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Abstract: Urban transportation systems, characterized by inherent uncertainty and ambiguity, present a formidable
challenge in decision-making due to their complex interplay of factors. This complexity arises from dynamically
shifting commuter behaviors, a diverse array of transit options, and variable traffic patterns. Such unpredictability
hinders the formulation and implementation of effective strategies. Addressing this challenge necessitates innovative
problem-solving methodologies capable of handling the nuanced uncertainties present in these systems. This study
introduces the multidimensional neutrosophic fuzzy hypersoft set (MDNFHS) as a groundbreaking method for
managing ambiguity in urban transportation planning. MDNFHS, emerging from the integration of neutrosophic
fuzzy sets (NFSs) and hypersoft sets (HSs), uniquely encapsulates both the degrees of membership and non-
membership. It is demonstrated that the tailored set-theoretic operations and distance measurements specific to
MDNFHS enable enhanced manipulation and analysis, making it a potent tool in complex decision-making scenarios.
The efficacy of MDNFHS in decision-making is exemplified through a compelling case study, showcasing its ability
to offer clarity in situations marred by ambiguity. This novel approach is posited to revolutionize decision-making
processes, offering a new level of certainty in environments traditionally dominated by uncertain elements.
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1 Introduction

The burgeoning challenges in urban mobility within large metropolises are exacerbated by escalating transportation
issues. These challenges stem from rapid urbanization and population growth, manifesting in inadequate public
transport systems, escalating traffic congestion, and heightened environmental concerns. The proliferation of vehicles
exacerbates commute times, intensifies pollution, and elevates stress levels among residents. Furthermore, suboptimal
transportation infrastructure hinders economic growth and adversely impacts the quality of life in urban settings.
Addressing these multifaceted issues necessitates innovative and sustainable approaches, ranging from enhanced
public transportation systems to the promotion of eco-friendly mobility alternatives such as walking and cycling. The
complexity of transportation dilemmas in large cities demands progressive policies and comprehensive urban planning
to forge more efficient, accessible, and environmentally responsible transportation systems. Neutrosophic sets (NSs),
conceptualized by Smarandache [1], address complex decision-making problems characterized by ambiguities, often
accompanied by incompatible and unreliable knowledge. These sets’ capacity to express precision, indeterminacy,
and contradictions through three association functions in the evaluation of alternatives in multi-criteria decision-
making (MCDM) is particularly noteworthy. The concept of NSs finds application across a diverse array of fields,
including computational sciences, physical sciences, medical sciences, social sciences, technology, and multi-criteria
group decision-making challenges.

Das et al. [2] explored the quadripartitioned neutrosophic closure and the quadripartitioned neutrosophic interior
operator of Q-NSs within a quadripartitioned neutrosophic topological space (Q-NTS). Their study delved into various
properties of these elements in the context of quadripartitioned NSs (Q-NSs). Karabašević et al. [3] introduced an
innovative extension of the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method,
applying single-valued NSs in conjunction with Hamming distance for the selection of E-commerce development
strategies. This development represents a notable contribution to the field of MCDM under neutrosophic conditions.
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The work of Abdel-Basset et al. [4] is particularly noteworthy. They proposed a novel framework integrating
computer-assisted examination with the Internet of Things (IoT) for monitoring and diagnosing heart failure patients.
Additionally, they developed a neutrosophic MCDM methodology, offering substantial support for patients’ care
decisions. Said et al. [5] explored various computational methods for traffic flow analysis, employing rough set,
fuzzy rough set, and their extensions within the NS framework. This exploration has opened new avenues for
understanding and managing traffic systems.

Nafei et al. [6] contributed a modified score function for ranking single-valued neutrosophic numbers. They
applied this novel function in a TOPSIS framework, addressing complex hotel location selection issues. In the
healthcare sector, Broumi et al. [7] proposed an innovative concept for n-valued interval NSs and their application
in healthcare evaluation. Maji [8] introduced the concept of a neutrosophic soft set, along with various operations
applicable to these sets. Following this, Karaaslan [9] revisited the conceptual foundations and operational methods
of neutrosophic soft sets. His work also encompassed decision-making processes, both individually and in group
settings. This area of study has seen a surge in research, particularly focusing on the properties of neutrosophic
soft sets and their application in decision-making challenges. For instance, Broumi [10] defined the concept of
a generalized neutrosophic soft set. Building on this, Broumi et al. [11] proposed a decision-making strategy
based on these generalized neutrosophic soft sets, further expanding the field’s scope and applicability. The
exploration of neutrosophic soft sets and their applications has seen notable contributions. Sahin and Kücük [12]
introduced the concept of generalized neutrosophic soft sets, along with operations on these sets. Their work also
encompassed decision-making and similarity measurement methods within a soft neutrosophic setting. Deli [13]
defined interval-valued neutrosophic soft sets and elucidated the operations applicable to them. This definition
expanded the theoretical framework of NSs. Following this, Deli and Broumi [14] investigated neutrosophic soft
matrices, proposing a novel approach to decision-making utilizing these matrices.

A critical distinction has been observed between the practical applications of fuzzy sets (FSs) and NSs. FS
primarily handles undetermined and incompatible knowledge, whereas NS is adept at managing incomplete and
vague information. Fuzzy set theory has demonstrated efficacy in managing uncertainty, while NS theory excels
in handling undetermined and inconsistent data. However, scenarios presenting both uncertain and inconsistent
information necessitate a hybrid approach, combining FS and NS. This requirement led to the extension of FS
in the context of NS. Hashim et al. [15] conducted research on neutrosophic bipolar FSs and their applications
in pharmaceutical formulations. Das et al. [16] developed the concept of NFS by integrating FS and NS. They
also explored single valued NFS (SVNFS) and its applications in decision-making, further broadening the scope
of neutrosophic applications. Mehmood et al. [17] proposed hybrids of HS and complex FS, along with their
generalization frameworks, namely complex intuitionistic FS and complex NS. They provided illustrative examples
to demonstrate these concepts. Further researchs [18–21] showcased the application of NSs in various directions.

The amalgamation of FS theory and neutrosophic logic culminates in the creation of NFS, a paradigm shift that
captures the essence of uncertainty in decision-making processes. NFS’s ability to address both uncertainty and
inconsistency revolutionizes decision-making across various fields. These sets, embodying membership grades of
truth, indeterminacy, and falsity, offer a versatile framework for navigating the complexities of real-world scenarios.
The potential of NFS has captivated researchers, allowing for an in-depth exploration of uncertainty and the derivation
of meaningful insights [22]. Embracing the unknown becomes feasible with NFS, facilitating informed and improved
decision-making. In the realm of NFS, Khalil et al. [22] proposed the concept of the single-valued neutrosophic
fuzzy soft set, blending NFS with the soft set theory. This concept presents an innovative approach in the field.
Smarandache’s introduction of the HS in 2018 [23] marked a significant advancement. HS is characterized as a
mapping from a given set of attributes and the power set of the universal set to their Cartesian product, further
subdivided into attributes. Subsequent extensions, such as fuzzy hypersoft sets (FHSs), intuitionistic hypersoft
sets (IHSs), and neutrosophic hypersoft sets (NHSs), were developed to accommodate varying degrees of truth,
uncertainty, and indeterminacy [24]. In the NHS domain, the concepts of single-valued neutrosophic hypersoft
sets (SVNHSs) [25] and various aggregate operators were introduced [26, 27]. The application of various newly
proposed MCDM techniques has been explored in numerous decision-making scenarios [28, 29]. Additionally,
the representation of complex and parametrized HSs has been proposed [30, 31], further expanding the scope of
these mathematical tools in practical applications. In the exploration of MCDM methodologies, neutrosophic and
hypersoft set strucutres have been effectively employed, particularly in the group decision making and multi-objective
decision making problems [32–36]. Additionally, the introduction of W-structures of HSs [37] marked a significant
advancement in the representation of complex data. However, a comprehensive review of the literature reveals a gap
in considering the multidimensionality of attributes in these studies, a gap this research aims to address. The urban
transportation dilemma, characterized by its multifaceted and unpredictable nature, serves as a prime example of
this oversight. Factors such as fluctuating commuter behaviors, diverse transit options, and variable traffic patterns
contribute to the complexity of urban transportation networks, thereby amplifying uncertainty and ambiguity in
decision-making processes [38].
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This paper is organized as follows: Section 1, the Introduction, underscores the limitations of traditional
approaches in handling complex decision-making scenarios and emphasizes the pivotal role of MDNFHS in this
context. Section 2 presents the preliminaries, laying the groundwork for the subsequent analysis. Section 3 details
the proposed distance and similarity measures utilizing MDNFHS. In Section 4, a case study focusing on the
transportation issues in Lahore is examined, followed by a discussion of the results. The paper concludes in Section
5, which outlines future research directions in this field.

2 Methodology

In this section, a few fundamental concepts are recalled from previously published literature to justify the
proposed study. In this work, Ŭ stands for the realm of discourse and T for the closed unit interval.

Definition 1 [24]: The pair (w,H) is called a hypersoft set over Ŭ , where H is the cartesian product of n
disjoint sets H1,H2,H3, . . . ,Hp having attribute values of p distinct attributes H1,H2,H3, . . . ,Hp respectively and
w : H → p(Ŭ).

Definition 2 [26]: A single-valued neutrosophic hypersoft set (SV-NHSS) over Ŭ , indicated by (NHSS)ŬŴ, in
(HS)ŬŴ. The pair

(
XHS, Ŵ

)
is NHSS if

X(Ŵ) : Ŵ → NHSS(Ŭ)

defined by

X(Ŵ) =


(
PX

(Ŵ)
(v̂),QX

(Ŵ)
(v̂),RX

(Ŵ)
(v̂):F(v̂)

)
v̂ ;

Ŵ ∈ Ŵ, v̂ ∈ Ŭ
0 ≤ PX(Ŵ)

+ (v̂),QX(Ŵ)(v̂) +RX(Ŵ)
(v̂) ≤ 3


where:

i. For l distinct sets of attribute values, Ŵ = E1 × E2 × E3 × . . .× El There are l unique properties in the
set E, with corresponding values Ek, k = 1, 2, 3, . . . , l.

ii. The set of all single-valued neutrosophic fuzzy subsets over Ŭ is denoted by the notation NHSS (Ŭ).
iii. PX

(Ŵ )
(v̂),QX(ŵ)(v̂),ℜX(ŵ)(v̂) and F(v̂) are all discrete numbers that lie in the range [0, 1].

iv. (HS)ŬŴ is a hypersoft universe.
Example

Suppose Ŭ =
{
ď1, ď2, ď3, ď4

}
be collection available dishes and E = {ě1, ě2, ě3, ě4} the set of attributes, where

ě1 represents cuisine, ě2 represents spiciness, ě3 represents dietary restriction compatibility of the dishes, and ě4
represents price range of dishes. Their corresponding attribute-valued sets are ě1 = {j11 = Italian, j12 = Chinese,
j13 = Mexican, j14 = Indian}, ě2 = {j21 = Mild, j22 = Medium, j23 = Hot}, ě3 = {j31 = Vegetarian, j32 =
Vegan, j33 = Gluten free} and ě4 = {j41 = Low, j42 = Medium, j43 = High}.

Now, W̆ = ě1 × ě2 × ě3 × ě4,
W̆ = {(W11,W21,W31,W41) , (W11,W22,W31,W42) , (W12,W21,W31,W43) , (W12,W21,W32,W41)} .
Or, W̆ =

{
Ŵ1, Ŵ2, Ŵ3, Ŵ4

}
. Now,

X(Ŵ1) =

{
(0.9, 0.2, 0.8, 0.6)

Ď1

,
(0.6, 0.6, 0.7, 0.4)

Ď2

,
(0.8, 0.3, 0.5, 0.7)

Ď3

,
(0.3, 0.6, 0.8, 0.9)

Ď4

}
,

X(Ŵ2) =

{
(0.3, 0.5, 0.5, 0.4)

Ď1

,
(0.3, 0.4, 0.8, 0.4)

Ď2

,
(0.9, 0.4, 0.6, 0.5)

Ď3

,
(0.5, 0.1, 0.4, 0.8)

Ď4

}
,

X(Ŵ3) =

{
(0.5, 0.7, 0.7, 0.5)

Ď1

,
(0.6, 0.5, 0.2, 0.4)

Ď2

,
(0.2, 0.1, 0.5, 0.8)

Ď3

,
(0.4, 0.6, 0.2, 0.1)

Ď4

}
,

X(Ŵ4) =

{
(0.3, 0.8, 0.9, 0.7)

Ď1

,
(0.4, 0.8, 0.9, 0.1)

Ď2

,
(0.5, 0.2, 0.4, 0.9)

Ď3

,
(0.9, 0.2, 0.3, 0.4)

Ď4

}
,
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Its matrix representation is as follows:

X =


W̆ Ď1 Ď2 Ď3 Ď4

Ŵ1 (0.9, 0.2, 0.8, 0.6) (0.6, 0.6, 0.7, 0.4) (0.8, 0.3, 0.5, 0.7) (0.3, 0.6, 0.8, 0.9)

Ŵ2 (0.3, 0.5, 0.5, 0.4) (0.3, 0.4, 0.8, 0.4) (0.9, 0.4, 0.6, 0.5) (0.5, 0.1, 0.4, 0.8)

Ŵ3 (0.5, 0.7, 0.7, 0.5) (0.6, 0.5, 0.2, 0.4) (0.2, 0.1, 0.5, 0.8) (0.4, 0.6, 0.2, 0.1)

Ŵ4 (0.3, 0.8, 0.9, 0.7) (0.4, 0.8, 0.9, 0.1) (0.5, 0.2, 0.4, 0.9) (0.9, 0.2, 0.3, 0.4)


3 Distance and Similarity Measure for MDNFHS

The application of distance and similarity measures in data analysis is pivotal, particularly in the context of
MDNFHS. These measures provide a quantitative framework essential for discerning relationships and patterns
within datasets, thereby facilitating decision-making across various domains. Their utility in MCDM, pattern
recognition, and anomaly detection is particularly significant. Distance and similarity measures are instrumental
in evaluating variances and identifying congruities, enabling decision-makers to derive well-informed conclusions.
The ability to effectively handle multidimensional data underscores their value. These measures are integral to
classification and clustering processes and are crucial for generating personalized recommendations in systems such
as recommender algorithms. Furthermore, distance measures play a vital role in data preprocessing, standardizing
data to ensure equitable comparisons. This standardization is critical for enhancing the accuracy and reliability
of decision outcomes. In essence, distance and similarity measures equip decision-makers with critical insights,
thereby augmenting the effectiveness and impartiality of decision-making processes across diverse scenarios.

Consider two MDNFHSs G =
{(

Ŵi,PGŴi
(V̌),QGŴi

(V̌),RGŴi
(V̌),FG(V̌)

)}
and

H =
{(

Ŵi,PHŴi
(V̌),QHŴi

(V̌),RHŴi
(V̌),FH(V̌)

)}
, i = 1, 2, 3, . . . , n are defined over the universe Ŭ ={

V̌1, V̌2, V̌3, . . . , V̌n

}
. Then following distances can be determined between G and H.

3.1 Distance Measures

Hamming Distance: Suppose G and H are two MDNFHS then Hamming Distance as follows,

D1(G,H) =
1

4

∑
V̌∈Ŭ

[
|PGŴi

(V̌)−PHŴi
(V̌)|+ |QGŴi

(V̌)−QHŴi
(V̌)|

+|RGŴi
(V̌)−RHŴi

(V̌)|+ |FG(V̌)− FH(V̌)|

]
(1)

Normalized Hamming Distance: Suppose G and H are two MDNFHS then Normalized Hamming Distance as
follows,

D2(G,H) =
1

4n

∑
V̌∈Ŭ

[
|PGŴi

(V̌)−PHŴi
(V̌)|+ |QGŴi

(V̌)−QHŴi
(V̌)|

+|RGŴi
(V̌)−RHŴi

(V̌)|+ |FG(V̌)− FH(V̌)|

]
(2)

Euclidean Distance: Suppose G and H are two MDNFHS then Euclidean Distance as follows,

D3(G,H) =

1

4

∑
V̌∈Ŭ

[
|PGŴi

(V̌)−PHŴi
(V̌)|2 + |QGŴi

(V̌)−QHŴi
(V̌)|2

+|RGŴi
(V̌)−RHŴi

(V̌)|2 + |FG(V̌)− FH(V̌)|2

]0.5

(3)

Normalized Euclidean Distance: Suppose G and H are two MDNFHS then Normalized Euclidean Distance as
follows,

D4(G,H) =

 1

4n

∑
V̌∈Ŭ

[
|PGŴi

(V̌)−PHŴi
(V̌)|2 + |QGŴi

(V̌)−QHŴi
(V̌)|2

+|RGŴi
(V̌)−RHŴi

(V̌)|2 + |FG(V̌)− FH(V̌)|2

]0.5

(4)

Proposition 1: The following properties (D1 −D4) hold true for the distances Dk(k = 1, 2, 3, 4) specified
above between MDNFHSs G and H.

(D1) 0 ≤ Dk(G,H),
(D2)G = H iff Dk(G,H) = 0,
(D3)Dk(H,G) = Dk(G,H),
(D4) If H ⊆ K,G ⊆ H and K is MDNFHS in Ŭ , then Dk(G,H) ≤ Dk(G,K) and Dk(H,K) ≤ Dk(G,K).
Proof: We can demonstrate that Dk(G,H) for (k = 1, 2, 3, 4) meet the characteristics (D1 −D3). As a result,

we just check D4. For this let α, β, γ be three SV-NFHSs over the universe Ŭ =
{
V̌1, V̆2, V̆3, . . . , V̆n

}
. Let α ⊆

β ⊆ γ. Then,
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Pα

(
V̌i, w

)
≤ Pβ

(
V̌i, w

′) ≤ Pγ

(
V̌i, w

′′) ,
Qα

(
V̌i, w

)
≥ Qβ

(
V̌i, w

′) ≥ Qγ

(
V̌i, w

′′) ,
Rα

(
V̌i, w

)
≤ Rβ

(
V̌i, w

′) ≤ Rγ

(
V̌i, w

′′) .
For all V̌i ∈ Ŭ , for s = 1, 2, we have:∣∣Pα

(
V̌i, w

)
−Pβ

(
V̌i, w

′)∣∣s ≤ ∣∣Pα

(
V̌i, w

)
−Pγ

(
V̌i, w

′′)∣∣s∣∣Pβ

(
V̌i, w

)
−Pγ

(
V̌i, w

′)∣∣s ≤ ∣∣Pα

(
V̌i, w

)
−Pγ

(
V̌i, w

′′)∣∣s∣∣Qα

(
V̌i, w

)
−Qβ

(
V̌i, w

′)∣∣s ≤ ∣∣Qα

(
V̌i, w

)
−Qγ

(
V̌i, w

′′)∣∣s∣∣Qβ

(
V̌i, w

)
−Qγ

(
V̌i, w

′)∣∣s ≤ ∣∣Qα

(
V̌i, w

)
−Qγ

(
V̌i, w

′′)∣∣s∣∣Rα

(
V̌i, w

)
−Rβ

(
V̌i, w

′)∣∣s ≤ ∣∣Rα

(
V̌i, w

)
−Rγ

(
V̌i, w

′′)∣∣s∣∣Rβ

(
V̌i, w

)
−Rγ

(
V̌i, w

′)∣∣s ≤ ∣∣Rα

(
V̌i, w

)
−Rγ

(
V̌i, w

′′)∣∣s
Hence, ∣∣Pα

(
V̌i, w

)
−Pβ

(
V̌i, w

′)∣∣s + ∣∣Qα

(
V̌i, w

)
−Qβ

(
V̌i, w

′)∣∣s
+
∣∣Rα

(
V̌i, w

)
−Rβ

(
V̌i, w

′)∣∣s ≤ ∣∣Pα

(
V̌i, w

)
−Pγ

(
V̌i, w

′′)∣∣s
+
∣∣Qα

(
V̌i, w

)
−Qγ

(
V̌i, w

′′)∣∣s + ∣∣Rα

(
V̌i, w

)
−Rγ

(
V̌i, w

′′)∣∣s
And, ∣∣Pβ

(
V̌i, w

)
−Pγ

(
V̌i, w

′)∣∣s + ∣∣∣Qβ

(
≿̌i, w

)
−Qγ

(
V̌i, w

′)∣∣∣s
+
∣∣Rβ

(
V̌i, w

)
−Rγ

(
V̌i, w

′)∣∣s ≤ ∣∣Pα

(
V̌i, w

)
−Bγ

(
V̌i, w

′′)∣∣s
+
∣∣Qα

(
V̌i, w

)
−Qγ

(
V̌i, w

′′)∣∣s + ∣∣Rα

(
V̌i, w

)
−Rγ

(
V̌i, w

′′)∣∣s
3.2 Similarity Measures

Using the preceding inequality and distance expressions Dk(α, β)(k = 1, 2, 3, 4) we get Dk(α, β) ≤ Dk(β, γ)
and Dk(β, γ) ≤ Dk(α, γ). Hence proved (D4). Although similarity measures could be readily derived from
distance measures [36], we depicted the similarity measure using the available distance measures. S1(G,H) and
S2(G,H) similarity measures between MDNFHSs are shown below.

S1(G,H) = 1− 1

4n

∑
V̌∈Ŭ

[
|PGŴi

(V̌)−PHŴi
(V̌)|+ |QGŴi

(V̌)−QHŴi
(V̌)|

+|RGŴi
(V̌)−RHŴi

(V̌)|+ |FG(V̌)− FH(V̌)|

]
D2(G,H) (5)

S2(G,H) = 1−

 1

4n

∑
V̌∈Ŭ

[
|PGŴi

(V̌)−PHŴi
(V̌)|2 + |QGŴi

(V̌)−QHŴi
(V̌)|2

+|RGŴi
(V̌)−RHŴi

(V̌)|2 + |FG(V̌)− FH(V̌)|2

]0.5

(6)

Proposition 2: The following features of the similarity measure Sk(G,H), k = 1, 2 are derived from the
associations between distance and similarity measures, and the attributes of distance measurements (D1 −D4).

(P1) 1 ≥ Sk(G,H) ≥ 0
(P2) Sk(G,H) = 1 if G = H
(P3) Sk(G,H) = Sk(H,G)
(P4) If H ⊆ K,G ⊆ H,K is a SV-NFHS in Ŭ , then Sk(G,H) ≥ Sk(G,K) and Sk(H,K) ≥ Sk(G,K)

4 Application to MCDM

This section delineates the algorithm developed for solving MCDM problems, leveraging the proposed distance
and similarity measures in conjunction with the existing aggregate operators of NHSs. The procedural flow of the
algorithm is elucidated in Figure 1.

Step 1: Consideration of alternatives, attributes, and goal.
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Consider V̂ = {v̂1, v̂2, v̂3, . . . , v̂m} consists of alternative and ε̂ = {ε̂1, ε̂2, ε̂3, . . . , ε̂n} be attributes set. The sets
of their associated attribute values are ε̂1 = {j11, j12} , ε̂2 = {j21, j22} and ε̂3 = {j31}.

Let Ŵ = ε̂1 × ε̂2 × ε̂3, Ŵ = {(ŵ11, ŵ21, ŵ31) , (ŵ11, ŵ22, ŵ31) , (ŵ12, ŵ21, ŵ31) , (ŵ12, ŵ22, ŵ31)} .Ŵ =
{ŵ1, ŵ2, ŵ3, ŵ4} The characteristics of each alternative v̂i, where i = 1, 2, . . . ,m, according to the standards ŵj ,
where j = 1, 2, 3, 4.

Step 2: Consideration of ideal alternative along with MDNFHS values. The ideal alternative is specified as:

v∗ = {∧iP (ŵj) ,∧iQ (ŵj) ,∧iR (ŵj) : ∧iF (ŵj) ; j = 1, 2, 3, . . . , n}

Step 3: Assign MDNFHS Dj = (αij)m×n for each attribute.
Step 4: Calculate distance measure dj using the formula, for each v̂i with ideal situation v∗ for assessing

alternatives based on the attributes where vi is the assessment of the alternative with respect to the multi-attributes
ŵj.

Step 5: Calculate similarity measure (SM) using the formula, and rank alternatives based on SM values in
ascending order.

Figure 1. The proposed MCDM algorithm based on distance and similarity measures

4.1 Case Study

The case study focuses on Lahore, a city previously plagued by transportation challenges typical of large urban
environments. These challenges included limited transit options, an overabundance of vehicles, and high population
density. Subsequently, transformative measures were implemented, enhancing traffic management, expanding the
availability of buses and trains, and promoting environmentally friendly transportation methods.

Step 1: In this case, we demonstrate how to use similarity measures to MCDM issues in an MDNFHS context.
Suppose Ũ = {v̌1, v̌2, v̌3, v̌4} is the set of available modes of transport and E = {ě1, ě2, ě3, ě4} attributes set. These
are the attribute-valued sets:

ě1 = {j11 = “Car”, j12 = “Train”, j13 = “Bus”, j14 = “Bicycle”} ,
ě2 = {j21 = “Fast”, j22 = “Moderate”, j23 = “Slow” } ,
ě3 = {j31 = “Comfortable”, j32 = “Average”, j33 = “Uncomfortable” } ,
ě4 = {j41 = “Expensive”, j42 = “Affordable”, j43 = “Cheap”}.
The Cartesian product of the sets with attribute values provides the hypersoft set Ŵ:

Ŵ = ě1 × ě2 × ě3 × ě4 = {(w̆11, w̆21, w̆31, w̆41) , (w̆11, w̆22, w̆31, w̆42) , (w̆12, w̆21, w̆31, w̆43) , (w̆12, w̆21, w̆32, w̆41)} .

Ŵ = {w̆1, w̆2, w̆3, w̆4} .

Step 2: Consideration of Ideal alternative:

v̂∗ = {(0.9, 1.0, 0.3, 0.6), (0.6, 0.6, 0.3, 0.4), (0.2, 0.2, 0.3, 0.3), (0.7, 0.9, 0.9, 0.6)}.

Step 3: Assigning of MDNFHS values and presented in Table 1.
Step 4: Calculation of distance measures.
Step 5: Calculation of similarity measure (SM) using the formula, and ranking (Table 2).
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The impact of these interventions on urban transportation was analyzed using the proposed similarity and
distance measures within the MCDM framework. The algorithm facilitated a comprehensive evaluation of various
transportation alternatives, with the final rankings presented in Figure 2. Each alternative was assessed across multiple
parameters, including environmental sustainability, accessibility of public transit, and effectiveness in alleviating
traffic congestion. The application of the MCDM algorithm yielded a detailed comparison of the performance of
each transportation mode, culminating in a ranked list of options. This ranking, accompanied by an in-depth analysis
of the strengths and weaknesses of each option in relation to the set criteria, provided valuable insights. The findings
demonstrated the adaptability of the proposed measures in addressing the complexities inherent in transportation
decision-making. The algorithm accounted for diverse factors and their respective weights, leading to a thorough
analysis that accurately captured the intricate dynamics of Lahore’s transportation system.

Table 1. MDNFHS based attributive values

w̆1 w̆2 w̆3 w̆4

v̌1 (0.6, 0.8, 0.2 : 0.3) (0.7, 0.6, 0.5 : 0.4) (0.8, 0.9, 0.3 : 0.4) (0.7, 0.9, 0.3 : 0.6)
v̌2 (0.9, 1.0, 0.1 : 0.2) (0.6, 0.7, 0.3 : 0.2) (0.7, 0.8, 0.2 : 0.3) (0.9, 0.2, 0.5 : 0.5)
v̌3 (0.4, 0.5, 0.2 : 0.3) (0.5, 0.6, 0.4 : 0.3) (0.6, 0.7, 0.3 : 0.4) (0.5, 0.29, 0.3 : 0.1)
v̌4 (0.6, 0.9, 0.6 : 0.1) (0.8, 0.29, 0.9 : 0.1) (0.2, 0.2, 0.9 : 0.5) (0.1, 0.8, 0.6 : 0.4)

Table 2. Ranking based on similarity measures

Sr. No. Similarity Measure Values Rank
1 S1 (v̌1, v̂

∗) 0.6466 3
2 S1 (v̌2, v̂

∗) 0.7798 2
3 S1 (v̌3, v̂

∗) 0.9946 1
4 S1 (v̌4, v̂

∗) 0.5801 4

Figure 2. The final ranking for the alternate of transport

The transparency of the final rankings of transportation alternatives, as depicted in Figure 2, is pivotal for
ensuring stakeholder and decision-maker comprehension. This clarity facilitates a shared understanding among all
parties involved, fostering collaborative efforts in the implementation of the chosen transportation strategy. Such
transparency is instrumental in enhancing the decision-making process, as it allows for a clear articulation of the
rationale behind the prioritization of certain options over others.

In summation, the integration of the proposed distance and similarity measures with the MCDM algorithm has
not only contributed to the mitigation of transportation issues in Lahore but also established a framework that can
be adapted for similar urban planning challenges. The outcomes of this study underscore the efficacy of MCDM
in navigating complex decision-making scenarios. Furthermore, the findings highlight the critical role of tailored
distance and similarity measures in yielding results that are both reliable and relevant to the specific context.
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5 Conclusions

This research has introduced the MDNFHS as an innovative extension of NFHSs, specifically tailored for complex
decision-making scenarios. MDNFHS integrates NS theory, FS theory, and HS theory, offering a robust model adept
at managing imprecision, inconsistency, and hyper-softness in decision-making contexts. This integration enables
MDNFHS to accurately capture the gradation or variability in membership, truth, indeterminacy, and falsity, thus
facilitating the representation and reasoning of information with varying degrees of membership and truthfulness. The
incorporation of Hamming and Euclidean distance measures, along with similarity measures within the MDNFHS
framework, significantly enhances its applicability in various engineering and scientific domains. The development
of a MCDM approach, underpinned by these measures, allows for the effective ranking of alternatives. An illustrative
case study within this research demonstrates the practical effectiveness of MDNFHS in decision-making processes.

Looking forward, there are several promising avenues for future research to augment the MDNFHS framework.
These include exploring the integration of NS with other extensions of FS and applying MDNFHS in a wide
array of optimization problems. Potential areas of interest encompass language modeling, opinion measurement,
choice interaction, information aggregation, and entropy calculation. These future explorations are anticipated to
further expand the capabilities and applicability of MDNFHS in addressing the intricate challenges inherent in
decision-making processes.
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[18] R. Şahin and A. Küçük, “Subsethood measure for single valued neutrosophic sets,” J. Intell. Fuzzy Syst., vol. 29,
no. 2, pp. 525–530, 2015. https://doi.org/10.3233/ifs-141304

[19] E. K. Zavadskas, R. Bausys, A. Kaklauskas, I. Ubarte, A. Kuzminske, and N. Gudiene, “Sustainable market
valuation of buildings by the single-valued neutrosophic MAMVA method,” Appl. Soft Comput., vol. 57, pp.
74–87, 2017. https://doi.org/10.1016/j.asoc.2017.03.040

[20] J. Zhan, M. Khan, M. Gulistan, and A. Ali, “Applications of neutrosophic cubic sets in multi-criteria decision-
making,” Int. J. Uncertainty Quantification, vol. 7, no. 5, pp. 377–394, 2017. https://doi.org/10.1615/int.j.unce
rtaintyquantification.2017020446

[21] H. Zhang, J. Wang, and X. Chen, “Interval neutrosophic sets and their application in multicriteria decision
making problems,” Sci. World. J., vol. 2014, p. 15, 2014.

[22] A. M. Khalil, D. Cao, A. Azzam, F. Smarandache, and W. R. Alharbi, “Combination of the single-valued
neutrosophic fuzzy set and the soft set with applications in decision-making,” Symmetry, vol. 12, no. 8, p. 1361,
2020. https://doi.org/10.3390/sym12081361

[23] F. Smarandache, “Extension of soft set to hypersoft set, and then to plithogenic hypersoft set,” Neutrosophic
Sets Syst., vol. 22, pp. 168–170, 2018.

[24] M. Saqlain, S. Moin, M. N. Jafar, M. Saeed, and F. Smarandache, “Aggregate operators of neutrosophic
hypersoft set,” Neutrosophic Sets Syst., vol. 32, pp. 294–306, 2020. https://doi.org/10.5281/ZENODO.3723155

[25] M. Saqlain, N. Jafar, S. Moin, M. Saeed, and S. Broumi, “Single and multi-valued neutrosophic hypersoft set
and tangent similarity measure of single valued neutrosophic hypersoft sets,” Neutrosophic Sets Syst., vol. 32,
pp. 317–329, 2020.

[26] A. U. Rahman, M. Saeed, M. A. Mohammed, K. H. Abdulkareem, J. Nedoma, and R. Martinek, “Fppsv-
NHSS: Fuzzy parameterized possibility single valued neutrosophic hypersoft set to site selection for solid
waste management,” Appl. Soft Comput., vol. 140, p. 110273, 2023.

[27] A. Ur Rahman, M. Saeed, M. H. Saeed, D. A. Zebari, M. Albahar, K. H. Abdulkareem, S. Alaa Al-Waisy, and
M. A. Mohammed, “A framework for susceptibility analysis of brain tumours based on uncertain analytical
cum algorithmic modeling,” Bioengineering, vol. 10, no. 2, p. 147, 2023. https://doi.org/10.3390/bioengineeri
ng10020147

[28] M. N. Jafar, K. Muniba, and M. Saqlain, “Enhancing diabetes diagnosis through an intuitionistic fuzzy soft
matrices-based algorithm,” Spectr. Eng. Manage. Sci., vol. 1, no. 1, pp. 73–82, 2023. https://doi.org/10.31181
/sems1120238u
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