Definition 2.2 [51] (t-norm and t-conorm operators)
t-norm or triangular norm operator is a binary, conjunctive type operator which maps unit square to the unit

interval, i.e., t: [0, 1]2 → [0, 1] and satisfies the properties as follows:
(i) t (0, ϱ1) = 0, t (1, ϱ1) = ϱ1, for all ϱ1 ∈ [0, 1].
(ii) t (ϱ1, ϱ2) = t (ϱ2, ϱ1), for all ϱ1, ϱ2 ∈ [0, 1].
(iii) t (ϱ1, t (ϱ2, ϱ3)) = t (t (ϱ1, ϱ2) , ϱ3), for all ϱ1, ϱ2, ϱ3 ∈ [0, 1].
(iv) t (ϱ1, ϱ2) ≤ t (ϱ′1, ϱ

′
2), for all ϱ1 ≤ ϱ′1, ϱ2 ≤ ϱ′2 and ϱ1, ϱ2, ϱ

′
1, ϱ

′
2 ∈ [0, 1].

t-conorm or s-norm or triangular conorm operator is a binary, disjunctive type operator which maps unit square
to the unit interval, i.e., s : [0, 1]2 → [0, 1] and satisfies the following properties as follows:
(i) s (0, ϱ1) = ϱ1, s (1, ϱ1) = 1.
(ii) s (ϱ1, ϱ2) = s (ϱ2, ϱ1), for all ϱ1, ϱ2 ∈ [0, 1].
(iii) s (ϱ1, s (ϱ2, ϱ3)) = s (s (ϱ1, ϱ2) , ϱ3), for all ϱ1, ϱ2, ϱ3 ∈ [0, 1].
(iv) s (ϱ1, ϱ2) ≤ s (ϱ′1, ϱ

′
2), for all ϱ1 ≤ ϱ′1, ϱ2 ≤ ϱ′2 and for all ϱ1, ϱ2, ϱ′1, ϱ′2 ∈ [0, 1].
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Both the operators are related by the relation s(a, b) = 1− t(1− a, 1− b) i.e., they satisfy the De’Morgan’s duality
for all (a, b) ∈ [0, 1]2.

Definition 2.3 [52] (Score function): Let PyFS(U) denotes all PyFSs on the universe of discourse U. The score
function ℘ = ⟨T℘̃,ℵ℘̃⟩ ∈ PyFS(U) is denoted as Sc(℘̃) and defined as Sc(℘̃) = T2

℘̃−ℵ2
℘̃. Clearly, Sc(℘̃) ∈ [−1, 1].

For any two PyFNs ℘̃1 and ℘̃2, if Sc (℘̃1) > Sc (℘̃2) then ℘̃1 > ℘̃2 and if Sc (℘̃1) = Sc (℘̃2) then ℘̃1 = ℘̃2.
Sometimes, the score function in definition-2.3 may give an unreasonable result. For example, the score values

of two PyFNs, ⟨0.5, 0.5⟩ and ⟨0.6, 0.6⟩, remain the same and which implies that the two PyFNs are equal. However,
clearly, it is seen that they never are equal. It was pointed out by Peng and Yang [53] and defined the accuracy
function of PyFNs.

Definition 2.4 [53] (Accuracy function): Let PyFS(U) denotes all PyFSs on the universe of discourse U. The
accuracy function of ℘̃ = ⟨T℘̃,ℵ℘̃⟩ ∈ PyFS(U) is denoted as Ac(℘̃) and defined as Ac(℘̃) = T2

℘̃ + ℵ2
℘̃. Clearly,

Ac(℘̃) ∈ [0, 1].
The score function and accuracy function are useful tools to determine the order of a given set of PyFNs. Hence

PyFS(U), with the score function and accuracy function, forms a totally ordered set, and the order of two PyFNs are
proposed by Peng and Yang [53] as follows:
(i) If Sc (℘̃1) < Sc (℘̃2), then ℘̃1 < ℘̃2.
(ii) If Sc (℘̃1) > Sc (℘̃2), then ℘̃1 > ℘̃2,
(iii) If Sc (ρ̃1) = Sc (℘̃2), then
(a) If Ac (℘̃1) < Ac (℘̃2), then ℘̃1 < ℘̃2,
(b) If Ac (℘̃1) > Ac (℘̃2), then ℘̃1 > ℘̃2,
(c) If Ac (℘̃1) = Ac (℘̃2), then ℘̃1 ≃ ℘̃2,
where ℘̃1 =

〈
T̃℘̃1

,ℵ℘1

〉
∈ PyFS(U) and ℘̃2 =

〈
T̃℘̃2

,ℵ℘̃2

〉
∈ PyFS(U).

Definition 2.5 [54–56] (Lattice structure of PyFNs):
Let PyFN(U) be the set of Pythagorean fuzzy numbers on U and ≤L be a partial order relation defined on PyFN(U).
℘̃1 = ⟨T℘̃1

,ℵ℘̃1
⟩, ℘̃2 = ⟨T℘̃2

,ℵ℘̃2
⟩ be two Pythagorean fuzzy numbers on PyFN(U). Now ℘̃1 ≤L ℘̃2 =⇒

T℘̃1
≤ T℘̃2

and ℵ℘̃1
≥ ℵ℘̃2

. Thus (PyFN(U),≤L) forms a lattice with the partial order relation defined above
containing ⟨0, 1⟩ as bottom element and ⟨1, 0⟩ as top element of the Lattice.

Lemma 2.1 Let ã = ⟨a1, a2⟩, b̃ = ⟨b1, b2⟩ be two PyFNs. If ã ≤L b̃ then ã ≤ b̃ but the converse may not be true.
proof: Here, ã = ⟨a1, a2⟩, b̃ = ⟨b1, b2⟩. We know ã ≤L b̃ implies a1 ≤ b1 and a2 ≥ b2.
Now, Sc(ã) = a21 − a22 ≤ b21 − b22 = Sc(b̃) i.e., Sc(ã) ≤ Sc(b̃).
Case-1: If Sc(ã) < Sc(b̃), then ã < b̃.

Case-2: If Sc(ã) = Sc(b̃), then we have to check corresponding accuracy values.
Since, a1 ≤ b1 and a2 ≥ b2 we suppose that b1 = a1 + p and a2 = b2 + q, where the scalars p, q ≥ 0.
Then ã = ⟨a1, b2 + q⟩ and b̃ = ⟨a1 + p, b2⟩.
Therefore Sc(ã) = Sc(b̃) implies that a21 − (b2 + q)2 = (a1 + p)2 − b22.
i.e., 2pa1 + 2qb2 + p2 + q2 = 0, which is possible for any a1, b2 only when p = 0 and q = 0 simultaneously.
Then, Ac(ã) = a21 + (b2 + q)2 = a21 + b22, as q = 0.
Ac(b̃) = (a1 + p)2 + b22 = a21 + b22, as p = 0.
Thus, in this case Sc(ã) = Sc(b̃) and Ac(ã) = Ac(b̃).
Hence, ã = b̃.
Hence, from Case-1 and Case-2 we can write that if ã ≤L b̃ then ã ≤ b̃.

To prove the converse part, we take ã = ⟨0.7, 0.6⟩ and b̃ = ⟨0.5, 0.2⟩.
Now Sc(ã) = 0.49− 0.36 = 0.13 and Sc(b̃) = 0.25− 0.04 = 0.21.
Thus, ã ≤ b̃. But it does not imply ã ≤L b̃ because, although it satisfies a2 ≥ b2, it does not satisfy the condition
a1 ≤ b1.

Properties 1 [53] For any two PyFNs, ℘̃1 = ⟨T℘̃1,ℵ℘̃1
⟩,℘̃2 = ⟨T℘̃2

,ℵ℘̃2
⟩ defined on the universe of discourse

U, the containment, equality, union, intersection and complement operational laws respectively are as follows:
(i) ℘̃1 ⊆ ℘̃2 iff T℘̃1(ϱ) ≤ T℘̃2(ϱ),ℵ℘̃1(ϱ) ≥ ℵ℘̃2(ϱ), for all ϱ ∈ U.
(ii) ℘̃1 = ℘̃2 iff ℘̃1 ⊆ ℘̃2 and ℘̃1 ⊇ ℘̃2.
(iii) ℘̃1 ∪ ℘̃2 = ⟨max{T℘̃1

,T℘̃2
},min{ℵ℘̃1

,ℵ℘̃2
}⟩.

(iv) ℘̃1 ∩ ℘̃2 = ⟨min{T℘̃1
,T℘̃2

},max{ℵ℘̃1
,ℵ℘̃2

}⟩.
(v) ℘̃1

c = ⟨ℵ℘̃1
,T℘̃1

⟩.
Definition 2.6 [49, 52] (Operations on PyFNs):

For any three PyFNs, ℘̃ = ⟨T℘̃,ℵ℘̃⟩,℘̃1 = ⟨T℘̃1 ,ℵ℘̃1⟩,℘̃2 = ⟨T℘̃2 ,ℵ℘̃2⟩ in PyNS(U) and for scalar τ > 0 the basic
operational rules on PyFNs are as follows:
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(i) ℘̃1 ⊕ ℘̃2 = ⟨
√
T2
℘̃1

+ T2
℘̃2

− T2
℘̃1
T2
℘̃2
,ℵ℘̃1ℵ℘̃2⟩.

(ii) ℘̃1 ⊗ ℘̃2 = ⟨T℘̃1
T℘̃2

,
√
ℵ2
℘̃1

+ ℵ2
℘̃2

− ℵ2
℘̃1
ℵ2
℘̃2
⟩.

(iii) τ℘̃ = ⟨
√
1− (1− T2

℘̃)
τ ,ℵτ

℘̃⟩.

(iv) ℘̃τ = ⟨Tτ
℘̃,

√
1− (1− ℵ2

℘̃)
τ ⟩.

Yager [57] introduced some properties on the operational laws of PyFNs, which are given below:

Theorem 2.1 For any three PyFNs, ℘̃1 = ⟨T℘̃1
,ℵ℘̃1

⟩, ℘̃2 = ⟨T℘̃2
,ℵ℘̃2

⟩, ℘̃3 = ⟨T℘̃3
,ℵ℘̃3

⟩ in PyFN(U) and for
any scalar τ1 > 0, τ2 > 0.

(i) ℘̃1 ⊕ ℘̃2 = ℘̃2 ⊕ ℘̃1.

(ii) ℘̃1 ⊗ ℘̃2 = ℘̃2 ⊗ ℘̃1.

(iii) τ1(℘̃1 ⊕ ℘̃2) = τ1℘̃1 ⊕ τ1℘̃2.

(iv) (℘̃1 ⊗ ℘̃2)
τ1 = ℘̃1

τ1 ⊗ ℘̃2
τ1 .

(v) τ1℘̃1 ⊕ τ2℘̃1 = (τ1 + τ2)℘̃1.

(vi) ℘̃1
τ1 ⊗ ℘̃1

τ2 = ℘̃1
τ1+τ2 .

(vii) ℘̃1 ⊕ (℘̃2 ⊕ ℘̃3) = (℘̃1 ⊕ ℘̃2)⊕ ℘̃3.

(viii) ℘̃1 ⊗ (℘̃2 ⊗ ℘̃3) = (℘̃1 ⊗ ℘̃2)⊗ ℘̃3.

To aggregate a given set of PyFNs, some Pythagorean averaging and geometric type AOs are used. The basic
Pythagorean fuzzy AOs which are constructed on the basis of binary operators ⊕, ⊗ defined earlier on PyFNs(U)
are defined below.

Definition 2.7 [58, 59] (Pythagorean fuzzy weighted averaging (PyFWA) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFWA operator is a mapping

PyFWAℓ : P
ℏ → P which is defined below.

PyFWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ℘̃ȷ),

where, ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T be a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1.

Hence, PyFWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓℏ℘̃ℏ=

〈√√√√1−
ℏ∏

ȷ=1

(1− T2
℘̃ȷ
)ℓȷ ,

ℏ∏
ȷ=1

ℵℓȷ
℘̃ȷ

〉
.

Definition 2.8 [60] (Pythagorean fuzzy ordered weighted averaging (PyFOWA) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFOWA operator is a mapping
PyFOWAℓ : P

ℏ → P which is defined below.

PyFOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ℘̃σ(ȷ)),

where, ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and (σ(1), σ(2), ..., σ(ℏ))

is a permutation of (1,2,...,ℏ) such that ℘̃σ(ȷ−1) ≥ ℘̃σ(ȷ) for all ȷ = 2, 3, ..., ℏ.

Hence, PyFOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓℏ℘̃ℏ=

〈√√√√1−
ℏ∏

ȷ=1

(1− T2
℘̃σ(ȷ)

)ℓȷ ,

ℏ∏
ȷ=1

ℵℓȷ
℘̃σ(ȷ)

〉
.
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Definition 2.9 [58, 61] (Pythagorean fuzzy hybrid averaging (PyFHA) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFHA operator is a mapping
PyFHAℓ,Ω : Pℏ → P which is defined below.

PyFHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)),

where, ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and ℘̃∗
ȷ = ℏΩȷ℘̃ȷ

and (σ(1), σ(2), ..., σ(ℏ)) is a permutation of (1, 2, ..., ℏ) such that ℘̃∗
σ(ȷ−1) ≥ ℘̃∗

σ(ȷ) for all ȷ = 2, 3, ..., ℏ and

Ω = (Ω1,Ω2, ...,Ωℏ)
T is a associated weight vector such that Ωȷ ∈ [0, 1] for all ȷ = 1, 2, 3, ..., ℏ and

ℏ∑
ȷ=1

Ωȷ = 1.

Hence, PyFHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃
∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2) ⊕ ...⊕ ℓℏ℘̃

∗
σ(ℏ)=

〈√√√√1−
ℏ∏

ȷ=1

(1− T2
℘̃∗

σ(ȷ)
)ℓȷ ,

ℏ∏
ȷ=1

ℵℓȷ
℘̃∗

σ(ȷ)

〉
.

Lemma 2.2 If ℓ = ( 14 ,
1
4 ,

1
4 ,

1
4 )

T then PyFHAℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) = PyFWAΩ(℘̃1, ℘̃2, ℘̃3, ℘̃4).
proof: It is given that ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) = ( 14 ,

1
4 ,

1
4 ,

1
4 ) and Ω = (Ω1,Ω2,Ω3,Ω4) be an associated weight

vector.
Now we have ℘̃∗

ȷ = 4Ωȷ℘̃ȷ for ȷ = 1, 2, 3, 4.
Suppose, without loss of generality that, ℘̃∗

2 ≥ ℘̃∗
1 ≥ ℘̃∗

4 ≥ ℘̃∗
3 i.e., ℘̃∗

σ(1) ≥ ℘̃∗
σ(2) ≥ ℘̃∗

σ(3) ≥ ℘̃∗
σ(4).

Hence, PyFHAℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) =

4⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ))

= ℓ1℘̃
∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2) ⊕ ℓ3℘̃

∗
σ(3) ⊕ ℓ4℘̃

∗
σ(4)

=
1

4
[℘̃∗

σ(1) ⊕ ℘̃∗
σ(2) ⊕ ℘̃∗

σ(3) ⊕ ℘̃∗
σ(4)] =

1

4
[℘̃∗

2 ⊕ ℘̃∗
1 ⊕ ℘̃∗

4 ⊕ ℘̃∗
3] =

1

4
[4Ω2℘̃2 ⊕ 4Ω1℘̃1 ⊕ 4Ω4℘̃4 ⊕ 4Ω3℘̃3] =

4⊕
ȷ=1

(Ωȷ℘̃ȷ) = PyFWAΩ(℘̃1, ℘̃2, ℘̃3, ℘̃4).

Theorem 2.2 If ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T = ( 1ℏ ,

1
ℏ , ...,

1
ℏ )

T then PyFHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) =
PyFWAΩ(℘̃1, ℘̃2, ..., ℘̃ℏ).

proof: The proof is similar to the proof of Theorem 4.11.
Lemma 2.3
If Ω = (14 ,

1
4 ,

1
4 ,

1
4 )

T then PyFHAℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) = PyFOWAℓ(℘̃1, ℘̃2, ℘̃3, ℘̃4).
proof: Now we have Ω = (Ω1,Ω2,Ω3,Ω4) = (14 ,

1
4 ,

1
4 ,

1
4 )

T and ℓ = (ℓ1, ℓ2, ℓ3, ℓ4)
T as weight vectors.

Now,we have ℘̃∗
ȷ = 4Ωȷ℘̃ȷ, which becomes ℘̃∗

ȷ = ℘̃ȷ ∀ ȷ = 1, 2, 3, 4.
Suppose, without loss of generality, ℘̃∗

2 ≥ ℘̃∗
1 ≥ ℘̃∗

4 ≥ ℘̃∗
3 i.e.,

℘̃∗
σ(1) ≥ ℘̃∗

σ(2) ≥ ℘̃∗
σ(3) ≥ ℘̃∗

σ(4)

PyFHAℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) =

4⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)) = ℓ1℘̃

∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2) ⊕ ℓ3℘̃

∗
σ(3) ⊕ ℓ4℘̃

∗
σ(4)

=

4⊕
ȷ=1

(ℓȷ℘̃σ(ȷ)) = PyFOWAℓ(℘̃1, ℘̃2, ℘̃3, ℘̃4).

Theorem 2.3 If Ω = (Ω1,Ω2, ...,Ωℏ)
T = ( 1ℏ ,

1
ℏ , ...,

1
ℏ )

T then PyFHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ)
= PyFOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ).

proof: The proof is similar to the proof of Theorem 4.12.
It is clear from Theorem 2.2, and Theorem 2.3 that PyFWA, PyFOWA operators are the particular cases of PyFHA
operator or PyFHA operator is the generalization of PyFWA and PyFOWA operators.

Definition 2.10 [27, 41] (Pythagorean fuzzy weighted geometric (PyFWG) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of Pythagorean fuzzy numbers in PyFN(U). PyFWG operator
is a mapping PyFWGℓ : P

ℏ → P which is defined below.

PyFWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃ȷ)
ℓȷ ,

where ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1.
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That is PyFWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃1
ℓ1 ⊗ ℘̃2

ℓ2 ⊗ ...⊗ ℘̃ℏ
ℓℏ=

〈 ℏ∏
ȷ=1

T
ℓȷ
℘̃ȷ
,

√√√√1−
ℏ∏

ȷ=1

(1− ℵ2
℘̃ȷ
)ℓȷ

〉
.

Definition 2.11 [62] (Pythagorean fuzzy ordered weighted geometric (PyFOWG) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFOWG operator is a mapping

PyFOWGℓ : P
ℏ → P which is defined below.

PyFOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃
ℓȷ
σ(ȷ)),

where, ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and (σ(1), σ(2), ..., σ(ℏ))

is a permutation of (1,2,...,ℏ) such that ℘̃σ(ȷ−1) ≥ ℘̃σ(ȷ) for all ȷ = 2, 3, ..., ℏ.
That is PyFOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ)

= ℘̃ℓ1
σ(1) ⊗ ℘̃ℓ2

σ(2) ⊗ ...⊗ ℘̃ℓℏ
σ(ℏ)=

〈 ℏ∏
ȷ=1

T
ℓȷ
℘̃σ(ȷ)

,

√√√√1−
ℏ∏

ȷ=1

(1− ℵ2
℘̃σ(ȷ)

)ℓȷ

〉
.

Definition 2.12 [63] (Pythagorean fuzzy hybrid geometric (PyFHG) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFHG operator is a mapping

PyFHGℓ,Ω : Pℏ → P which is defined below.

PyFHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ ,

where, ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and ℘̃∗
ȷ = (℘̃ȷ)

ℏΩȷ

and (σ(1), σ(2), ..., σ(ℏ)) is a permutation of (1, 2, ..., ℏ) such that ℘̃∗
σ(ȷ−1) ≥ ℘̃∗

σ(ȷ) for all ȷ = 2, 3, ..., ℏ and

Ω = (Ω1,Ω2, ...,Ωℏ)
T is a associated weight vector such that Ωȷ ∈ [0, 1] for all ȷ = 1, 2, 3, ..., ℏ and

ℏ∑
ȷ=1

Ωȷ = 1.

That is PyFHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ)

= (℘̃∗
σ(1))

ℓ1 ⊗ (℘̃∗
σ(2))

ℓ2 ⊗ ...⊗ (℘̃∗
σ(ℏ))

ℓℏ=

〈 ℏ∏
ȷ=1

T
ℓȷ
℘̃∗

σ(ȷ)

√√√√1−
ℏ∏

ȷ=1

(1− ℵ2
℘̃∗

σ(ȷ)
)ℓȷ

〉
.

Lemma 2.4 If ℓ = ( 14 ,
1
4 ,

1
4 ,

1
4 )

T then PyFHGℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) = PyFWGΩ(℘̃1, ℘̃2, ℘̃3, ℘̃4).
Proof: We have ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) = (14 ,

1
4 ,

1
4 ,

1
4 ) and Ω = (Ω1,Ω2,Ω3,Ω4) as weight vectors.

Now, ℘̃∗
ȷ = (℘̃ȷ)

4Ωȷ for ȷ = 1, 2, 3, 4.
Suppose, without loss of generality, that ℘̃∗

2 ≥ ℘̃∗
1 ≥ ℘̃∗

4 ≥ ℘̃∗
3

i.e., ℘̃∗
σ(1) ≥ ℘̃∗

σ(2) ≥ ℘̃∗
σ(3) ≥ ℘̃∗

σ(4)

Hence, PyFHGℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) =

4⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ

= (℘̃∗
σ(1))

ℓ1 ⊗ (℘̃∗
σ(2))

ℓ2 ⊗ (℘̃∗
σ(3))

ℓ3 ⊗ (℘̃∗
σ(4))

ℓ4

=
4⊗

ȷ=1

(Ωȷ℘̃ȷ) = PyFWGΩ(℘̃1, ℘̃2, ℘̃3, ℘̃4).

Theorem 2.4 If ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T = ( 1ℏ ,

1
ℏ , ...,

1
ℏ )

T thenPyFHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFWGΩ(℘̃1, ℘̃2, ..., ℘̃ℏ).
proof: The proof is similar as Theorem 5.11.
Lemma 2.5 If Ω = (14 ,

1
4 ,

1
4 ,

1
4 )

T then PyFHGℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) = PyFOWGℓ(℘̃1, ℘̃2, ℘̃3, ℘̃4).
Proof: We have Ω = (Ω1,Ω2,Ω3,Ω4) = ( 14 ,

1
4 ,

1
4 ,

1
4 )

T and ℓ = (ℓ1, ℓ2, ℓ3, ℓ4)
T as weight vectors.

Now, ℘̃∗
ȷ = (℘̃ȷ)

4Ωȷ , which becomes ℘̃∗
ȷ = ℘̃ȷ ∀ ȷ = 1, 2, 3, 4

Without loss of generality, we assume that ℘̃∗
2 ≥ ℘̃∗

1 ≥ ℘̃∗
4 ≥ ℘̃∗

3

i.e., ℘̃∗
σ(1) ≥ ℘̃∗

σ(2) ≥ ℘̃∗
σ(3) ≥ ℘̃∗

σ(4).

Therefore, PyFHGℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) =

4⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ = (℘̃∗
σ(1))

ℓ1 ⊗ (℘̃∗
σ(2))

ℓ2 ⊗ (℘̃∗
σ(3))

ℓ3 ⊗ (℘̃∗
σ(4))

ℓ4

=

4⊗
ȷ=1

(℘̃σ(ȷ))
ℓȷ = PyFOWGℓ(℘̃1, ℘̃2, ℘̃3, ℘̃4).

Theorem 2.5 If Ω = (Ω1,Ω2, ...,Ωℏ)
T = ( 1ℏ ,

1
ℏ , ...,

1
ℏ )

T then PyFHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ)
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= PyFOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ).
Proof: The proof is similar as Theorem 5.12.
It is clear from the Theorem 2.4 and Theorem 2.5 that PyFWG and PyFOWG operators are the particular cases

of the PyFHG operator, or it can be said that the PyFHG operator is the generalization of PyFWG and PyFOWG
operators.

3 Hamacher t-norm and Hamacher t-conorm

Hamacher introduced the Hamacher t-norm and Hamacher t-conorm operators. Liu and Peide [34] proposed the
de

nitions of the same, Lu et al. [64] as follows:
Definition 3.1 (Hamacher t-norm operator and Hamacher t-conorm operator)

Hamacher t-norm is a function ⊗H : [0, 1]2 → [0, 1] which is defined below.
a⊗H b = ab

κ+(1−κ)(a+b−ab) for all (a, b) ∈ [0, 1]2 and scalar parameter κ > 0.
Hamacher t-conorm operator is a function ⊕H : [0, 1]2 → [0, 1] which is defined below.

a⊕H b = a+b−ab−(1−κ)ab
1−(1−κ)ab ∀ (a, b) ∈ [0, 1]2 and scalar parameter κ > 0.

Case-1: If κ = 1 then a⊗H b = ab, which is basic algebraic t-norm operator and a⊕H b = a+ b− ab, which is
basic algebraic t-conorm operator.
Case-2: If κ = 2 then a⊗H b = ab

1+(1−a)(1−b) , which is called Einstein t-norm operator and a⊕H b = a+b
1+ab , which

is called Einstein t-conorm operator.
Example 1 Let a = 0.7, b = 0.4 and κ = 2 then

a⊗H b =
0.7× 0.4

2 + (1− 2)(0.7 + 0.4− 0.28)
= 0.237 ∈ [0, 1]

a⊕H b =
0.7 + 0.4− 0.4× 0.7− (1− 2)× 0.7× 0.4

1− (1− 2)× 0.7× 0.4
= 0.781 ∈ [0, 1]

We have applied Hamacher t-norm and Hamacher t-conorm on real numbers on [0, 1], but now we are going to
apply those operators on PyFNs and with the help of Hamacher t-norm and t-conorm operations [34, 36] and basic
Pythagorean fuzzy ORs [49, 52] we get the following ORs which are defined as follows:

3.1 ORs on Pythagorean Fuzzy Numbers Based on Hamacher t-norm and Hamacher t-conorm Operators

Let ℘̃ = ⟨T℘̃,ℵ℘̃⟩, ℘̃1 = ⟨T℘̃1
,ℵ℘̃1

⟩ and ℘̃2 = ⟨T℘̃2
,ℵ℘̃2

⟩ be three PyFNs in PyFN(U) and τ > 0 be an any
scalar. The basic ORs [55] are as follows:

(i) ℘̃1 ⊕H ℘̃2 =

〈√
T2

℘̃1
+T2

℘̃2
−T2

℘̃1
T2

℘̃2
−(1−κ)T2

℘̃1
T2

℘̃2

1−(1−κ)T2
℘̃1

T2
℘̃2

,
ℵ℘̃1

ℵ℘̃2√
κ+(1−κ)(ℵ2

℘̃1
+ℵ2

℘̃2
−ℵ2

℘̃1
ℵ2
℘̃2

)

〉
.

(ii) ℘̃1 ⊗H ℘̃2 =

〈
T℘̃1

T℘̃2√
κ+(1−κ)(T2

℘̃1
+T2

℘̃2
−T2

℘̃1
T2

℘̃2
)
,

√
ℵ2
℘̃1

+ℵ2
℘̃2

−ℵ2
℘̃1

ℵ2
℘̃2

−(1−κ)ℵ2
℘̃1

ℵ2
℘̃2

1−(1−κ)ℵ2
℘̃1

ℵ2
℘̃2

〉
.

(iii) τ℘̃ =

〈√
{1+(κ−1)T2

℘̃}τ−(1−T2
℘̃)

τ

{1+(κ−1)T2
℘̃}τ+(κ−1)(1−T2

℘̃)
τ ,

√
κ(ℵτ

℘̃)√
{1+(κ−1)(1−ℵ2

℘̃)}τ+(κ−1)ℵ2τ
℘̃

〉
.

(iv) ℘̃τ =

〈
√
κ(Tτ

℘̃)√
{1+(κ−1)(1−T2

℘̃)}τ+(κ−1)T2τ
℘̃

,

√
{1+(κ−1)ℵ2

℘̃}τ−(1−ℵ2
℘̃)

τ

{1+(κ−1)ℵ2
℘̃}τ+(κ−1)(1−ℵ2

℘̃)
τ

〉
.

4 Pythagorean Fuzzy Hamacher Averaging Operators

In this section, three types of Pythagorean fuzzy Hamacher averaging operators have been discussed, which are
the Pythagorean fuzzy Hamacher weighted averaging (PyFHWA) operator, Pythagorean fuzzy Hamacher ordered
weighted averaging (PyFHOWA) operator and Pythagorean fuzzy Hamacher hybrid averaging (PyFHHA) operator.
Now

⊕H and
⊗H are denoted as

⊕
and

⊗
, respectively, and the definitions of those operators are as follows:

4.1 Pythagorean Fuzzy Hamacher Weighted Averaging Operator

Definition 4.1 (Pythagorean fuzzy Hamacher weighted averaging (PyFHWA) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFHWA operator is a mapping

PyFHWAℓ : P
ℏ → P, defined below.

PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ℘̃ȷ),
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where, ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1.

Theorem 4.1 Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). Then prove that
PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓℏ℘̃ℏ

=

〈
√√√√√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

ℏ∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉

Proof: For ℏ = 2, we have PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃1 ⊕ ℓ2℘̃2.
Now, ℓ1℘̃1 =〈√

{1+(κ−1)T2
℘̃1

}ℓ1−(1−T2
℘̃1

)ℓ1

{1+(κ−1)T2
℘̃1

}ℓ1+(κ−1)(1−T2
℘̃1

)ℓ1
,

√
κℵℓ1

℘̃1√
{1+(κ−1)(1−ℵ2

℘̃1
)}ℓ1+(κ−1)ℵ2ℓ1

℘̃1

〉
and ℓ2℘̃2=〈√

{1+(κ−1)T2
℘̃2

}ℓ2−(1−T2
℘̃2

)ℓ2

{1+(κ−1)T2
℘̃2

}ℓ2+(κ−1)(1−T2
℘̃2

)ℓ2
,

√
κℵℓ2

℘̃2√
{1+(κ−1)(1−ℵ2

℘̃2
)}ℓ2+(κ−1)ℵ2ℓ2

℘̃2

〉

∴ ℓ1℘̃1 ⊕ ℓ2℘̃2 =

〈√
{1+(κ−1)T2

℘̃1
}ℓ1{1+(κ−1)T2

℘̃2
}ℓ2−(1−T2

℘̃1
)ℓ1 (1−T2

℘̃2
)ℓ2

{1+(κ−1)T2
℘̃1

}ℓ1{1+(κ−1)(1−ℵ2
℘̃2

)}ℓ2+(κ−1)(1−T2
℘̃1

)ℓ1 (1−T2
℘̃2

)ℓ2
,

√
κℵℓ1

℘̃1
ℵℓ2
℘̃2√

{1+(κ−1)(1−ℵ2
℘̃1

)}ℓ1{1+(κ−1)(1−ℵ2
℘̃2

)}ℓ2+(κ−1)ℵ2ℓ1
℘̃1

ℵ2ℓ2
℘̃2

〉
.

i.e., PyFHWA(℘̃1, ℘̃2) = ℓ1℘̃1 ⊕ ℓ2℘̃2 =

〈
√√√√√√√√√√

2∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

2∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

2∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

2∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

2∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

2∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

2∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉
.

That is, the theorem is valid for ℏ = 2.
We assume that the theorem is true for ℏ = ς ∈ N i.e.,
PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ς) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓς ℘̃ς=

〈√√√√√√√√√
ς∏

ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ς∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ς∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ς∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

ς∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ς∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ς∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉
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∴ PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓς ℘̃ς ⊕ ℓς+1℘̃ς+1

= PyFHWA(ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓς ℘̃ς)⊕ ℓς+1℘̃ς+1

=

〈√√√√√√√√√
ς∏

ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ς∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ς∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ς∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

ς∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ς∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ς∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉
⊕

〈√
{1+(κ−1)T2

℘̃ς+1
}ℓς+1−(1−T2

℘̃ς+1
)ℓς+1

{1+(κ−1)T2
℘̃ς+1

}ℓς+1+(κ−1)(1−T2
℘̃ς+1

)ℓς+1
,

√
κ·ℵ

ℓς+1
℘̃ς+1√

{1+(κ−1)(1−ℵ2
℘̃ς+1

)}ℓς+1+(κ−1)ℵ
2ℓς+1
℘̃ς+1

〉
=

〈
√√√√√√√√√√

ς+1∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ς+1∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ς+1∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ς+1∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

ς+1∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ς+1∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ς+1∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉
.

Hence the theorem is true for ℏ = ς + 1 when it is assumed to be true for ℏ = ς . It is also proved that the theorem is
true for ℏ = 2. Then by Mathematical induction, we can say that the theorem is true for all ℏ ∈ N.
Therefore, PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓℏ℘̃ℏ

=

〈
√√√√√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

ℏ∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉
for all ℏ ∈ N. It can also be proved that the resultant number

is also a PyFN.
The value of this operator concerning some PyFNs is shown in Example 2.

Example 2 Let ℘̃1 = ⟨0.7, 0.6⟩, ℘̃2 = ⟨0.5, 0.4⟩, ℘̃3 = ⟨0.7, 0.3⟩, ℘̃4 = ⟨0.3, 0.4⟩, ℘̃4 = ⟨0.3, 0.4⟩ be the four
PyFNs with the weight vector ℓ = (0.2, 0.1, 0.3, 0.4)T and for κ = 3,
PyFHWAℓ(℘̃1, ℘̃2, ℘̃3, ℘̃4) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ℓ3℘̃3 ⊕ ℓ4℘̃4

=

〈
√√√√√√√√√√

4∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

4∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

4∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

4∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,
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√
κ

4∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

4∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

4∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉
= ⟨0.497, 0.422⟩.

Theorem 4.2 (Idempotency Property)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). If ℘̃ȷ = ℘̃ for all ȷ = 1, 2, ..., ℏ then

PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃.
Proof: We have PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃1 ⊕ ℓ2℘̃2 ⊕ ...⊕ ℓℏ℘̃ℏ

=

〈
√√√√√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

,

√
κ

ℏ∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

〉

As ℘̃ȷ = ℘̃ for all ȷ=1,2,...,ℏ i.e ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ = ⟨T℘̃,ℵ℘̃⟩ for all ȷ = 1, 2, ..., ℏ then

PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ)=

〈
√√√√√√√√√√√

{1+(κ−1)T2
℘̃}

ℏ∑
ȷ=1

ℓȷ

−(1−T2
℘̃)

ℏ∑
ȷ=1

ℓȷ

{1+(κ−1)T2
℘̃}

ℏ∑
ȷ=1

ℓȷ

+(κ−1)(1−T2
℘̃)

ℏ∑
ȷ=1

ℓȷ

,
√
κ·(ℵ℘̃)

ℏ∑
ȷ=1

ℓȷ

√√√√√√√
{1+(κ−1)(1−ℵ2

℘̃)}

ℏ∑
ȷ=1

ℓȷ

+(κ−1)(ℵ℘̃)

2

ℏ∑
ȷ=1

ℓȷ

〉

As we have PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ)=〈√
{1+(κ−1)T2

℘̃}−(1−T2
℘̃)

{1+(κ−1)T2
℘̃}+(κ−1)(1−T2

℘̃
),

√
κ·(ℵ℘̃)√

{1+(κ−1)(1−ℵ2
℘̃)}+(κ−1)(ℵ℘̃)2

〉
=⟨T℘̃,ℵ℘̃⟩=℘̃.

Theorem 4.3 (Boundness Property)
LetP = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U) with the total order relation≤ defined on

it. If ℘̃+ = ⟨T℘̃+ ,ℵ℘̃+⟩ = max
ȷ

{℘̃ȷ} = max
ȷ

{⟨T℘̃ȷ ,ℵ℘̃ȷ⟩} and ℘̃− = ⟨T℘̃− ,ℵ℘̃−⟩ = min
ȷ
{℘̃ȷ} = min

ȷ
{⟨T℘̃ȷ ,ℵ℘̃ȷ⟩}

then PyFHWAℓ : P
ℏ → P is bounded as below.

℘̃− ≤ PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ ℘̃+.
Proof: As PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) is also a PyFN then we assume that it is ⟨T℘̃,ℵ℘̃⟩. It is given that

℘̃+ = ⟨T℘̃+ ,ℵ℘̃+⟩ = max
ȷ

{℘̃ȷ} = max
ȷ

{⟨T℘̃ȷ ,ℵ℘̃ȷ⟩} and ℘̃− = ⟨T℘̃− ,ℵ℘̃−⟩ = min
ȷ
{℘̃ȷ} = min

ȷ
{⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩} then

T℘̃ȷ ≤ T℘̃+ and ℵ℘̃ȷ ≥ ℵ℘̃+ for all ȷ = 1, 2, ..., ℏ.
And T℘̃ȷ ≥ T℘̃− and ℵ℘̃ȷ ≤ ℵ℘̃− for all ȷ = 1, 2, ..., ℏ.
Let f(ϱ) = 1+(κ−1)ϱ2

1−ϱ2

∴ f ′(ϱ) = 2xκ
(1−ϱ2)2 > 0, for all ϱ ∈ (0, 1] and κ > 0, which shows that f(ϱ) is increasing function.

Therefore, T℘̃ȷ
≤ T℘̃+ we can write f(T℘̃ȷ

) ≤ f(T℘̃+) i.e.,
1+(κ−1)T2

℘̃ȷ

1−T2
℘̃ȷ

≤
1+(κ−1)T2

℘̃+

1−T2
℘̃+

or,
{1+(κ−1)T2

℘̃ȷ
}ℓȷ

(1−T2
℘̃ȷ

)ℓȷ
≤

{1+(κ−1)T2
℘̃+}ℓȷ

(1−T2
℘̃+ )ℓȷ

or,
ℏ∏

ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ

(1− T2
℘̃ȷ
)ℓȷ

≤
ℏ∏

ȷ=1

{1 + (κ− 1)T2
℘̃+}ℓȷ

(1− T2
℘̃+)ℓȷ

then
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ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

≤

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃+}ℓȷ

ℏ∏
ȷ=1

(1− T2
℘̃+)ℓȷ

therefore,

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ +

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

≤

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃+}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃+)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃+}ℓȷ +

ℏ∏
ȷ=1

(1− T2
℘̃+)ℓȷ

or,

√√√√√√√√√√
ℏ∏

ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃ȷ
}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃ȷ
)ℓȷ

≤

√√√√√√√√√√
ℏ∏

ȷ=1

{1 + (κ− 1)T2
℘̃+}ℓȷ −

ℏ∏
ȷ=1

(1− T2
℘̃+)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃+}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃+)ℓȷ

∴ T℘̃ ≤

√√√√√√√√√√√
{1+(κ−1)T2

℘̃+}

ℏ∑
ȷ=1

ℓȷ

−(1−T2
℘̃+ )

ℏ∑
ȷ=1

ℓȷ

{1+(κ−1)T2
℘̃+}

ℏ∑
ȷ=1

ℓȷ

+(κ−1)(1−T2
℘̃+ )

ℏ∑
ȷ=1

ℓȷ

i.e., T℘̃ ≤
√

{1+(κ−1)T2
℘̃+}−(1−T2

℘̃+ )

{1+(κ−1)T2
℘̃+}+(κ−1)(1−T2

℘̃+ )

∴ T℘̃ ≤ T℘̃+ , Similarly, we can prove that T℘̃ ≥ T℘̃− .
Let g(ϱ) = 1+(κ−1)(1−ϱ2)

ϱ2

therefore g′(ϱ) = − 2κ
ϱ3 < 0 for all ϱ ∈ (0, 1] and κ > 0, which shows that g(ϱ) is decreasing function. Hence for

ℵ℘̃ȷ ≥ ℵ℘̃+ we have g(ℵ℘̃ȷ) ≤ g(ℵ℘̃+).

i.e.,
1+(κ−1)(1−ℵ2

℘̃ȷ
)

ℵ2
℘̃ȷ

≤
1+(κ−1)(1−ℵ2

℘̃+ )

ℵ2
℘̃+

then
ℏ∏

ȷ=1

{1 + (κ− 1)(1− T2
℘̃ȷ
)}ℓȷ

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

≤

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃+)}ℓȷ

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃+

or,

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

+ (κ− 1) ≤

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃+)}ℓȷ

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃+

+ (κ− 1) or,

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

+ (κ− 1) ≤
{1+(κ−1)(1−ℵ2

℘̃+ )}

ℏ∑
ȷ=1

ℓȷ

ℵ

2

ℏ∑
ȷ=1

ℓȷ

℘̃+

+ (κ− 1)

or,
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ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

+ (κ− 1) ≤
{1+(κ−1)(1−ℵ2

℘̃+ )}
ℵ2
℘̃+

+ (κ− 1) or,

√√√√√√√√√√
κ·

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃ȷ

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(ℵ2ℓȷ
℘̃ȷ

)

≥ ℵ℘̃+ i.e.,

√
κ·

ℏ∏
ȷ=1

ℵℓȷ
℘̃ȷ√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃ȷ
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(ℵ2ℓȷ
℘̃ȷ

)

≥ ℵ℘̃+ then ℵ℘̃ ≥ ℵ℘̃+ and similarly we can show that

ℵ℘̃ ≤ ℵ℘̃− .

Thus we have proved that T℘̃− ≤ T℘̃ ≤ T℘̃+ and ℵ℘̃− ≥ ℵ℘̃ ≥ ℵ℘̃+ .
Now Sc(℘̃) = T2

℘̃ −ℵ2
℘̃ ≤ T2

℘̃+ −ℵ2
℘̃+ = Sc(℘̃+) and if Sc(℘̃) < Sc(℘̃+) then ℘̃ < ℘̃+ and if equality occurs then

with the help of Lemma 2.1, we can write that Ac(℘̃) = Ac(℘̃+) and then ℘̃ = ℘̃+. Hence after calculating score
values and accuracy values, we can write that ℘̃ ≤ ℘̃+.
Again Sc(℘̃) = T2

℘̃ − ℵ2
℘̃ ≥ T2

℘̃− − ℵ2
℘̃− = Sc(℘̃−) and if Sc(℘̃) > Sc(℘̃−) then ℘̃ > ℘̃−. If equality occurs then

with the help of Lemma 2.1, we can write that Ac(℘̃) = Ac(℘̃−) and then ℘̃ = ℘̃−. Hence calculating score and
accuracy values we can write that ℘̃− ≤ ℘̃.
Then we can write that ℘̃− ≤ ℘̃ ≤ ℘̃+.
Hence, ℘̃− ≤ PyFHWA(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ ℘̃+.

Theorem 4.4 (Monotonicity Property)
Let P = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} and P′ = {℘̃ȷ

′ : ȷ = 1, 2, ..., ℏ} be the two sets of PyFNs. If ℘̃ȷ ≤ ℘̃ȷ
′ then

PyFHWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ PyFHWAℓ(℘̃1
′, ℘̃2

′, ..., ℘̃ℏ
′).

The Monotonicity property of the PyFHWA operator is verified by Example 3.
Example 3
Let ℘̃1 = ⟨0.2, 0.7⟩,℘̃2 = ⟨0.3, 0.9⟩,℘̃3 = ⟨0.5, 0.8⟩ and ℘̃1

′ = ⟨0.3, 0.6⟩,℘̃2
′ = ⟨0.4, 0.3⟩,℘̃3

′ = ⟨0.6, 0.7⟩. Let
the weight vector be ℓ = (0.2, 0.3, 0.5)T and parameter value κ = 3 then

in this case ℘̃1 ≤L ℘̃1
′, ℘̃2 ≤L ℘̃2

′, ℘̃3 ≤L ℘̃3
′. Hence ℘̃1 ≤ ℘̃1

′, ℘̃2 ≤ ℘̃2
′, ℘̃3 ≤ ℘̃3

′. It is given that κ = 3
and ℓ = (0.2, 0.3, 0.5)T . Now PyFHWA(℘̃1, ℘̃2, ℘̃3) = ⟨0.3614, 0.8221⟩ and PyFHWA(℘̃1

′, ℘̃2
′, ℘̃3

′) =
⟨0.4684, 0.7172⟩
Now Sc(PyFHWA(℘̃1, ℘̃2, ℘̃3)) = −0.5451 and Sc(PyFHWA(℘̃1

′, ℘̃2
′, ℘̃3

′)) = −0.2950.
∴ PyFHWA(℘̃1, ℘̃2, ℘̃3) ≤ PyFHWA(℘̃1

′, ℘̃2
′, ℘̃3

′).

4.2 Pythagorean Fuzzy Hamacher Ordered Weighted Averaging Operator

Definition 4.2 (Pythagorean fuzzy Hamacher ordered weighted averaging (PyFHOWA) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFHOWA operator is a mapping

PyFHOWAℓ : P
ℏ → P which is defined below.

PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ℘̃σ(ȷ)),

where ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and (σ(1), σ(2), ..., σ(ℏ))

is a permutation of (1,2,...,ℏ) such that ℘̃σ(ȷ−1) ≥ ℘̃σ(ȷ) ∀ ȷ = 2, 3, ..., ℏ.
Theorem 4.5 Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). Then

PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ ˜℘σ(ȷ)) = ℓ1 ˜℘σ(1) ⊕ ℓ2 ˜℘σ(2) ⊕ ...⊕ ℓℏ ˜℘σ(ℏ) =
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〈
√√√√√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃σ(ȷ)

}ℓȷ −
ℏ∏

ȷ=1

(1− T2
℘̃σ(ȷ)

)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃σ(ȷ)

}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃σ(ȷ)

)ℓȷ

,

√
κ

ℏ∏
ȷ=1

ℵℓȷ
℘̃σ(ȷ)√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃σ(ȷ)

)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃σ(ȷ)

〉
.

Theorem 4.6 (Idempotency property)
Let P̃ = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs on PyFN(U). If ℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ = ℘̃ = ⟨T℘̃,ℵ℘̃⟩ for all

ȷ = 1, 2, ..., ℏ then PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃.
Theorem 4.7 (Boundness property)

Let P = {℘̃ȷ = ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U) with the total order relation ≤
defined on it. If ℘̃+ = ⟨T℘̃+ ,ℵ℘̃+⟩ = max

ȷ
{℘̃ȷ} = max

ȷ
{⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩} and ℘̃− = ⟨T℘̃− ,ℵ℘̃−⟩ = min

ȷ
{℘̃ȷ} =

min
ȷ
{⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩} then PyFHOWAℓ : P

ℏ → P is bounded as below.

℘̃− ≤ PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ ℘̃+.
Theorem 4.8 (Monotonicity property)

Let P = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} and P′ = {℘̃ȷ
′ : ȷ = 1, 2, ..., ℏ} be the two sets PyFNs. If ℘̃ȷ ≤ ℘̃ȷ

′ then
PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ PyFHOWAℓ(℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′).
Theorem 4.9 (Commutativity property)

Let P = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} and P′ = {℘̃ȷ
′ : ȷ = 1, 2, ..., ℏ} be the two sets of PyFNs. If (℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′) be
any permutation of (℘̃1, ℘̃2, ..., ℘̃ℏ) then PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFHOWAℓ(℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′).
Pythagorean fuzzy Hamacher hybrid averaging (PyFHHA) operator is a combination of PyFHWA and PyFHOWA
operators, and it is defined below.

4.3 Pythagorean Fuzzy Hamacher Hybrid Averaging Operator

Definition 4.3 (Pythagorean fuzzy Hamacher hybrid averaging (PyFHHA) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFHHA operator is a mapping

PyFHHAℓ,Ω : Pℏ → P which is defined below.

PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)),

where ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and ℘̃∗
ȷ = ℏΩȷ℘̃ȷ

and (σ(1), σ(2), ..., σ(ℏ)) is a permutation of (1, 2, ..., ℏ) such that ℘̃∗
σ(ȷ−1) ≥ ℘̃∗

σ(ȷ) ∀ ȷ = 2, 3, ..., ℏ and

Ω = (Ω1,Ω2, ...,Ωℏ)
T is a associated weight vector such that Ωȷ ∈ [0, 1] ∀ ȷ = 1, 2, 3, ..., ℏ and

ℏ∑
ȷ=1

Ωȷ = 1.

i.e., PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃
∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2) ⊕ ...⊕ ℓℏ℘̃

∗
σ(ℏ).

Theorem 4.10 Let P = {℘̃ȷ = ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U) then
PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℓ1℘̃

∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2) ⊕ ...⊕ ℓℏ℘̃

∗
σ(ℏ) =

〈
√√√√√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃σ∗(ȷ)

}ℓȷ −
ℏ∏

ȷ=1

(1− T2
℘̃σ∗(ȷ)

)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)T2
℘̃σ∗(ȷ)

}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− T2
℘̃σ∗(ȷ)

)ℓȷ

,

43



√
κ

ℏ∏
ȷ=1

ℵℓȷ
℘̃σ∗(ȷ)√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃σ∗(ȷ)

)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

ℵ2ℓȷ
℘̃σ∗(ȷ)

〉
.

Theorem 4.11 If ℓ = ( 1ℏ ,
1
ℏ , ...,

1
ℏ )

T then PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFHWAΩ(℘̃1, ℘̃2, ..., ℘̃ℏ).

Proof. We prove this theorem by Mathematical induction. Suppose ℓ = (ℓ1, ℓ2) = (12 ,
1
2 )

T and Ω = (Ω1,Ω2)
T

be an associated weight vector.
In this case we know that ℘̃∗

ȷ = 2Ωȷ℘̃ȷ for ȷ = 1, 2.
Without loss of generality, we assume that ℘̃∗

2 ≥ ℘̃∗
1 i.e., ℘̃∗

σ(1) ≥ ℘̃∗
σ(2)

Now, PyFHHAℓ,Ω(℘̃1, ℘̃2) =

2⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)) = ℓ1℘̃

∗
σ(1)⊕ℓ2℘̃

∗
σ(2) =

1

2
[℘̃∗

σ(1)⊕℘̃∗
σ(2)] =

1

2
[℘̃∗

2⊕℘̃∗
1] =

1

2
[2Ω2℘̃2⊕

2Ω1℘̃1] =

2⊕
ȷ=1

(Ωȷ℘̃ȷ) = PyFHWAΩ(℘̃1, ℘̃2).

Hence, the theorem is true for ℏ = 2.
Suppose, the theorem is true for first ς ∈N terms.
Then PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς) = PyFHWAΩ(℘̃1, ℘̃2, ..., ℘̃ς).
i.e. ℓ1℘̃

∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2)⊕, ...,⊕ℓς ℘̃

∗
σ(ς) = Ω1℘̃1 ⊕ Ω2℘̃2⊕, ...,⊕Ως ℘̃ς and in this case ℓ = (ℓ1, ℓ2, ..., ℓς)

T =

( 1ς ,
1
ς , ...,

1
ς )

T .

Now, PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) =

ς+1⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ))

= ℓ1℘̃
∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2)⊕, ...,⊕ℓς ℘̃

∗
σ(ς)︸ ︷︷ ︸

ςterms

⊕ℓς+1℘̃
∗
σ(ς+1)

= Ω1℘̃1 ⊕ Ω2℘̃2⊕, ...,⊕Ως ℘̃ς ⊕ ℓς+1℘̃
∗
σ(ς+1)

Obviously, we can say that ℘̃∗
σ(ς+1) = ℘̃∗

ς+1 = (ς + 1)Ως+1℘̃ς+1 and ℓς+1 = 1
ς+1 .

Hence, we can write that PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) =

ς+1⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ))

= ℓ1℘̃
∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2)⊕, ...,⊕ℓς ℘̃

∗
σ(ς) ⊕ ℓς+1℘̃

∗
σ(ς+1)

= Ω1℘̃1 ⊕ Ω2℘̃2⊕, ...,⊕Ως ℘̃ς ⊕ Ως+1℘̃ς+1 = PyFHWAΩ(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1).
Thus the theorem is true for ℏ = ς + 1 when it is supposed to be true for ℏ = ς .
Hence the theorem is valid for all ℏ ∈N by Mathematical induction.

Theorem 4.12 If Ω = ( 1ℏ ,
1
ℏ , ...,

1
ℏ )

T then PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ℏ).

Proof. Let Ω = (Ω1,Ω2)
T = ( 12 ,

1
2 )

T and ℓ = (ℓ1, ℓ2)
T be weight vectors.

Now, ℘̃∗
ȷ = 4Ωȷ℘̃ȷ, which becomes ℘̃∗

ȷ = ℘̃ȷ for ȷ = 1, 2.
Without loss of generality we suppose ℘̃∗

2 ≥ ℘̃∗
1 i.e. ℘̃∗

σ(1) ≥ ℘̃∗
σ(2).

Now, PyFHHAℓ,Ω(℘̃1, ℘̃2, ℘̃3, ℘̃4) =

2⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)) = ℓ1℘̃

∗
σ(1) ⊕ ℓ2℘̃

∗
σ(2)

= ℓ1℘̃σ(1) ⊕ ℓ2℘̃σ(2) =

2⊕
ȷ=1

(ℓȷ℘̃σ(ȷ)) = PyFHOWAℓ(℘̃1, ℘̃2).

Thus the theorem is true for ℏ = 2.
We assume that the theorem is true for ℏ = ς ∈N. Then we can write that

PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς) = PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ς) i.e.,
ς⊕

ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)) =

ς⊕
ȷ=1

(ℓȷ℘̃σ(ȷ)) and in this case

Ω = (1ς ,
1
ς , ...,

1
ς )

T .

Now, PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) =

ς⊕
ȷ=1

(ℓȷ℘̃
∗
σ(ȷ)) ⊕ ℓς+1℘̃

∗
σ(ς+1).It is clear that ℘̃∗

σ(ς+1) = ℘̃σ(ς+1) and

ℓς+1 = 1
ς+1 .

Hence, we can write that PyFHHAℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1)
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=

ς⊕
ȷ=1

(ℓȷ℘̃σ(ȷ))⊕ ℓς+1℘̃σ(ς+1) =

ς+1⊕
ȷ=1

(ℓȷ℘̃σ(ȷ)) = PyFHOWAℓ(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1).

Therefore the theorem is true for ℏ = ς + 1 when it is assumed to be true for ℏ = ς .
Hence by Mathematical induction, we can say that the Lemma is true for all ℏ ∈N.

It is clear from the Theorem 4.11, Theorem 4.12 that PyFHWA and PyFHOWA operators are the particular
cases of PyFHHA operator or, in other words, PyFHHA operator is the generalization of PyFHWA and PyFHOWA
operators.

The value of the PyFHHA operator concerning some PyFNs is shown in Example 4.
Example 4 Let ℘̃1 = ⟨0.2, 0.9⟩, ℘̃2 = ⟨0.3, 0.7⟩, ℘̃3 = ⟨0.1, 0.9⟩, ℘̃4 = ⟨0.4, 0.6⟩.Let ℓ = (0.2, 0.1, 0.3, 0.4)T

and Ω = (0.1, 0.3, 0.4, 0.2)T be the corresponding weight vectors and κ = 3.
Now ℘̃∗

1 = 4Ω1℘̃1 = 0.4℘̃1 =

0.4℘̃1 =

〈√
{1 + (3− 1)0.22}0.4 − (1− 0.22)0.4

{1 + (3− 1)0.22}0.4 + (3− 1)(1− 0.22)0.4
,

√
3 · (0.9)0.4√

{1 + (3− 1)(1− 0.92)}0.4 + (3− 1)0.9(2×0.4)

〉

= ⟨0.126, 0.962⟩.

Similarly, we can find
℘̃∗
2 = 4Ω2℘̃2 = 1.2℘̃2 = ⟨0.330, 0.593⟩.

℘̃∗
3 = 4Ω3℘̃3 = 1.6℘̃3 = ⟨0.590, 0.878⟩.

℘̃∗
4 = 4Ω4℘̃4 = 0.8℘̃4 = ⟨0.356, 0.686⟩.

Now Sc(℘̃∗
1) = −0.910, Sc(℘̃∗

2) = −0.243, Sc(℘̃∗
3) = −0.423, Sc(℘̃∗

4) = −0.344.
∴ ℘̃∗

2 > ℘̃∗
4 > ℘̃∗

3 > ℘̃∗
1 then ℘̃∗

σ(1) = ℘̃∗
2, ℘̃∗

σ(2) = ℘̃∗
4, ℘̃∗

σ(3) = ℘̃∗
3 and ℘̃∗

σ(4) = ℘̃∗
1

∴ PyFHHA(℘̃1, ℘̃2, ℘̃3, ℘̃4) =

〈
√√√√√√√√√√

4∏
ȷ=1

{1 + (κ− 1)T2
℘̃σ∗(ȷ)

}ℓȷ −
4∏

ȷ=1

(1− T2
℘̃σ∗(ȷ)

)ℓȷ

4∏
ȷ=1

{1 + (κ− 1)T2
℘̃σ∗(ȷ)

}ℓȷ + (κ− 1)

4∏
ȷ=1

(1− T2
℘̃σ∗(ȷ)

)ℓȷ

,

√
κ

4∏
ȷ=1

ℵℓȷ
℘̃σ∗(ȷ)√√√√√√

4∏
ȷ=1

{1 + (κ− 1)(1− ℵ2
℘̃σ∗(ȷ)

)}ℓȷ + (κ− 1)

4∏
ȷ=1

ℵ2ℓȷ
℘̃σ∗(ȷ)

〉

=

〈√
0.419

2.947
,

√
3× 0.821√

1.503 + 2× 0.674

〉
= ⟨0.377, 0.842⟩.

5 Pythagorean Fuzzy Hamacher Geometric Operators

In this section we will discuss about three types of Pythagorean fuzzy Hamacher geometric AOs which are
Pythagorean fuzzy Hamacher weighted geometric (PyFHWG) operator, Pythagorean fuzzy Hamacher oedered
weighted geometric (PyFHOWG) operator and Pythagorean fuzzy Hamacher hybrid geometric (PyFHHG) operator.

5.1 Pythagorean Fuzzy Hamacher Weighted Geometric Operator

Definition 5.1 (Pythagorean fuzzy Hamacher weighted geometric (PyFHWG) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of Pythagorean fuzzy numbers in PyFN(U). PyFHWG

operator is a mapping PyFHWGℓ : P
ℏ → P which is defined below.
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PyFHWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃ȷ)
ℓȷ ,

where ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1.

Theorem 5.1 Let P = {℘̃ȷ = ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). Then

PyFHWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃ȷ)
ℓȷ =

〈 √
κ

ℏ∏
ȷ=1

T
ℓȷ
℘̃ȷ√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− T2
℘̃ȷ
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

T
2ℓȷ
℘̃ȷ

,

√√√√√√√√√√
ℏ∏

ȷ=1

{1 + (κ− 1)ℵ2
℘̃ȷ
}ℓȷ −

ℏ∏
ȷ=1

(1− ℵ2
℘̃ȷ
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)ℵ2
℘̃ȷ
}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− ℵ2
℘̃ȷ
)ℓȷ

〉
.

Theorem 5.2 (Idempotency property)
Let P = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). If ℘̃ȷ = ℘̃ for all ȷ = 1, 2, ..., ℏ then

PyFHWG(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃.
Theorem 5.3 (Boundness property)

LetP = {℘̃ȷ = ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U) with the total order relation≤ defined on
it. If ℘̃+ = ⟨T℘̃+ ,ℵ℘̃+⟩ = max

ȷ
{℘̃ȷ} = max

ȷ
{⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩} and ℘̃− = ⟨T℘̃− ,ℵ℘̃−⟩ = min

ȷ
{℘̃ȷ} = min

ȷ
{⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩}

then PyFHWGℓ : P
ℏ → P is bounded as below

℘̃− ≤ PyFHWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ ℘̃+.
Theorem 5.4 (Monotonicity property)

Let P = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} and P′ = {℘̃ȷ
′ : ȷ = 1, 2, ..., ℏ} be the two sets of PyFNs. If ℘̃ȷ ≤ ℘̃ȷ

′ then
PyFHWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ PyFHWGℓ(℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′).

5.2 Pythagorean Fuzzy Hamacher Ordered Weighted Geometric Operator

Definition 5.2 (Pythagorean fuzzy Hamacher ordered weighted geometric (PyFHOWG) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFOWG operator is a mapping

PyFHOWGℓ : P
ℏ → P which is defined below.

PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃
ℓȷ
σ(ȷ)),

where ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and (σ(1), σ(2), ..., σ(ℏ))

is a permutation of (1,2,...,ℏ) such that ℘̃σ(ȷ−1) ≥ ℘̃σ(ȷ) for all ȷ = 2, 3, ..., ℏ.
That is PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃ℓ1

σ(1) ⊗ ℘̃ℓ2
σ(2) ⊗ ...⊗ ℘̃ℓℏ

σ(ℏ).

Theorem 5.5 Let P = {℘̃ȷ = ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U).
Then

PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃ℓ1
σ(1) ⊗ ℘̃ℓ2

σ(2) ⊗ ...⊗ ℘̃ℓℏ
σ(ℏ) =

〈 √
κ

ℏ∏
ȷ=1

T
ℓȷ
℘̃σ(ȷ)√√√√√√

ℏ∏
ȷ=1

{1 + (κ− 1)(1− T2
℘̃σ(ȷ)

)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

T
2ℓȷ
℘̃σ(ȷ)

,
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√√√√√√√√√√
ℏ∏

ȷ=1

{1 + (κ− 1)ℵ2
℘̃σ(ȷ)

}ℓȷ −
ℏ∏

ȷ=1

(1− ℵ2
℘̃σ(ȷ)

)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)ℵ2
℘̃σ(ȷ)

}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− ℵ2
℘̃σ(ȷ)

)ℓȷ

〉
.

Theorem 5.6 (Idempotency property)
Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). If ℘̃ȷ = ℘̃ for all ȷ = 1, 2, ..., ℏ then
PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = ℘̃.

Theorem 5.7 (Boundness property)
LetP = {℘̃ȷ = ⟨T℘̃ȷ

,ℵ℘̃ȷ
⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U) with the total order relation≤ defined on

it. If ℘̃+ = ⟨T℘̃+ ,ℵ℘̃+⟩ = max
ȷ

{℘̃ȷ} = max
ȷ

{⟨T℘̃ȷ ,ℵ℘̃ȷ⟩} and ℘̃− = ⟨T℘̃− ,ℵ℘̃−⟩ = min
ȷ
{℘̃ȷ} = min

ȷ
{⟨T℘̃ȷ ,ℵ℘̃ȷ⟩}

then PyFHOWGℓ : P
ℏ → P is bounded as below:

℘̃− ≤ PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ ℘̃+.
Theorem 5.8 (Monotonicity property)

Let P = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} and P′ = {℘̃ȷ
′ : ȷ = 1, 2, ..., ℏ} be the two sets of PyFNs. If ℘̃ȷ ≤ ℘̃ȷ

′ then
PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) ≤ PyFHOWGℓ(℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′).
Theorem 5.9 (Commutativity property)

Let P = {℘̃ȷ : ȷ = 1, 2, ..., ℏ} and P′ = {℘̃ȷ
′ : ȷ = 1, 2, ..., ℏ} be the two sets of PyFNs. If (℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′) be any
permutation of (℘̃1, ℘̃2, ..., ℘̃ℏ) then PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFHOWGℓ(℘̃1

′, ℘̃2
′, ..., ℘̃ℏ

′).

5.3 Pythagorean Fuzzy Hamacher Hybrid Geometric Operator

Definition 5.3 (Pythagorean fuzzy Hamacher hybrid geometric (PyFHHG) operator)
Let P = {℘̃ȷ = ⟨T℘̃ȷ ,ℵ℘̃ȷ⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U). PyFHHG operator is a mapping
PyFHHGℓ,Ω : Pℏ → P which is defined below:

PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) =

ℏ⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ ,

where ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T is a weight vector such that ℓȷ ∈ [0, 1], ȷ = 1, 2, ..., ℏ and

ℏ∑
ȷ=1

ℓȷ = 1 and ℘̃∗
ȷ = (℘̃ȷ)

ℏΩȷ

and (σ(1), σ(2), ..., σ(ℏ)) is a permutation of (1, 2, ..., ℏ) such that ℘̃∗
σ(ȷ−1) ≥ ℘̃∗

σ(ȷ) for all ȷ = 2, 3, ..., ℏ and

Ω = (Ω1,Ω2, ...,Ωℏ)
T is an associated weight vector such that Ωȷ ∈ [0, 1] for all ȷ = 1, 2, 3, ..., ℏ and

ℏ∑
ȷ=1

Ωȷ = 1.

Theorem 5.10 Let P = {℘̃ȷ = ⟨T℘̃ȷ
,ℵ℘̃ȷ

⟩ : ȷ = 1, 2, ..., ℏ} be the set of PyFNs in PyFN(U).Then

PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) =

〈 √
κ

ℏ∏
ȷ=1

T
ℓȷ
℘̃∗

σ(ȷ)√√√√√√
ℏ∏

ȷ=1

{1 + (κ− 1)(1− T2
℘̃∗

σ(ȷ)
)}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

T
2ℓȷ
℘̃∗

σ(ȷ)

,

√√√√√√√√√√
ℏ∏

ȷ=1

{1 + (κ− 1)ℵ2
℘̃∗

σ(ȷ)
}ℓȷ −

ℏ∏
ȷ=1

(1− ℵ2
℘̃∗

σ(ȷ)
)ℓȷ

ℏ∏
ȷ=1

{1 + (κ− 1)ℵ2
℘̃∗

σ(ȷ)
}ℓȷ + (κ− 1)

ℏ∏
ȷ=1

(1− ℵ2
℘̃∗

σ(ȷ)
)ℓȷ

〉
.

Theorem 5.11 If ℓ = ( 1ℏ ,
1
ℏ , ...,

1
ℏ )

T then PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFHWGΩ(℘̃1, ℘̃2, ..., ℘̃ℏ).

Proof. We will prove it by Mathematical induction.
Let ℓ = (ℓ1, ℓ2)

T = ( 12 ,
1
2 )

T and Ω = (Ω1,Ω2)
T be an associated weight vector.

Therefore ℘̃∗
ȷ = (℘̃ȷ)

2Ωȷ for ȷ = 1, 2.
We suppose, without loss of generality, that ℘̃∗

2 ≥ ℘̃∗
1 i.e. ℘̃

∗
σ(1) ≥ ℘̃∗

σ(2).
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Now, PyFHHGℓ,Ω(℘̃1, ℘̃2) =

2⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ = (℘̃∗
σ(1))

ℓ1 ⊗ (℘̃∗
σ(2))

ℓ2

= (℘̃∗
2)

ℓ1 ⊗ (℘̃∗
1)

ℓ2 = {(℘̃2)
2Ω2}ℓ1 ⊗ {(℘̃1)

2Ω1}ℓ2 =

2⊗
ȷ=1

(℘̃ȷ)
Ωȷ = PyFHWGΩ(℘̃1, ℘̃2).

Thus the theorem is true for ℏ = 2.
We assume that the theorem is true for ℏ = ς ∈N i.e., PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς)
= PyFHWGΩ(℘̃1, ℘̃2, ..., ℘̃ς) i.e., (℘̃∗

σ(1))
ℓ1 ⊗ (℘̃∗

σ(2))
ℓ2⊗, ...,⊗(℘̃∗

σ(ς)) = (℘̃1)
Ω1 ⊗ (℘̃2)

Ω2⊗, ...,⊗(℘̃ς)
Ως and

in this case ℓ = (ℓ1, ℓ2, ..., ℓς)
T = ( 1ς ,

1
ς , ...,

1
ς )

T and ℘̃∗
ȷ = (℘̃ȷ)

ςΩȷ ,
ȷ = 1, 2, ..., ς.
Now,PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) =
(℘̃∗

σ(1))
ℓ1 ⊗ (℘̃∗

σ(2))
ℓ2⊗, ...,⊗(℘̃∗

σ(ς))
ℓς︸ ︷︷ ︸

ςterms

⊗(℘̃∗
σ(ς+1))

ℓς+1 .

Now, it is obvious that ℘̃∗
σ(ς+1) = ℘̃∗

ς+1 and ℓς+1 = 1
ς+1 .

Thus PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) = (℘̃1)
Ω1 ⊗ (℘̃2)

Ω2⊗, ...,⊗(℘̃ς)
Ως︸ ︷︷ ︸

ςterms

⊗(℘̃ς+1)
Ως+1

=

ς+1⊗
ȷ=1

(℘̃ȷ)
Ωȷ = PyFHWGΩ(℘̃1, ℘̃2, ..., ℘̃ς+1).

Thus the theorem is true for ℏ = ς + 1 when it is assumed to be true for ℏ = ς .
Hence, the theorem is valid for all ℏ ∈ N by Mathematical induction.

Theorem 5.12 If Ω = ( 1ℏ ,
1
ℏ , ...,

1
ℏ )

T then PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ℏ) = PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ℏ)

Proof. Let Ω = (Ω1,Ω2) = ( 12 ,
1
2 )

T and ℓ = (ℓ1, ℓ2)
T be weight vectors.

Now, ℘̃∗
ȷ = (℘̃ȷ)

2Ωȷ , which becomes ℘̃∗
ȷ = ℘̃ȷ for all ȷ = 1, 2.

We suppose, without loss of generality, that ℘̃∗
2 ≥ ℘̃∗

1 i.e., ℘̃∗
σ(1) ≥ ℘̃∗

σ(2).

Now, PyFHHGℓ,Ω(℘̃1, ℘̃2) =

2⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ = (℘̃∗
σ(1))

ℓ1 ⊗ (℘̃∗
σ(2))

ℓ2 =

2⊗
ȷ=1

(℘̃σ(ȷ))
ℓȷ

= PyFHOWGℓ(℘̃1, ℘̃2).Thus the theorem is true for ℏ = 2.
We suppose that the theorem is true for ℏ = ς ∈ N.Then we can write that

PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς) = PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ς) i.e.,
ς⊗

ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ =

ς⊗
ȷ=1

(℘̃σ(ȷ))
ℓȷ and in this case

Ω = (Ω1,Ω2, ...,Ως)
T = ( 1ς ,

1
ς , ...,

1
ς )

T and ℘̃∗
ȷ = (℘̃ȷ)

ςΩȷ ,
ȷ = 1, 2, ..., ς.

Now, PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) =

ς+1⊗
ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ =
ς⊗

ȷ=1

(℘̃∗
σ(ȷ))

ℓȷ ⊗ (℘̃∗
σ(ς+1))

ℓς+1 .

In this case, we have ℘̃∗
ȷ = (℘̃ȷ)

(ς+1)Ωȷ , ȷ = 1, 2, ..., (ς + 1). Obviously we can write that ℘̃∗
σ(ς+1) = ℘̃σ(ς+1) and

Ως+1 = 1
ς+1 .

PyFHHGℓ,Ω(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1) =

ς⊗
ȷ=1

(℘̃σ(ȷ))
ℓȷ ⊗ (℘̃σ(ς+1))

ℓς+1 =

ς+1⊗
ȷ=1

(℘̃σ(ȷ))
ℓȷ

= PyFHOWGℓ(℘̃1, ℘̃2, ..., ℘̃ς , ℘̃ς+1).
Thus the theorem is valid for ℏ = ς +1 when it is supposed to be true for ℏ = ς . Hence, by Mathematical induction,
the theorem is valid for all ℏ ∈N.

6 Algorithm for Multi-Attribute Decision Making Using PyFI

This section proposes a new approach to the decision-making problem using Pythagorean fuzzy information. In
this approach, experts provide their information in the form of PyFSs.

Let A = {A1, A2, ..., Aς} be the set of ς distinct alternatives and B = {B1, B2, ..., Bℏ} be the set of ℏ distinct
attributes. Let a specific number of experts (decision makers) give their decisions towards different alternatives in
PyFE based on predefined attributes. Let P̃ij = {⟨TP̃ij

,ℵP̃ij
⟩ : ı = 1, 2, ..., ς and ȷ = 1, 2, ..., ℏ} be the PyFI given

by the experts in aggregated form towards the ı-th alternative to the basis of ȷ-th attribute. In this way, we can form
a matrix called decision-making matrix D = [P̃ij ]ς×ℏ.

Our target is to aggregate the PyFI obtained in the decision-making matrix corresponding to each alternative and
find the best alternative. Different attributes are assigned different weights during the evaluation of aggregated values
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corresponding to each alternative to fulfil the expected requirements of the decision-makers. Let ℓ = (ℓ1, ℓ2, ..., ℓℏ)
T

be a weight vector such that ℓı be the weight assigned to the ȷ-th attribute and
ℏ∑

ȷ=1

ℓȷ = 1, ℓȷ ∈ [0, 1].

The algorithm of the solution to the multi-attribute decision-making problem is as follows:
Step-1: In this step, we get collective information in the decision-making matrix form in PyFE. Then we

aggregate that information using the proposed Pythagorean fuzzy Hamacher weighted averaging (PyFHWA) operator
and Pythagorean fuzzy Hamacher weighted geometric (PyFHWG) operator with the associated weight vector ℓ =

(ℓ1, ℓ2, ..., ℓℏ)
T such that

ℏ∑
ȷ=1

ℓı = 1, ℓȷ ∈ [0, 1].

Step-2: We find the score values and accuracy values (if needed) of the aggregated PyFN concerning each
alternative.

Step-3: Construction of rank of the alternatives Bı(ı = 1, 2, ..., ℏ) based on score values and accuracy values
(if needed) and selection of the best alternative occupying maximum rank (See Figure 2).

Figure 2. Diagram of the present model.

6.1 Numerical Example

Enterprise Application Software (EAS) is also known as Enterprise Software (ES). Let an organization seeking
the best EAS among the four reputed EAS companies, namely, A1, A2, A3, A4 which are assumed as alternatives and
B1, B2, B3, B4, B5 be the five predetermined criteria (attributes) based on which the best alternative is to be chosen.
The EASs mostly used in large business organizations comprising of different rolls and activities. They normally
includes sales department, information technology sector, finance sector, juridical part and public dealings. Let
B1, B2, B3, B4, B5 represent the attributes Credibility, Agility, User-friendliness, Compatibility, and Less market
price, respectively. The organization determines the weight ℓȷ(ȷ = 1, 2, 3, 4, 5) corresponding to the attribute
Bȷ(ȷ = 1, 2, 3, 4, 5) so that their importance on specific attribute in best alternative selection be fulfilled.

The DEM D =
[
P̃ij

]
4×5

containing the PyFI provided by the specific number of experts towards the different
alternatives is given in Table 2.

Case-1:
Step-1: Now we use the PyFHWA operator to determine the aggregated performance of Aı(ı = 1, 2, 3, 4) based

on the attributes Bȷ(ȷ = 1, 2, 3, 4, 5). These performances are shown in Table 3 with respect to the weight vector
ℓ = (0.25, 0.15, 0.10, 0.35, 0.15)T and parameter κ = 1.

From Table 3, we can find the score values corresponding to each aggregated PyFNs under the PyFHWA operator
as follows:
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Table 2. Pythagorean fuzzy DEM in tabular form

B1 B2 B3 B4 B5

A1 ⟨0.7, 0.4⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.3⟩ ⟨0.3, 0.4⟩ ⟨0.6, 0.4⟩
A2 ⟨0.7, 0.3⟩ ⟨0.6, 0.4⟩ ⟨0.7, 0.3⟩ ⟨0.6, 0.8⟩ ⟨0.7, 0.4⟩
A3 ⟨0.3, 0.2⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.6⟩ ⟨0.6, 0.5⟩ ⟨0.6, 0.2⟩
A4 ⟨0.7, 0.3⟩ ⟨0.5, 0.4⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.3⟩ ⟨0.5, 0.4⟩

Table 3. Aggregated PyFNs under PyFHWA operator for κ = 1

Aggregated value(PyFN)
A1 ⟨0.5363, 0.4019⟩
A2 ⟨0.6547, 0.4610⟩
A3 ⟨0.5480, 0.3076⟩
A4 ⟨0.6363, 0.3366⟩

Sc(A1) = 0.1261, Sc(A2) = 0.2162, Sc(A3) = 0.2057, Sc(A4) = 0.2916. Similarly, we can find the same for
the other parameter values, κ = 2, 3, 4, 5, 6, 7, 8, 9, 10.

Step-2 and 3: The score values of the aggregated PyFNs and their ranks are shown in Table 4.
Case 2:
Step 1: Now we use the PyFHWG operator to determine the aggregated performance of Aı(ı = 1, 2, 3, 4)

based on the attributes Bȷ(ȷ = 1, 2, 3, 4, 5). These performances are shown in Table 5 concerning the weight vector
ℓ = (0.25, 0.15, 0.10, 0.35, 0.15)T and parameter κ = 1. From Table 5, we can find the score values corresponding
to each aggregated PyFNs and which are as follows:

Sc(A1) = 0.0444, Sc(A2) = 0.0622, Sc(A3) = 0.0776, Sc(A4) = 0.2557. Similarly, we can find the same for
other κ values.

Step 2 and 3: The score values of aggregated PyFNs under the PyFHWG operator and their ranks are shown in
Table 6.

Table 4. Ranks of aggregated PyFNs under PyFHWA operator

κ Sc(A1) Sc(A2) Sc(A3) Sc(A4) Ranking
1 0.1261 0.2162 0.2057 0.2916 A1 < A3 < A2 < A4

2 0.1147 0.2023 0.1914 0.2866 A1 < A3 < A2 < A4

3 0.1073 0.1955 0.1875 0.2836 A1 < A3 < A2 < A4

4 0.1021 0.1914 0.1826 0.2817 A1 < A3 < A2 < A4

5 0.0981 0.1827 0.1788 0.2803 A1 < A3 < A2 < A4

6 0.0949 0.1868 0.1759 0.2793 A1 < A3 < A2 < A4

7 0.0924 0.1853 0.1735 0.2785 A1 < A3 < A2 < A4

8 0.0903 0.1842 0.1715 0.2779 A1 < A3 < A2 < A4

9 0.0885 0.1833 0.1698 0.2774 A1 < A3 < A2 < A4

10 0.0870 0.1826 0.1684 0.2770 A1 < A3 < A2 < A4

6.2 Analysis of Dependency on the Parameter κ in MADM Result

To describe the effect of the parameter κ in MADM result, we take ten different values of κ in PyFHWA and
PyFHWG operators, and then we calculate the score values of aggregated PyFNs using two different operators
corresponding to four alternatives and after that ranks of the alternatives are calculated. Scores and ranks are shown
in Table 4 and Table 6, respectively.
From Table 4, it is clear that the ranks remain the same for different values of κ i.e., the result is not affected by the
values of κ, and for all κ the rank of the alternatives is A1 < A3 < A2 < A4, i.e., the best alternative deduced is A4

for the MADM problem based on PyFHWA operator.
From Table 6, it is noteworthy that the rank differs after the change of κ values.
For 1 ≤ κ ≤ 2, the rank of the alternatives is A1 < A2 < A3 < A4 and consequently, the best preferable

alternative is A4. In this case, κ values do not affect ranks as well as the result of the MADM problem.
Now for 3 ≤ κ ≤ 10 the rank of alternatives is A1 < A3 < A2 < A4 and consequently the best preferable

alternative is A4. Hence the best alternative is A4 under the PyFHWG operator. In this case, κ values affect the
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Table 5. Aggregated PyFNs under PyFHWG operator for κ = 1

Aggregated value(PyFN)
A1 ⟨0.4604, 0.4093⟩
A2 ⟨0.6481, 0.5982⟩
A3 ⟨0.4818, 0.3930⟩
A4 ⟨0.6119, 0.3445⟩

ranking of aggregated PyFNs, but despite this, the results remain the same.

Table 6. Ranks of aggregated PyFNs under PyFHWG operator

κ Sc(A1) Sc(A2) Sc(A3) Sc(A4) Rank
1 0.0444 0.0622 0.0776 0.2557 A1 < A2 < A3 < A4

2 0.0522 0.0891 0.0912 0.2607 A1 < A2 < A3 < A4

3 0.0556 0.1049 0.0990 0.2632 A1 < A3 < A2 < A4

4 0.0577 0.1154 0.1044 0.2647 A1 < A3 < A2 < A4

5 0.0591 0.1231 0.1085 0.2657 A1 < A3 < A2 < A4

6 0.0600 0.1290 0.1118 0.2664 A1 < A3 < A2 < A4

7 0.0608 0.1336 0.1145 0.2670 A1 < A3 < A2 < A4

8 0.0614 0.1373 0.1169 0.2675 A1 < A3 < A2 < A4

9 0.0691 0.1404 0.1188 0.2679 A1 < A3 < A2 < A4

10 0.0623 0.1431 0.1206 0.2682 A1 < A3 < A2 < A4

7 Conclusion

In this proposed article, we have discussed solving procedure of MADM issues using different averaging
(PyFHWA, PyFHOWA, PyFHHA) operators and different geometric (PyFHWG, PyFHOWA, PyFHHA) operators.
Though the article deals with the averaging and geometric operators separately, the algorithm and an example have
been provided based on the PyFHWA and PyFHWG operators. This article considers the selection procedure of
enterprise application software in the framework of multi-attribute decision-making problems. The four alternative
application software are considered in the primary stage. The five criteria are considered for choosing the best
software. The DEM proposed by the DEs is in the PyFE. Consequently, each piece of information for each
alternative software corresponding to each criterion is PyFN. The aggregation is performed using the PyFHWA and
PyFHWG operators separately. The score values of the aggregated PyFNs show that A4 possesses the highest score
value 0.2916 under the PyFHWA operator and 0.2557 under the PyFHWG operator for κ = 1. Therefore A4 is the
best EAS followed by A2, A3 and A1 under the PyFHWA operator, and A4 is also the best EAS under the PyFHWG
operator followed by A3, A2 and A1. The Table 4 shows that the parameter κ has no such remarkable effect in
ranking orders of alternatives because if we vary κ values 1 to 10 although the score values change the ranking order
of alternatives remain unaltered in either case. But, κ has considerable influence in ranking order of alternatives in
Table 3 although the highest and lowest EAS remain the same.

The present method is applied in EAS selection, considering four alternatives and five criteria. The proposed
method can also be applied in multi-criteria group decision-making techniques where the information might be fuzzy
or its extended forms like intuitionistic, Pythagorean, q-rung orthopair, neutrosophic, triangular, trapezoidal fuzzy
environment. Experts’ DEMs can be converted into a single DEM using Pythagorean fuzzy Hamacher weighted
or ordered weighted or hybrid aggregation operators. These extended methods can be utilized in selecting efficient
waste-to-energy technology, compatible logistics supplier selection, etcetera.

The present method considers the criteria’ weights vector as (0.25, 0.15, 0.10, 0.35, 0.15)T , and it is arbitrarily
chosen. No method is applied for determining this weight vector. Also, the DEM considered in this article is assumed
as aggregated DEM obtained after the aggregation of DEMs of the DEs. The DEMs are not separately proposed by
the DEs. Experts’ weights are not mentioned explicitly in this article, and they are treated as identical for each DE.
Normally, The weights are distributed amongst the DEs based on their expertise in different fields.
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