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Abstract: This study presents an advanced generalization of uncertain linguistic numbers (ULNs) and interval-
valued intuitionistic uncertain linguistic numbers (IVIULNs) through the development of interval-valued picture
fuzzy numbers (IVPFNs). Firstly, the IVPFUL weighted average and IVPFUL weighted geometric operators, denoted
as IVPFULWA and IVPFULWG, have been introduced. Furthermore, the IVPFUL Dombi weighted average and
geometric operators, represented by IVPFULDWA and IVPFULDWG, are also proposed in the same context. These
operators are utilized to establish a multi-attribute decision-making (MADM) approach with IVPFUL data. Finally,
the proposed methodology is applied to a mutual fund selection problem through a demonstrative example.

Keywords: Interval-valued picture fuzzy numbers(IVPFNs); Uncertain linguistic numbers (ULNs); IVPFULWA
operator; IVPFULWG operator; Multi-attribute decision-making (MADM)

1 Introduction

The property of “refusal” is a crucial aspect that cannot be represented by traditional fuzzy sets (FSs) such as
FSs [1] and IFS [2]. In response to this limitation, Coung [3, 4] introduced a novel concept called picture fuzzy
sets (PFSs). Due to their significance, numerous researchers have endeavored to enhance the PFS concept and apply
it to real-world decision-making processes. Efforts have been made to develop appropriate mathematical models
that integrate various preferences of decision-makers into a collective preference for processing decision-making
information. In this context, Wei [5] proposed picture fuzzy weighted average (PFWA), order (PFOWA), hybrid
(PFHWA), geometric (PFWG), order weighted geometric (PFOWG), and hybrid weighted geometric (PFHWG)
operators. Wei [6] and colleagues further developed generalized picture fuzzy aggregation operators based on
the Hamacher operation, including PF Hamacher weighted aggregation, correlated weighted aggregation, induced
correlated aggregation, prioritized aggregation, and power aggregation operators. Khan et al. [7] focused on
examining logarithm PF weighted averaging, order weighted, hybrid weighted operators, as well as logarithm PF
weighted geometric, order weighted, and hybrid weighted geometric operators. PF Dombi weighted averaging
(PFDWA), PF Dombi order weighted (PFDOWA), PF Dombi hybrid Theweighted (PFDHWA), PF Dombi weighted
geometric (PFDWG), and PF Dombi hybrid aggregation weighted geometric (PFDHWG) operators are some of the
picture fuzzy operators combined with Dombi operation [8–13] that Jana et al. [14] proposed in their paper.

However, in many real-world problems, the issues can be too unclear or complex to be represented by people’s
intelligence and complex information. In some decision-making scenarios, precise or ambiguous figures are insuffi-
cient, and expressing the information in linguistic terms, such as “poor,” “medium,” or “good,” is more appropriate.
Zadeh [15] introduced the concept of linguistic variables, which was later followed by Herrera et al. [16], who
discussed a consensus decision-making strategy using linguistic argumentation. Xu [17] developed a multi-attribute
decision-making (MADM) approach using goal programming in linguistic information. Wang and Li [18] intro-
duced the concept of intuitionistic linguistic fuzzy aggregation operators. Continuous linguistic terms were presented
to researchers to prevent the loss of object information. Furthermore, Xu [19–22] introduced uncertain linguistic
variables (ULVs) and provided some operational guidelines. Liu and Jin [23] proposed an application for multiple
UL aggregation operators on IFS and introduced them. Meng et al. [24] introduced the IVIFUL Choquet averaging
(IVIULCA) operator and IVIFUL Choquet geometric (IVIULCG) operator and used these operators to set up an
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MADM problem with IVIULVs. Choquet aggregation operators using ULIVIFS arguments and operational, score,
and accuracy functions for IVIULNs were also proposed. The concept of linguistic operator-based models has been
explored in the context of picture fuzzy environments, as demonstrated by Qiyas et al. [25], who defined linguistic
picture fuzzy sets (LPFS) operators and used them to create the MAGDM process. Liu and Zhang [26] introduced
picture fuzzy linguistic numbers (PFLNs) and described the picture fuzzy linguistic weighted averaging (PFLWA)
and weighted geometric (PFLWG) operators, which were used to model MAGDM problems. In the same setting,
Qiyas et al. [27] developed MADM problems using linguistic picture fuzzy Dombi (LPFD) operators. In conclusion,
interval-valued picture fuzzy uncertain linguistic variables (IVPFULVs) convey fuzzy information more accurately
than LVs, and research on MADM problems with IVPFUL information is just beginning. Therefore, in this paper,
we propose an IVPFULS and develop MADM problems where both the attribute weights and values take the form of
IVPFULVs, based on the interval-valued picture fuzzy linguistic set proposed on the concept of uncertain linguistic
set [28, 29]. First, we define the operating rules, score values, and correctness of IVPFULNs. The IVPFULWA
operator and IVPFULWG operator are then developed. We also introduce the IVPFULDWA and IVPFULDWG
operators and examine their desirable properties. Finally, a specific application of a numerical example is presented.

The remainder of this paper is structured as follows: Section 2 discusses fundamental PFN and ULV definitions
and operations. Section 3 defines the IVPFUL set and provides certain IVPFULN operations. Interval-valued picture
fuzzy uncertain linguistic weighted averaging (IVPFULWA) and interpolated picture fuzzy uncertain linguistic
weighted geometric (IVPFULWG) operators are proposed in Section 4, along with some of their key properties.
Section 5 introduces the interval-valued picture fuzzy uncertain linguistic Dombi average operator and the interval-
valued picture fuzzy uncertain linguistic Dombigeometric operator. Two MADM approaches are constructed in
Section 6 based on these two operators. In Section 7, a numerical example for evaluating mutual fund selection is
provided. Finally, Section 8 offers concluding remarks.

2 Preliminaries

Here, it is important to quickly review some fundamental terms related to picture fuzzy sets (PFS), such interval-
valued of picture fuzzy sets [3, 30].

2.1 Some Concept of Interval Picture Fuzzy Set

Definition1. [3, 4] Let PFS U be a fixed set X is written as

U = {⟨µU (x), ηU (x), νU (x)⟩|x ∈ X},

where, positive be µU (x) ∈ [0, 1], neutral be ηU (x) ∈ [0, 1] and negative be νU (x) ∈ [0, 1] are membership
degree, in a fuzzy set U where 0 ≤ µU (x) + ηU (x) + νU (x) ≤ 1 for x ∈ X . Also, for refusal degree is for x as
πU (x) = 1−µU (x)− ηU (x)− νU (x). The pair (µU , ηU , νU ) is named as picture fuzzy numbers (PFNs) or picture
fuzzy values (PFVs).

2.2 Some Idea of Uncertain Linguistic Variables

This section addressed several concepts and operational rules that use LVs to introduce both qualitative and
linguistic features [15, 16, 20, 21, 28, 29, 31]. Let S = {st|t = 1, 2, . . . , p} be a LTS with odd cardinality. Any
stage, st represents a value for a linguistic variable and demonstrates the qualities listed below:
(i) Order set if si ≥ sj if i ≥ j
(ii) Negation operator if neg(si) = sj such that j = t− i
(iii) Max operator max(si, sj) = si if si ≥ sj
(iv) Min operator min(si, sj) = si if si ≤ sj . For example, the study [22] can be provided as:
S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = medium, s4 = good, s5 = very good, s6 =
extremely good}.

We expanded the discrete term set S to a continuous term set to prevent information loss S = {st|s0 ≤ st ≤
sp, t ∈ [1, p]}, where p is an adequate size positive integer. If st ∈ S, it is referred to as a virtual LT, or an original
linguistic term (LT). Decision-makers typically employ original LTS and virtual LTS solely used for computation to
find alternatives and qualities [19–22, 32].

The input LTS may not fit any of the original linguistic labels and may instead be placed between any two of
them, as is frequently observed in many real-world scenarios. In such situation, Xu [19–22] uncertain linguistic
variables (ULT) were introduced, and some of their operational principles were supplied.

Definition2. [22] Let s = [sl, sm], where sl, sm ∈ S, and sl, sm are the LVs s’s lower and upper bounds,
respectively. Also, let S̃ be the set of all ULTs. Let s = [sl, sm], s1 = [sl1 , sm1 ] and s2 = [sl2 , sm2 ] be three ULVs,
where s, s1, s2 ∈ S̃ and λ ∈ [0, 1], then operational laws of them defined as follows:
(i) s1 ⊕ s2 = [sl1 , sm1

]⊕ [sl2 , sm2
] = [sl1 ⊕ sl2 , sm1

⊕ sm2
] = [sl1+l2 , sm1+m2

]
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(ii) s1 ⊗ s2 = [sl1 , sm1 ]⊗ [sl2 , sm2 ] = [sl1 ⊗ sl2 , sm1 ⊗ sm2 ] = [sl1l2 , sm1m2 ]
(iii) λs = λ[sl, sm] = [λsl, λsm] = [sλl, sλm]
(iv) (s)λ = ([sl, sm])λ = [(sl)

λ, (sm)λ] = [slλ , smλ ].

3 Interval-Valued Picture Fuzzy Uncertain Linguistic Set (IVPFULS)

We introduce the IVLS and ULS to define INULS and IVPFULN based on the notions of INS, ULS, and INLS.
This section includes the IVPFULN’s operational guidelines and ranking order.

Definition3. Let Z be a fixed set and z represent the collective element within Z. The definition of IVPFULS p
in Z is

p =
{〈
z, sϕ(z), µp(z), ηp(z), νp(z)

〉
|z ∈ Z

}
(1)

where, sϕ(z) = [sσ(z), sθ(z)] ∈ S, µp(z) = [µlp(z), µ
u
p(z)] ⊆ [0, 1], ηp(z) = [ηlp(z), η

u
p (z)] ⊆ [0, 1], and νp(z) =

[νlp(z), ν
u
p (z)] ⊆ [0, 1] with the condition 0 ≤ µup(z) + ηup (z) + νup (z) ≤ 1. The functions µp(z), ηp(z) and νp(z)

are measured support, neutral, and objection membership values in an interval of an element z to the set Z to the
ULVs sϕ(z) = [sζ(z), sθ(z)]. For convenience, p =

〈
z, [sζ(p), sθ(p)], [µ

l(p), µu(p)], [ηl(p), ηu(p)], [νl(p), νu(p)]
〉

is the eight tuples called an IVPFULNs.
We defined some new operations on IVPFULNs:

Definition4. Let p =
〈
[sσ(p), sθ(p)], [µ

l(p), µu(p)], [ηl(p), ηu(p)], [νl(p), νu(p)]
〉

and q =
〈
[sζ(q), sθ(q)], [µ

l(q), µu(q)], [ηl(q), ηu(q)], [νl(q), νu(q)]
〉

be any two IVPFULNs, some operations of p
and q defined for any real number λ ∈ [0, 1]

(1) p⊕ q =
〈
[sζ(p)+ζ(q), sθ(p)+θ(q)], [µ

l(p) + µl(q)− µl(p)µl(q), µu(p) + µu(q)− µu(p)µu(q)],

[ηl(p)ηl(q), ηu(p)ηu(q)], [νl(p)νl(q), νu(p)νu(q)]
〉

(2) p⊗ q =
〈
[sζ(p)×η(q), sθ(p)×θ(q)], [µ

l(p)µl(q), µu(p)µu(q))],
[ηl(p) + ηl(q) − ηl(p)ηl(q), ηu(p) + ηu(q) − ηu(p)ηu(q)], [νl(p) + νl(q) − νl(p)νl(q), νu(p) + νu(q) −
νu(p)νu(q)]

〉
(3) λp =

〈
[sλζ(p), sλθ(p)], [1− (1− µl(p))

λ
, 1− (1− µu(p))

λ
], [ηl

λ
(p), ηuλ(p)], [νl

λ
(p), νuλ(p)]⟩

(4) pλ =
〈
[sζ(p)λ , sθ(p)λ ], µ

uλ(p)], [1− (1− ηl(p))
λ
, 1− (1− ηu(p))

λ
], [1− (1− νl(p))

λ
, 1− (1− νu(p))

λ
]⟩.

Definition5. Let p and q be any two IVPFULNs, then
(1) p+ q = q + p

(2) p.q = q.p

(3) λ(p+ q) = λp+ λq, for λ ∈ [0, 1]

(4) (p.q)λ = pλ + qλ, for λ ∈ [0, 1]

(5) λ1p+ λ2p = (λ1 + λ2)p, for λ1, λ2 ∈ [0, 1]

(6) pλ1 .pλ2 = pλ1+λ2 , for λ1, λ2 ∈ [0, 1]

(7) (p+ q) + r = p+ (q + r)

(8) (p.q).r = p.(q.r).
Based on the definition of score and accuracy function in the study [24] defined on interval-valued intuitionistic

uncertain linguistic (IVIULNs) numbers, we defined score and accuracy on an interval neutrosophic uncertain
linguistic information defined below.

Definition6. Let p =
〈
[sσ(p), sθ(p)], [µ

l(p), µu(p)], [ηl(p), ηu(p)], [νl(p), νu(p)]
〉

be any IVPFULN. Then,
defined score function of p is Λ(p) by

Λ(p) = s (σ(p)+θ(p))(2+µl(p)+µu(p)−ηl(p)−ηu(p)−νl(p)−νu(p))
4

, Λ(p) ∈ [0, 1] (2)

The accuracy function of p is Φ(p) by

Φ(p) = s (σ(p)+θ(p))(ηl(p)+ηu(p)+νl(p)+νu(p))
4

, Φ(p) ∈ [0, 1] (3)
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The following is a definition of prioritised analysis between any two IVPFULNs p and q based on the aforemen-
tioned design of score and accuracy:

(i) If Λ(p) < Λ(q), imply p ≺ q
(ii) If Λ(p) > Λ(q), imply p ≻ q

(iii) If Λ(p) = Λ(q), then
(1) If Φ(p) < Φ(q), imply p ≺ q.
(2) If Φ(p) > Φ(q), imply p ≻ q.
(3) If Φ(p) = Φ(q), imply p ∼ q.

4 Interval-Valued Picture Fuzzy Uncertain Linguistic Aggregation Operators

Here we defined IVPFULWA operator and study some of its properties.

4.1 IVPFULWA Operator

Definition7. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ). Then interval-valued picture fuzzy uncertain linguistic weighted average (IVPFULWA)
function IV PFULWA : ×ζ → × defined as follows:

IV PFULWAϖ(p1, p2, . . . , pζ) =

ζ⊕
b=1

(ψbpb) (4)

where,ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with pb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

By the operations on IVPFULNs , we derive the following theorem.

Theorem1. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ), then aggregating values of IVPFULNs pb (b = 1, 2, . . . , ζ) is also an IVPFULN,
and further,

IV PFULWAψ(p1, p2, . . . , pζ) =

ζ⊕
b=1

(ψbpb) =

〈[
s ζ∑
b=1

ψbη(pb)
, s ζ∑
b=1

ψbθ(pb)

]
,

[
1−

ζ∏
b=1

(1− µl(pb))
ψb , 1−

ζ∏
b=1

(1− µu(pb))
ψb
]
,
[ ζ∏
b=1

(ηl(pb))
ψb ,

ζ∏
b=1

(ηl(pb))
ψb
]
,

[ ζ∏
b=1

(νl(pb))
ψb ,

ζ∏
b=1

(νl(ϱb))
ϖb

]〉
(5)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

Proof:
We prove the Eq. (7) below using mathematical induction.

(i) When ζ = 2, we get〈[
sψbσ(pb), sψbθ(pb)

]
,
[
1−(1−µl(pb))ψb , 1−(1−µu(pb))ψb

]
,
[
(ηl(pb))

ψb , (ηl(pb))
ψb
]
,
[
(νl(pb))

ψb , (νl(pb))
ψb
]〉

for b = 1, 2.
Then,
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IV PFULWAψ(p1, p2) =

2⊕
b=1

ψbpb =

〈[
s 2∑
b=1

ψbη(pb)
, s 2∑
b=1

ψbθ(pb)

]
,

[
1−

2∏
b=1

(1− µl(pb))
ψb , 1−

2∏
b=1

(1− µu(pb))
ψb
]
,
[ 2∏
b=1

(ηl(pb))
ψb ,

2∏
b=1

(ηl(pb))
ψb
]
,

[ 2∏
b=1

(νl(pb))
ψb ,

2∏
b=1

(νl(pb))
ψb
]〉

(6)

(ii) Hypothesis, Eq. (7) holds for ζ = k (k ≥ 2), then

IV PFULWAψ(p1, p2, . . . , pk) =

k⊕
b=1

(ψbpb) =

〈[
s k∑
b=1

ψbσ(pb)
, s k∑
b=1

ψbθ(pb)

]
,

[
1−

k∏
b=1

(1− µl(pb))
ψb , 1−

k∏
b=1

(1− µu(pb))
ψb
]
,
[ k∏
b=1

(ηl(pb))
ψb ,

k∏
b=1

(ηl(pb))
ψb
]
,

[ k∏
b=1

(νl(pb))
ψb ,

k∏
b=1

(νl(pb))
ψb
]〉

(7)

When b = k + 1, we get

IV PFULWAψ(p1, p2, . . . , pk+1, pk) =

k⊕
b=1

(ψbpb) =

〈[
s k∑
b=1

ψbσ(pb)
, s k∑
b=1

ψbθ(pb)

]
,

[
1−

k∏
b=1

(1− µl(pb))
ψb , 1−

k∏
b=1

(1− µu(pb))
ψb
]
,
[ k∏
b=1

(ηl(pb))
ψb ,

k∏
b=1

(ηl(pb))
ψb
]
,

[ k∏
b=1

(νl(pb))
ψb ,

k∏
b=1

(νl(pb))
ψb
]〉

⊕〈[
sψk+1σ(pk+1), sψk+1θ(pk+1)

]
,
[
1− (1− µl(pk+1))

ψk+1 , 1− (1− µu(pk+1))
ψk+1

]
,

[
(ηl(pk+1))

ψk+1 , (ηu(pk+1))
ψk+1

]
,
[
(νl(pk+1))

ψk+1 , (νu(pk+1))
ψk+1

]〉
=

〈[
sk+1∑
b=1

ψbσ(pb)
, sk+1∑

b=1

ψbθ(pb)

]
,

[
1−

k+1∏
b=1

(1− µl(pb))
ψb , 1−

k+1∏
b=1

(1− µu(pb))
ψb
]
,
[ k+1∏
b=1

(ηl(pb))
ψb ,

k+1∏
b=1

(ηu(pb))
ψb
]
,

[ k+1∏
b=1

(νl(pb))
ψb ,

k+1∏
b=1

(νu(pb))
ψb
]〉

(8)

Thus, for ζ = k + 1, Eq. (7) holds, and results is obtained.
Theorem2. (Idempotent Property)

Let pb =
〈
[sη(pb), sθ(pb)], [µ

l(pb), T
u(pb)], [I

l(pb), I
u(pb)], [F

l(pb), F
u(pb)]

〉
be a set of INULNs for (b =

1, 2, . . . , ζ) are equal, i.e., pb = p for all b. Then

INULWAψ(p1, p2, . . . , pζ) = p (9)

Theorem3. (Boundedness Property)
Let pb =

〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVPFULNs for (b =

1, 2, . . . , ζ).
Let s−σ = min

1≤b≤ζ
{sσ(pb)|[sσ(pb), sθ(pb)] ∈ pb} s+σ = max

1≤b≤ζ
{sσ(pb)|[sσ(pb), sθ(pb)] ∈ pb},
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s−θ = min
1≤b≤ζ

{sθ(pb)|[sσ(pb), sθ(pb)] ∈ pb} and s+θ = max
1≤b≤ζ

{sθ(pb)|[sσ(pb), sθ(pb)] ∈ pb}.

Let µl− = min
1≤b≤ζ

{µlb|[µlb, µub ] ∈ pb}, and µu− = min
1≤b≤ζ

{µu(pb)|[µl(pb), µu(pb)] ∈ pb}

and µl+ = max
1≤b≤ζ

{µl(pb)|[µl(pb), µu(pb)] ∈ pb}, and µu+ = max
1≤b≤ζ

{µu(pb)|[µl(pb), µu(pb)] ∈ pb}.

Let ηl− = min
1≤b≤ζ

{ηl(pb)|[ηl(pb), ηu(pb)] ∈ pb}, and ηu− = min
1≤b≤ζ

{ηu(pb)|[ηlb, ηu(pb)] ∈ pb}

and ηl+ = max
1≤b≤ζ

{ηl(pb)|[ηl(pb), ηu(pb)] ∈ pb}, and ηu+ = max
1≤b≤ζ

{ηu(pb)|[ηlb(pb), ηu(pb)] ∈ pb}.

Let νl− = min
1≤b≤ζ

{νlb|[νlb(pb), νu(pb)] ∈ pb}, and νu− = min
1≤b≤ζ

{νu(pb)|[νlb(pb), νu(pb)] ∈ pb}

and νl+ = max
1≤b≤ζ

{νl(pb)|[νl(pb), νu(pb)] ∈ pb}, and νu+ = max
1≤b≤ζ

{νu(pb)|[νlb(pb), νu(pb)] ∈ pb},

for all b, then we have

{[s−σ , s−θ ], [µ
l−, µu−], [ηl−, ηu−], [νl−, νu−]} ≤ IV PFULWAψ(p1, p2, . . . , pζ)

≤ {[s+σ , s+θ ], [µ
l+, µu+], [ηl+, ηu+], [νl+, νu+]}.

Theorem4. (Monotonicity Property)
Let pb =

〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
and

p′b

〈
[s′σ(p′b)

, s′θ(p′b)
], [µ

′l(p′b), µ
′u(p′b)], [η

′l(p′b), η
′u(p′b)], [ν

′l(p′b), ν
′u(p′b)]

〉
be two sets of IVPFULNs for (b = 1, 2, . . . , ζ).

If pb ≤ p′b for all b, then

IV PFULWAψ(p1, p2 . . . , pζ) ≤ IV PFULWAψ(p
′

1, p
′

2, . . . , p
′

ζ) (10)

4.2 IVPFULWG Operator

Now, we will introduce interval-valued picture fuzzy uncertain linguistic weighted geometric (IVPFULWG)
operator and its properties.

Definition8. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ). Then interval-valued picture fuzzy uncertain linguistic weighted geometric (IVP-
FULWG) function IV PFULWG : ×ζ → × defined as follows:

IV PFULWGψ(p1, p2, . . . , pζ) =

ζ⊗
b=1

(pb)
ψb (11)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

By the operations on IVPFULNs , we derive the following theorem.

Theorem5. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for b = 1, 2, . . . , ζ, then aggregating values of IVPFULNs pb for b = 1, 2, . . . , ζ using IVPFULWG
operator is also an IVPFULN, and further,

IV PFULWGψ(p1, p2, . . . , pζ) =

ζ⊗
b=1

(pb)
ψb =

〈[
s ζ∏
b=1

(σ(pb))
ψb

, s ζ∏
b=1

(θ(pb))
ψb

]
,

[ ζ∏
b=1

(µl(pb))
ψb ,

ζ∏
b=1

(µu(pb))
ψb
]
,
[
1−

ζ∏
b=1

(1− ηl(pb))
ψb , 1−

ζ∏
b=1

(1− ηu(pb))
ψb
]
,

[
1−

ζ∏
b=1

(1− νl(pb))
ψb , 1−

ζ∏
b=1

(1− Fu(pb))
ψb
]〉

(12)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

Theorem6. (Idempotent Property)
Let pb =

〈
[sη(pb), sθ(pb)], [µ

l(pb), T
u(pb)], [I

l(pb), I
u(pb)], [F

l(pb), F
u(pb)]

〉
be a set of INULNs for (b =

1, 2, . . . , ζ) are equal, i.e., pb = p for all b. Then

INULWGψ(p1, p2, . . . , pζ) = p (13)
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Theorem7. (Boundedness Property)
Let pb =

〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVPFULNs for (b =

1, 2, . . . , ζ).
Let s−σ = min

1≤b≤ζ
{sσ(pb)|[sη(pb), sθ(pb)] ∈ pb}

s+σ = max
1≤b≤ζ

{sσ(pb)|[sσ(pb), sθ(pb)] ∈ pb},

s−θ = min
1≤b≤ζ

{sθ(pb)|[sη(pb), sθ(pb)] ∈ pb} and s+θ = max
1≤b≤ζ

{sθ(pb)|[sσ(pb), sθ(pb)] ∈ pb}.

Let µl− = min
1≤b≤ζ

{µlb|[µl(pb), µu(pb)] ∈ pb},

and µu− = min
1≤b≤ζ

{µu(pb)|[µl(pb), µu(pb)] ∈ pb} and µl+ = max
1≤b≤ζ

{µl(pb)|[µl(pb), µu(pb)] ∈ pb},

and µu+ = max
1≤b≤ζ

{µu(pb)|[µl(pb), µu(pb)] ∈ pb}.

Let ηl− = min
1≤b≤ζ

{ηl(pb)|[ηl(pb), ηu(pb)] ∈ pb},

and ηu− = min
1≤b≤ζ

{ηu(pb)|[ηlb(pb), Iu(pb)] ∈ pb} and ηl+ = max
1≤b≤ζ

{ηl(pb)|[ηl(pb), ηu(pb)] ∈ pb},

and ηu+ = max
1≤b≤ζ

{ηu(pb)|[ηl(pb), ηu(pb)] ∈ pb}.

Let νl− = min
1≤b≤ζ

{νlb|[νl(pb), νu(pb)] ∈ pb}, and

νu− = min
1≤b≤ζ

{νu(pb)|[νl(pb), νu(pb)] ∈ pb} and νl+ = max
1≤b≤ζ

{νl(pb)|[νl(pb), νu(pb)] ∈ pb},

and νu+ = max
1≤b≤ζ

{νu(pb)|[νl(pb), νu(pb)] ∈ pb}, for all b, then we have

{[s−σ , s−θ ], [µ
l−, µu−], [ηl−, ηu−], [νl−, νu−]} ≤ IV PFULWGψ(p1, p2, . . . , pζ)

≤ {[s+σ , s+θ ], [µ
l+, µu+], [ηl+, ηu+], [νl+, νu+]}.

Theorem8. (Monotonicity Property)
Let pb =

〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
and p′b

〈
[s′σ(p′b)

, s′θ(p′b)
], [µ

′l(p′b), µ
′u(p′b)], [η

′l(p′b), η
′u(p′b)], [ν

′l(p′b), ν
′u(p′b)]

〉
be two sets of IVPFULNs for (b =

1, 2, . . . , ζ). If pb ≤ p′b for all b, then

IV PFULWGψ(p1, p2 . . . , pζ) ≤ IV PFULWGψ(p
′

1, p
′

2, . . . , p
′

ζ) (14)

5 IVPFUL Dombi Aggregation Operators
5.1 IVPFULDWA Operator

Definition9. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ). The IVPFULDWA function IV PFULDWA : ×ζ → × defined as follows:

IV PFULDWAψ(p1, p2, . . . , pζ) =

ζ⊕
b=1

(ψbpb) (15)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

By the operations on IVPFULNs , we derive the following theorem.

Theorem9. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ), then aggregating values using IVPFULDWA opearator pb (b = 1, 2, . . . , ζ) is also an
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IVPFULN, and further,

IV PFULDWAψ(p1, p2, . . . , pζ) =

ζ⊕
b=1

(ψbpb) =

〈[
s ζ∑
b=1

ψbσ(pb)
, s ζ∑
b=1

ψbθ(pb)

]
,

[
1− 1

1 +
{ ζ∑
b=1

ψb

(
µl(pb)

1−µl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ ζ∑
b=1

ψb

(
µu(pb)

1−µu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ ζ∑
b=1

ψb

(
1−ηl(pb)
ηl(pb)

)ϱ}1/ϱ
,

1

1 +
{ ζ∑
b=1

ψb

(
1−ηu(pb)
ηu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ ζ∑
b=1

ψb

(
1−νl(pb)
νl(pb)

)ϱ}1/ϱ
,

1

1 +
{ ζ∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)ϱ}1/ϱ

]〉

(16)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

Proof:
We prove the Eq. (18) below using mathematical induction.

(i) When b = 2, we get〈[
sψbη(pb), sψbθ(pb)

]
,
[
1− 1

1+

{
ψb

(
µl(pb)

1−µl(pb)

)ϱ}1/ϱ , 1− 1

1+

{
ψb

(
µu(pb)

1−µu(pb)

)ϱ}1/ϱ

]
,

[
1

1+

{
ψb

(
1−ηl(pb)
ηl(pb)

)ϱ}1/ϱ ,
1

1+

{
ψb

(
1−ηu(pb)

ηu(pb)

)ϱ}1/ϱ

]
,
[

1

1+

{
ψb

(
1−νl(pb)
νl(pb)

)ϱ}1/ϱ , 1− 1

1+

{
ψb

(
1−νu(pb)

νu(pb)

)ϱ}1/ϱ

]〉
for ξ = 1, 2.

Then,

IV PFULDWAψ(p1, p2) =

2⊕
b=1

ψbpb =

〈[
s 2∑
b=1

ψbϱ(pb)
, s 2∑
b=1

ψbθ(pb)

]
,

[
1− 1

1 +
{ 2∑
b=1

ψb

(
µl(pb)

1−µl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ 2∑
b=1

ψb

(
Tu(pb)

1−Tu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ 2∑
b=1

ψb

(
1−ηl(pb)
ηl(pb)

)ϱ}1/ϱ
,

1

1 +
{ 2∑
b=1

ψb

(
1−ηu(pb)
ηu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ 2∑
b=1

ψb

(
1−νl(pb)
νl(pb)

)ϱ}1/ϱ
,

1

1 +
{ 2∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)ϱ}1/ϱ

]〉
.

(17)
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(ii) Hypothesis, Eq. (18) holds for ζ = k (k ≥ 2), then

IV PFULDWAψ(p1, p2, . . . , pk) =

k⊕
b=1

(ψbpb) =

〈[
s k∑
b=1

ψbσ(pb)
, s k∑
b=1

ψbθ(pb)

]
,

[
1− 1

1 +
{ k∑
b=1

ψb

(
µl(pb)

1−µl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ k∑
b=1

ψb

(
µu(pb)

1−µu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ k∑
b=1

ψb

(
1−ηl(pb)
ηl(pb)

)ϱ}1/ϱ
,

1

1 +
{ k∑
b=1

ψb

(
1−ηu(pb)
ηu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ k∑
b=1

ψb

(
1−νl(pb)
νl(pb)

)ϱ}1/ϱ
,

1

1 +
{ k∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)ϱ}1/ϱ

]〉
.

(18)

When τ = k + 1, we get

IV PFULDWAψ(p1, p2, . . . , pk, pk+) =
k⊕
b=1

(ψbpb)
⊕

(ψk+1pk+1)

=

〈[
s k∑
b=1

ψbσ(pb)
, s k∑
b=1

ψbθ(pb)

]
,
[
1− 1

1 +
{ k∑
b=1

ψb

(
µl(pb)

1−µl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ k∑
b=1

ψb

(
µu(pb)

1−µu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ k∑
b=1

ψb

(
1−ηl(pb)
ηl(pb)

)ϱ}1/ϱ
,

1

1 +
{ k∑
b=1

ψb

(
1−ηu(pb)
ηu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ k∑
b=1

ψb

(
1−νl(pb)
νl(pb)

)ϱ}1/ϱ
,

1

1 +
{ k∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)ϱ}1/ϱ

]〉

⊕〈[
sψk+1σ(pk+1), sψk+1θ(pk+1)

]
,
[
1− 1

1+

{
ψk+1

(
µl(pk+1)

1−µl(pk+1)

)ϱ}1/ϱ , 1− 1

1+

{
ψk+1

(
µu(pk+1)

1−µu(pk+1)

)ϱ}1/ϱ

]
,

[
1

1+

{
ψk+1

(
1−ηl(pk+1)

Il(pk+1)

)ϱ}1/ϱ ,
1

1+

{
ψk+1

(
1−ηu(pk+1)

ηu(pk+1)

)ϱ}1/ϱ

]
,
[

1

1+

{
ψk+1

(
1−νl(pk+1)

νl(pk+1)

)ϱ}1/ϱ , 1− 1

1+

{
ψk+1

(
1−νu(pk+1)

νu(pk+1)

)ϱ}1/ϱ

]〉

=

〈[
sk+1∑
b=1

ψbσ(pb)
, sk+1∑

b=1

ψbθ(pb)

]
,
[
1− 1

1 +
{ k+1∑
b=1

ψb

(
µl(pb)

1−µl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ k+1∑
b=1

ψb

(
µu(pb)

1−µu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ k+1∑
b=1

ψb

(
1−ηl(pb)
ηl(pb)

)ϱ}1/ϱ
,

1

1 +
{ k+1∑
b=1

ψb

(
1−ηu(pb)
ηu(pb)

)ϱ}1/ϱ

]
,

[ 1

1 +
{ k+1∑
b=1

ψb

(
1−νl(pb)
νl(pb)

)ϱ}1/ϱ
,

1

1 +
{ k+1∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)ϱ}1/ϱ

]〉
.

(19)

Thus, for ζ = k + 1, Eq. (18) holds, and results is obtained.

5.2 IVPFULDWG Operator

Definition10. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ). Then interval-valued picture fuzzy uncertain linguistic Dombi weighted average
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(IVPFULDWG) function INULDWG : ×ζ → × defined as follows:

IV PFULDWGψ(p1, p2, . . . , pζ) =

ζ⊗
b=1

(pb)
ψb (20)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

In view of Dombi operation on IVPFULNs , we derive the following theorem.

Theorem10. Let pb =
〈
[sσ(pb), sθ(pb)], [µ

l(pb), µ
u(pb)], [η

l(pb), η
u(pb)], [ν

l(pb), ν
u(pb)]

〉
be a set of IVP-

FULNs for (b = 1, 2, . . . , ζ), then aggregating values of IVPFULNs pb (b = 1, 2, . . . , ζ) is also an IVPFULN, and
further,

IV PFULDWGψ(p1, p2, . . . , pζ) =

ζ⊗
b=1

(ψbpb) =

〈[
s ζ∏
b=1

(η(pb))
ψb

, s ζ∏
b=1

(θ(pb))
ψb

]
,

[ 1

1 +
{ ζ∑
b=1

ψb

(
1−µl(pb)
µl(pb)

)ϱ}1/ϱ
,

1

1 +
{ ζ∑
b=1

ψb

(
1−µu(pb)
µu(pb)

)ϱ}1/ϱ

]
,

[
1− 1

1 +
{ ζ∑
b=1

ψb

(
ηl(pb)

1−ηl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ ζ∑
b=1

ψb

(
ηu(pb)

1−ηu(pb)

)ϱ}1/ϱ

]
,

[
1− 1

1 +
{ ζ∑
b=1

ψb

(
F l(pb)

1−νl(pb)

)ϱ}1/ϱ
, 1− 1

1 +
{ ζ∑
b=1

ψb

(
Fu(pb)

1−νu(pb)

)ϱ}1/ϱ

]〉

(21)

where, ψ = (ψ1, ψ2, . . . , ψζ)
T be followed the weight vector of pb (b = 1, 2, . . . , ζ), with ψb ∈ [0, 1], and

ζ∑
b=1

ψb = 1.

Proof: This theorem can be proved easily. □

6 Model for MADM Method With INUL Information

The weights of the characteristics are real values under IPUL information in the MADM technique that
we propose in this work, which uses INUL aggregation operators. Here, the MADM technique is utilised
to assess the utility of choosing an index of rural development under ambiguous language interval data. Let
Q = {Q1, Q2, . . . , Qζ} be a finite set of alternatives, and G = {G1, G2, . . . , Gζ} be a set of attributes. Let
ψ = (ψ1, ψ2, . . . , ψζ)

T be the weight vector for the attribute bj (b = 1, 2, . . . , ζ) that are known such that

ψb ∈ [0, 1], where
ζ∑
b=1

ψb = 1. Suppose that Q = (aρ)ζ×ζ is the INUL decision matrix, where pρ =

([sσ(pab), sθ(pab)], [µ
l(pab), µ

u(pρ)], [η
l(pab), η

u(pab)], [ν
l(pab), ν

u(pab)]) is the IVPFULN for the alternative pab ∈
Q w.r.t. the attribute pb ∈ G.

The approach uses the IVPFULWA and IVPFULWG operators to interpret the MADM issue with IVPFUL
information.

Algorithm
Input: To the selection of desirable alternatives.
Output: Best alternative.
Case 1
Step 1. We make use of the decision-making data presented in matrix A and the IVPULWA operator.

119



IV PFULWAψ(p11, p12, . . . , p1ζ) =

ζ⊕
b=1

(ψbpab)Υa =

〈[
s ζ∑
b=1

ψbη(pab)
, s ζ∑
b=1

ψbθ(pab)

]
,

[
1−

ζ∏
b=1

(1− µl(pab))
ψb , 1−

ζ∏
b=1

(1− µu(pab))
ψb
]
,

[ ζ∏
b=1

(ηl(pab))
ψb ,

ζ∏
b=1

(ηl(pab))
ψb
]
,
[ ζ∏
b=1

(νl(pab))
ψb ,

ζ∏
b=1

(νl(pab))
ψb
]〉

(22)

or

IV PFULWGψ(p11, p12, . . . , p1ζ) =

ζ⊗
b=1

(pab)
ψbΥa =

〈[
s ζ∏
b=1

(σ(pψb ))
ψb

, s ζ∏
b=1

(θ(pab))
ψb

]
,

[ ζ∏
b=1

(µl(ψb))
ψb ,

ζ∏
b=1

(µu(pab))
ψb
]
,
[
1−

ζ∏
b=1

(1− ηl(pab))
ψb , 1−

ζ∏
b=1

(1− ηu(pab))
ψb
]
,

[
1−

ζ∏
b=1

(1− νl(pab))
ψb , 1−

ζ∏
b=1

(1− νu(pab))
ψb
]〉

(23)

Case 2
If we applied IVPFULDWA (IVPFULDWG) operator, then get the scheme as follows:

IV PFULDWAψ(p1, p2, . . . , pζ) =

ζ⊕
b=1

(ψbpb) =

〈[
s ζ∑
b=1

ψbσ(pb)
, s ζ∑
b=1

ψbθ(pb)

]
,

[
1− 1

1 +
{ ζ∑
b=1

ψb

(
µl(pb)

1−µl(pb)

)σ}1/σ
, 1− 1

1 +
{ ζ∑
b=1

ψb

(
µu(pb)

1−µu(pb)

)σ}1/σ

]
,

[ 1

1 +
{ ζ∑
b=1

ψb

(
1−ηl(pb)
ηl(pb)

)σ}1/σ
,

1

1 +
{ ζ∑
b=1

ψb

(
1−ηu(pb)
ηu(pb)

)σ}1/σ

]
,

[ 1

1 +
{ ζ∑
b=1

ψb

(
1−νl(pb)
νl(pb)

)σ}1/σ
,

1

1 +
{ ζ∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)σ}1/σ

]〉

(24)

or

IV PFULDWGψ(p1, p2, . . . , pζ) =

ζ⊗
b=1

(pb)
ψb =

〈[
s ζ∏
b=1

(σ(pb))
ψb

, s ζ∏
b=1

(θ(pb))
ψb

]
,

[ 1

1 +
{ ζ∑
b=1

ψb

(
1−µl(pb)
µl(pb)

)σ}1/σ
,

1

1 +
{ ζ∑
b=1

ψb

(
1−νu(pb)
νu(pb)

)σ}1/σ

]
,

[
1− 1

1 +
{ ζ∑
b=1

ψb

(
ηl(pb)

1−ηl(pb)

)σ}1/σ
, 1− 1

1 +
{ ζ∑
b=1

ψb

(
ηu(pb)

1−ηu(pb)

)σ}1/σ

]
,

[
1− 1

1 +
{ ζ∑
b=1

ψb

(
νl(pb)

1−νl(pb)

)σ}1/σ
, 1− 1

1 +
{ ζ∑
b=1

ψb

(
νu(pb)

1−νu(pb)

)σ}1/σ

]〉

(25)

to obtained the overall values Υρ (ρ = 1, 2, . . . , ζ) of the alternative pb.
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Step 2. Ranking all of the options pb is done by evaluating the score Λ(Υa) (a = 1, 2, . . . , ξ) based on the total
IVPFUL information.To get the preferred optionQa, perform (b = 1, 2, . . . , ζ). If the value of Λ(Υa) and Λ(Υb) are
same, then we next proceed to evaluate degrees of accuracy Φ(Υa) and Λ(Υb) rest on overall IVPFUL information
of Υa and Υb, and rank the alternative Qa depending with the accuracy Φ(Υa) and Φ(Υb).

Step 3. In order to select the best option(s) in accordance withΛ(Υa) (a = 1, 2, . . . , ξ), rank all of the alternatives
Qa.

Step 4. Stop.

7 Numerical Example
7.1 Application

The decision-making process has been illustrated in the following with a numerical example relating investment
choice to the suitability of the suggested MADM challenges. A potential investor wants to put money into a mutual
fund business. Before making an investment, a potential investor could investigate five mutual fund companies as
possibilities, including:

(Q1): Large cap fund
(Q2): Liquid fund
(Q3): Blue chip fund
(Q4): Hybrid fund.

The expert team examined the mutual funds (alternatives) in light of the five characteristics listed below and
provided recommendations.

(G1): Short term
(G2): Mid term
(G3): Long term
(G4): Risk of the funds
(G5): Wealth of the fund.

After gathering the data, a team of professionals used a set of linguistic phrases to generate benefit rating informa-
tion for four mutual funds S = {s1 = extremely poor benefit, s2 = very poor benefit, s3 = poor benefit, s4 =
medium benefit, s5 = good benefit, s6 = very good benefit, s7 = extremely good benefit} of the above
five attributes and weight vector of them is ψ = (0.4, 0.2, 0.1, 0.12, 0.18)T , and alternatives Q1, Q2, Q3 and Q4

evaluated with IVPFULNs by the decision makers have same dominance degree. Evaluation of decision makers is
given in Table 1.

Table 1. Evaluations of decision makers

Q1 Q2

G1 ⟨([s4, s5], [.3, .4], [.2, .3], [.1, .2])⟩ ⟨([s4, s5], [.4, .5], [.1, .2], [.1, .2])⟩
G2 ⟨([s5, s5], [.2, .3], [.1, .2], [.2, .3])⟩ ⟨([s5, s5], [.1, .2], [.3, .4], [.3, .4])⟩
G3 ⟨([s3, s4], [.4, .5], [.2, .3], [.1, .2])⟩ ⟨([s4, s4], [.3, .4], [.1, .2], [.2, .3])⟩
G4 ⟨([s6, s6], [.1, .3], [.1, .2], [.2, .3])⟩ ⟨([s5, s6], [.3, .4], [.2, .3], [.1, .2])⟩
G5 ⟨([s3, s4], [.5, .6], [.1, .2], [.1, .2])⟩ ⟨([s4, s5], [.4, .5], [.1, .2], [.2, .3])⟩

Q3 Q4

G1 ⟨([s5, s5], [.2, .3], [.1, .2], [.4, .5])⟩ ⟨([s4, s5], [.2, .3], [.2, .3], [.3, .4])⟩
G2 ⟨([s4, s4], [.4, .5], [.2, .3], [.1, .2])⟩ ⟨([s2, s3], [.4, .6], [.1, .2], [.1, .2])⟩
G3 ⟨([s4, s5], [.1, .3], [.2, .3], [.1, .2])⟩ ⟨([s3, s6], [.4, .5], [.1, .3], [.1, .2])⟩
G4 ⟨([s6, s6], [.3, .5], [.1, .3], [.1, .2])⟩ ⟨([s4, s5], [.2, .3], [.2, .3], [.3, .4])⟩
G5 ⟨([s3, s4], [.4, .5], [.1, .2], [.2, .3])⟩ ⟨([s4, s4], [.4, .6], [.1, .2], [.1, .2])⟩

Case 1:
Step 1. We aggregate IVPFUL information Υab for a = 1, 2, 3, 4; b = 1, 2, 3, 4, 5 by using IVPFULWA operator

to obtain the overall accumulated values Υb for (b = 1, 2, 3, 4) represented the alternatives Qa which is given in the
Table 2.

Step 2. Using the aggregated values of the alternatives, which are provided in Table 2, the score values of the
alternatives Qa (a = 1, 2, 3, 4) are displayed below. Then, Λ(Υ1) = s4.498, Λ(Υ2) = s4.599, Λ(Υ3) = s4.201 and
Λ(Υ4) = s3.793.

Step 3. We create the ranking order of the alternatives as follows based on the values of the scoring function:
we obtain Q2 ≻ Q1 ≻ Q3 ≻ Q4. The Q2 is the best mutual funds for investment.

Find the following outcomes if you use the IVPFULWG operator rather than the IVPFULWA operator.
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Table 2. Aggregated values of IVPFULWA operators

Alternative(Qa) IV PFULWA
Q1 ⟨([s4.16, s4.84], [0.3133, 0.4246], [0.1414, 0.2449], [0.1248, 0.2277])⟩
Q2 ⟨([s4.32, s5.02], [0.3269, 0.4282], [0.1354, 0.2412], [0.1513, 0.2574])⟩
Q3 ⟨([s4.46, s4.74], [0.2859, 0.4084], [0.1231, 0.2371], [0.1972, 0.3104])⟩
Q4 ⟨([s3.5, s4.52], [0.3032, 0.4528], [0.1432, 0.2572], [0.1771, 0.2868])⟩

Step 1. We aggregate INUL information Υab for ρ = 1, 2, 3, 4; b = 1, 2, 3, 4, 5 by using IVPFULWG operator
to obtain overall values of Υa (a = 1, 2, 3, 4) for Qa which is given in Table 3.

Step 2. The score for Qa (a = 1, 2, 3, 4) are shown below by using IVPFULWG operator is given in Table 3.
Then, Λ(Υ1) = s4.215, Λ(Υ2) = s4.231, Λ(Υ3) = s3.768 and Λ(Υ4) = s3.415.

Step 3. The ranking order of the alternatives is created using the score values of Qa as follows: Q2 ≻ Q1 ≻
Q3 ≻ Q4. As a result, out of all the funds, Q2 is still the top mutual fund.

Thus, while the ranking order for Qa, is unchanged, the best option for operators IVPFULWA (IVPFULWG) is
alternative Q2, which has the highest score of all.

Case 2:
Step 1. we aggregate INUL information Υab for ρ = 1, 2, 3, 4; b = 1, 2, 3, 4, 5 by using INULDWA operator to

obtain the accumulated values of Υb for (a = 1, 2, 3, 4) for Qa which is given in Table 4.

Table 3. Aggregated values of using IVPFULWG operators

Alternative(Qa) IV PFULWG
Q1 ⟨([s4.05, s4.80], [0.2736, 0.4013], [0.1515, 0.2517], [0.1333, 0.2335])⟩
Q2 ⟨([s4.29, s4.99], [0.2846, 0.3963], [0.1561, 0.2567], [0.1719, 0.2724])⟩
Q3 ⟨([s4.36, s4.70], [0.2549, 0.3873], [0.1312, 0.2436], [0.2508, 0.3529])⟩
Q4 ⟨([s3.38, s4.42], [0.2789, 0.4109], [0.1535, 0.2636], [0.2103, 0.3112])⟩

Table 4. Aggregated values of the alternatives using IVPFULDWA operators

Alternative(Qa) IV PFULDWA
Q1 ⟨([s4.16, s4.84], [0.3250, 0.4362], [0.1333, 0.2400], [0.1190, 0.2239])⟩
Q2 ⟨([s4.32, s5.02], [0.3347, 0.4374], [0.1240, 0.2326], [0.1376, 0.2479])⟩
Q3 ⟨([s4.46, s4.74], [0.2937, 0.4167], [0.1176, 0.2326], [0.1639, 0.2857])⟩
Q4 ⟨([s3.5, s4.52], [0.3103, 0.4717], [0.1351, 0.2521], [0.1531, 0.2703])⟩

Step 2. Using the totaled values of the options, the results of Qa are displayed below in Table 4. Then,
Λ(Υ1) = s4.601, Λ(Υ2) = s4.740, Λ(Υ3) = s4.394 and Λ(Υ4) = s3.953.

Step 3. Based on computed values of Λ(Υa), we create the following ranking order for the potential solutions:
Q2 ≻ Q1 ≻ Q3 ≻ Q4. Q2 is the best choice.

The following outcomes are obtained if we employ the IVPFULDWG operator rather than the IVPFULDWA
operator.

Step 1. We aggregate IVPFUL data Υab by using IVPFULDWG operator to obtain accumulated values of Υa
for Qa which is given in Table 5.

Step 2. Using the IVPFULDWG operator, the Qa score is displayed below in Table 5. Then, Λ(Υ1) = s4.355,
Λ(Υ2) = s4.384, Λ(Υ3) = s3.935 and Λ(Υ4) = s3.532.

Step 3. The alternatives are ranked in the following order based on the values of the score: Q2 ≻ Q1 ≻ Q3 ≻ Q4.
Hence, Q2 is still the best choice.

According to the calculations above, the two operators IVPFULDWA (IVPFULDWG) have different score values,
but the ranking order of the alternatives Qa, is the same, and the alternative Q2 is the best option for both operators.
As a result, the suggested strategy is reliable within the decision-making framework.
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Table 5. Aggregated values of the alternatives using IVPFULDWG operators

Alternative(Qa) IV PFULDWG
Q1 ⟨([s4.05, s4.80], [0.2523, 0.4087], [0.1383, 0.2274], [0.1194, 0.2077])⟩
Q2 ⟨([s4.29, s4.99], [0.2555, 0.3953], [0.1462, 0.2365], [0.1442, 0.2344])⟩
Q3 ⟨([s4.36, s4.70], [0.2451, 0.4021], [0.1172, 0.2188], [0.2386, 0.3355])⟩
Q4 ⟨([s3.38, s4.42], [0.2833, 0.4087], [0.1404, 0.2400], [0.2039, 0.2966])⟩

8 Conclusions

In conclusion, this study presented a methodology utilizing INULNs to address MADM problems. The INULWA,
INULWG, INULDWA, and INULDWG operators were introduced, and their properties were investigated. A
framework for tackling MADM problems was developed, incorporating these proposed operators. A practical
example illustrating the application of the suggested approach for evaluating mutual funds for investment purposes
was provided. The proposed model holds potential for application in decision support, cognitive assessment,
linguistic research, and various other domains dealing with uncertainty in future studies.
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