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Abstract: In the realm of high-definition surveillance for dense traffic environments, the accurate detection and
classification of vehicles remain paramount challenges, often hindered by missed detections and inaccuracies in
vehicle type identification. Addressing these issues, an enhanced version of the You Only Look Once version v5s
(YOLOv5s) algorithm is presented, wherein the conventional network structure is optimally modified through the
partial integration of the Swin Transformer V2. This innovative approach leverages the convolutional neural networks’
(CNNs) proficiency in local feature extraction alongside the Swin Transformer V2’s capability in global representation
capture, thereby creating a symbiotic system for improved vehicle detection. Furthermore, the introduction of the
Similarity-based Attention Module (SimAM) within the CNN framework plays a pivotal role, dynamically refocusing
the feature map to accentuate local features critical for accurate detection. An empirical evaluation of this augmented
YOLOv5s algorithm demonstrates a significant uplift in performance metrics, evidencing an average detection
precision (mAP@0.5:0.95) of 65.7%. Specifically, in the domain of vehicle category identification, a notable
increase in the true positive rate by 4.48% is observed, alongside a reduction in the false negative rate by 4.11%. The
culmination of these enhancements through the integration of Swin Transformer and SimAM within the YOLOv5s
framework marks a substantial advancement in the precision of vehicle type recognition and reduction of target miss
detection in densely populated traffic flows. The methodology’s success underscores the efficacy of this integrated
approach in overcoming the prevalent limitations of existing vehicle detection algorithms under complex surveillance
scenarios.

Keywords: Improved YOLOv5s algorithm; Target detection; Deep learning; Swin Transformer; Similarity-based
Attention Module (SimAM)

1 Introduction

With social development and the acceleration of urbanization, the scale of China’s traffic system continues to
expand, and its layout is constantly optimized, which puts forward higher requirements for the safety, efficiency,
and intelligence of road traffic operations. The traffic system has gradually developed towards intelligent traffic
systems, among which roadside object detection technology plays a crucial role. On the ”highway” of information
technology development, the advancement speed of artificial intelligence has made it an indispensable part. In
intelligent traffic systems, video vehicle detection, as one of the foundational technologies, has evolved from simple
video recording systems to semi-autonomous systems capable of detecting real-time vehicles accurately, providing
effective data support for the implementation of traffic control measures [1]. Recently, Chen and Li [2] proposed an
effective vehicle detection method that utilizes deep learning for the study of vehicle detection algorithms, offering
new insights for algorithm improvement.

By setting up supporting sensing facilities on the roadside, relevant departments can timely collect and process
current road traffic flow information for a more rational allocation of traffic resources. However, target detection in
roadside scenarios still faces many challenges, such as the complexity and variability of the road environment and the
severity of vehicle occlusion during road congestion, while overcoming limitations in computational resources [3, 4].
These challenges have driven the application of deep learning in target detection. For example, Wang and Jia [5]
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optimized vehicle detection algorithms using deep learning techniques, constructing a vehicle detection model that is
both real-time and accurate. Therefore, it is a main task for researchers to improve the detection accuracy of difficult
samples, such as small targets and occluded targets, while ensuring the model’s lightweight. This task holds high
research value and provides more reliable support for the implementation of traffic management measures.

Common target detection algorithms can be divided into two types: those based on traditional methods and
those based on deep learning. Among them, target detection algorithms based on traditional methods mainly rely
on manual extraction of image features. Ravichandran et al. [6] utilized SAR image data to extract target features
to complete vehicle identification. Dong et al. [7] applied Haar-like and Histogram of Oriented Gradient (HOG)
features to extract vehicle features. Although traditional methods basically meet identification needs, they require a
large amount of data information and preparation work during the training stage. In addition, traditional classification
networks also heavily depend on predefined features and classifiers, making deep learning methods gradually gain
wider application in the field of vehicle target detection.

Vehicle target detection based on deep learning does not require complex data preprocessing. The YOLO
algorithm, proposed by Redmon et al. [8], is a milestone in object detection using deep learning, distinguishing
itself from classical and traditional object detection methods that rely on manually designed feature extractors with
slow algorithm speeds and low accuracy. The algorithm has a wide range of applications, finds detection targets
through bounding boxes, and achieves high accuracy with less training resources. With the rapid development of
deep learning technology, several excellent vehicle target detection algorithms have emerged, such as YOLOv5,
YOLOv4, and YOLOv3 [9]. Among them, YOLOv5 is particularly popular for its easy setup, fast training speed,
and user-friendly nature, making it one of the most widely applied detection networks today. For instance, Zhang et
al. [3] studied a vehicle millimeter-wave radar target detection method based on deep learning, utilizing the YOLOv5
algorithm to better address the issues found in traditional Constant False Alarm Rate (CFAR) algorithms. Liu [10]
replaced the backbone network in YOLOv5 with the basic structure of the MobileNet V3 network to compress
the model and speed up detection. Li et al. [11] enhanced the network’s feature extraction capability by adding a
Convolutional Block Attention Module (CBAM) to the backbone network of YOLOv5 and replacing the neck part
of the network with a bi-directional feature pyramid network (BiFPN) structure to improve the algorithm’s ability to
detect small targets.

The problem of traffic vehicle target detection presents the following difficulties:
• Due to the camera angle, the size of the targets in the video images varies, easily missing smaller-sized targets.
• There are mutual occlusion problems, especially in traffic jam situations, where the occlusion problem is more

severe.
• High-speed moving vehicles may appear blurred and have afterimages in high-definition video surveillance,

affecting recognition accuracy [12].
These factors lead to missed or false detections. The main means to improve algorithm speed and accuracy are to

combine different application scenarios to select suitable YOLOv5 model weights, optimize parameter settings and
replace the backbone network based on the characteristics of the targets to be detected. By taking into account factors,
such as the volume of the target detection model, detection accuracy, and detection speed under high-definition video
surveillance, this study selects the YOLOv5s as the basis for related research and improvement work, with the main
contributions as follows:

• Swin Transformer V2 [13] is used to replace part of the original network structure, which optimizes network
structure layers to improve the global searching ability of the target detection algorithm, thereby facilitating the early
discovery of more targets under traffic road conditions.

• The SimAM [14] is introduced, enhancing the local discriminative feature extraction ability of the CNN network
branch.

• More common improvement measures are combined, such as introducing a small target detection layer and
modifying and replacing the loss function, etc. Target detection and recognition situations are compared to select
the optimal improvement measures.

• The improved YOLOv5s algorithm is validated under actual road detection conditions.
In summary, this study, based on the YOLOv5s algorithm, ultimately selects the improved algorithm combining

Swin Transformer V2 and SimAM, improving the target detection capability and the accuracy of target type
recognition.

2 Related Work
2.1 Replacing Part of the Network Structure with Swin Transformer V2

The Swin Transformer was introduced in 2021 [15] as a backbone network for computer vision. Its name derives
from the concept of a hierarchical vision Transformer using shifted windows. This design utilizes moving windows
for each attention mechanism computation within the windows themselves, allowing the computational complexity
to grow linearly with the image size when processing higher-resolution data rather than quadratically. Furthermore,
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the use of moving windows not only brings about greater detection efficiency but also facilitates interaction between
adjacent windows. Its design incorporates patch merging, which merges adjacent patches into one for feature value
computation, similar to the pooling layer operations covered by the CNN in the original YOLOv5 backbone network.
This enlarges the network’s receptive field and enhances its multi-scale perception ability. Following this, Swin
Transformer V2 [13], with 3 billion parameters, has become the largest dense vision model to date.

The structure of the Swin Transformer is shown in Figure 1. Swin Transformer V2 modifies the order of layer
norm in each transformer encoder block to facilitate the normalization of outputs. It also replaces inner product
similarity with cosine similarity. This compensates for the lack of long-distance modeling YOLOv5s’s CNN and
its inability to effectively capture global information, thereby achieving better target feature extraction effects. As
shown in Figure 2, the STv2 module, or Swin Transformer V2, replaces some of the convolutional blocks in the
original YOLOv5s.

Figure 1. Structure of the Swin Transformer V2

Figure 2. Module replaced with Swin Transformer V2

This study incorporates several key modules associated with Swin Transformer V2 into the training of YOLOv5s,
leveraging the advanced features of Swin Transformer V2. By integrating the Swin Transformer block, window
attention mechanism, and Multilayer Perceptron (MLP) module, the model’s ability to capture both global and
local information when processing high-resolution images is enhanced. The integration of these modules boosts
the network’s self-attention computation, enabling it to capture distant pixel relationships more accurately while
maintaining computational efficiency, especially in densely populated vehicle scenarios. Additionally, introducing
the C3STR module into YOLOv5s, with its cross-stage and cross-shape triple receptive field, further optimizes the
model’s detection capability for vehicles of varying sizes and under occlusion conditions. These improvements
enable the model to achieve higher accuracy in identifying and classifying various vehicle targets in complex traffic
environments.

2.2 SimAM

SimAM [14] is a new type of attention module in CNNs, characterized by its simplicity and efficiency. Unlike
Bottleneck Attention Module (BAM) and CBAM, which focus on channel and spatial attention in parallel and serial
manners, respectively [16], SimAM infers 3D attention weights (full 3D weights) for a layer’s feature map without
adding any parameters to the original network, effectively coordinating channel and spatial attention. SimAM can
better process both types of attention and significantly improve the model’s detection performance in complex traffic
scenes. The energy function of SimAM is shown in Eq. (1):

ei (wi, bi, y, xi) =
(
yi − t̂

)2
+

1

M − 1

M−1∑
i=1

(y0 − x̂)
2 (1)

where, wi and bi represent the weight and bias, respectively, t̂ and xi belong to the target neuron and other neurons
in the channel, M is the number of neurons in that channel, i is the spatial index. The greater the difference between
a neuron t and its surrounding neurons, the higher its importance, indicating lower energy. As shown in Figure 3,
SimAM is introduced into the backbone network of YOLOv5s.

SimAM includes a rapid closed-form solution energy function that can be implemented in less than ten lines
of code. One of the advantages of SimAM is that most of the operations are based on solutions to the defined
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energy function, which avoids extensive structural adjustments. The module proposed by SimAM is flexible and
effective, enhancing the feature extraction capability of many CNNs. It is an efficient attention module that is easy
to implement and can significantly improve performance across various visual tasks. The SimAM is incorporated
into the training of YOLOv5 by modifying the detection head of the backbone network in the yaml configuration
file and adding the SimAM at appropriate layers. This enhances the model’s performance in identifying individual
vehicles while improving the accuracy and reliability of recognizing occluded or distant small-sized vehicles.

Figure 3. Introduction of SimAM

2.3 Small Object Detection Layer

The demand for faster and more accurate detectors for small objects in target detection tasks is increasing.
Although the human eye can almost instantly capture contextual information even from a distance, due to limitations
in image resolution and computing resources, machine detection of small objects that occupy only a few pixels in an
image remains a challenging task [17]. Pretraining results show that the target detection algorithm only recognizes
targets when vehicles are relatively close, and this phenomenon is more intuitive in the case of unclear input images.
In the COCO dataset used in this study, objects with a pixel count less than 32×32 are considered small objects. To
enhance the model’s accuracy for small-sized targets, a detection head specifically for small targets is added to the
original network of YOLOv5s. Based on CNN, the small object detection layer retains the original detection structure
and expands with an additional convolutional layer to obtain a 160×160 feature layer. This approach increases the
computational load to some extent but provides higher detection accuracy. The network structure improved by this
method is shown in Figure 4.

Figure 4. Small object detection head
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2.4 EIoU Loss Function

In YOLOv5s, the head (head layer) uses CIoU, which is a bounding box loss function, to measure the consistency
of the aspect ratio between the prediction and the target box, as shown in Eq. (2):

LCIoU = IoU − ρ2
(
b, bgt

)
= av

a =
v

1− IoU + v

v =
2

π

(
arctan

wht

hgt
− arctan

w

h

)2
(2)

where, ρ2 (b, bgt) represents the Euclidean distance between the center points of the prediction and target boxes,
wht, hgt, w, and h are the width and height of the prediction and target boxes, respectively. The formula reflects the
difference in aspect ratio rather than the actual difference in width, height, and their confidence levels, which could
hinder the model’s effective optimization of similarity. Addressing this issue, EIoU is proposed on the basis of CIoU
by separating the aspect ratio into width and height, as shown in Eq. (3):

LEIOU = LEIOU + LDIS + LASP

= 1− IoU +
ρ2 (v, vgt)

c2
+

ρ2 + (w,wgt)

c2z
+

ρ2 + (m,mgt)

c2m

(3)

where, c2z, c2m, and ρ are the height and width of the two smallest boxes, and v and vgt are the Euclidean distances
between them. In other words, the original “CIoU = IoU + center point loss + aspect ratio loss” is changed to “EIoU
= IoU + center point loss + width loss + height loss”. During the experiments, an attempt was made to replace CIoU
with EIoU.

3 YOLOv5 Target Detection Algorithm

The YOLO algorithm is a one-stage target detection algorithm, meaning it uses a single CNN model to achieve
end-to-end target detection. The input image of a one-stage algorithm passes through a single network, and the
generated results include both detection locations and category information. YOLO utilizes convolutional networks
to extract features and fully connected layers to obtain prediction values, dividing the input image into grids, with each
grid detecting targets, predicting bounding boxes and their confidence scores. Finally, non-maximum suppression
is used for network prediction [18]. The most widely used YOLO algorithm is YOLOv5 [19], which has reached
a high level of detection accuracy on general object detection datasets, such as MS COCO [20] and VOC [21]
to date. However, vehicle-type target detection under complex traffic flow conditions requires targeted design and
training. Through corresponding optimization, a detection model more suited to the target detection task is ultimately
obtained.

YOLOv5, in addition to the basic model, has four different sizes of weight models for different layers of the neural
network feature extraction layer, namely, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Although many studies
suggest enhancing the representation ability of the target detection model in terms of depth and width to increase
detection accuracy, this affects the complexity of the model. Since detection tasks require real-time performance,
such models are not suitable for autonomous driving systems [22]. As the smallest model, YOLOv5s has the fastest
computational speed. According to the given data, it can achieve a computational inference speed of 2 ms per
image on the COCO2017 dataset while having the fewest model parameters and the fewest floating-point operations
(FLOPs). Although this affects model performance, mAP@0.5 still reaches 56.8%. The YOLOv5s model is highly
performant and convenient for deployment, consuming fewer resources [23]. The YOLOv5s algorithm network
structure is divided into the head, neck, and backbone networks. The backbone network, consisting of Focus, Center
and Scale Prediction (CSP), CBL, and SPP modules, is used for extracting key features from the input image. The
SPP module and Path Aggregation Network (PA-NET) are used to integrate feature output from the backbone to
the head network. The head network is responsible for the final detection steps, constructing the bounding box
positions and recognition types into a neural network to form the final output vector [24, 25]. The network structure
of YOLOv5s is shown in Figure 5.

In the above figure, Conv represents the convolutional layer, BN stands for batch normalization layer, SiLU is the
activation function, MaxPool is the max pooling layer, Concat refers to the concatenation layer, and Resunit is the
residual unit [26]. During the prediction process, YOLOv5 takes into account the distance information of the center
points of the bounding frames, using the CIoU loss function [27] to calculate the ratio of the intersection and the
union of two bounding boxes.

Beyond the basic model, YOLOv5 provides four different sizes of pretrained weight models for different layers
of the neural network feature extraction layer, namely, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Table 1
compares the performance of YOLO models.
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Figure 5. YOLOv5 network structure

Table 1. YOLO pre-trained model

Model Size
(pixels)

mAPval
50-95

mAPval
50

Speed
CPU b1

(ms)

Speed
V100 b1

(ms)

Speed
V100 b32

(ms)

Params
(M)

FLOPs
@640 (B)

YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0
YOLOv5I 640 49.0 67.3 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7

Among them, the YOLOv5s model performs very well and is convenient for deployment, consuming fewer
resources. Taking everything into consideration, it is believed in this study that YOLOv5s is the best choice for
the application environment of traffic flow volume statistics. The overall detection process of YOLOv5s can be
summarized as follows: First, the image is scaled and padded to meet the input requirements of the YOLOv5
network. Then, the input image is processed with the YOLOv5 algorithm to obtain a series of bounding box location
information and type prediction results. Next, the non-maximum suppression module is used to process the output
bounding boxes, eliminating redundant duplicate detection results. Finally, the remaining bounding boxes are output
as the result of vehicle detection.

To verify the effectiveness of the YOLOv5s model in complex traffic environments, an analysis predicated on
polarity pretraining of the YOLOv5s model was conducted. The initial phase of training culminated in a duration of
1232 seconds, accompanied by an F1-score of 0.84. The pretraining results are shown in Figure 6.

Figure 6. Pre-trained results
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In the above figure, Box indicates the mean of the GIoU loss function. The smaller the box, the more accurate
it is. Objectness is the mean of the object detection loss. The smaller, the more accurate the object detection.
Classification is the mean of the classification loss. The smaller, the more accurate the classification. It can be
concluded that during the training process, the means of each metric decrease steadily, and the convergence speed is
ideal. Notably, the validation set exhibits significant fluctuations in the classification results, which are speculated
to be caused by the small number of images in the validation set and the large difference in the number of different
categories of vehicles. Subsequent expansion of the validation set and rationalization of the number of vehicle
categories were conducted for repeated pretraining, and the validation results were generally satisfactory. A partial
view of the validation conditions is shown in Figure 7.

Figure 7. Pre-trained validation results

4 Experiments
4.1 Experimental Environment and Traffic Flow Dataset

The experimental environment includes the Windows 11 operating system, an Intel-Core i7-8700K CPU, an
NVIDIA GeForce RTX 2080 GPU, 16GB of RAM, and Pycharm IDE with Python version 3.7.11.

Traffic flow in China is characterized by high density and complex information. This study selects three of the
most representative types of large motor vehicles on roads, namely, cars, buses, and trucks, to construct the initial
dataset. The format of the dataset is based on the COCO dataset. The images in the dataset mainly come from
VOC2007 and COCO2017. Since the shooting locations of these two official datasets are mostly in Europe and
America, photos of Chinese traffic flows were added and annotated, aiming to adapt the algorithm to the application
environment of this study while retaining the diversity of the original COCO dataset. This expands the coverage
of the dataset and enhances its practicality in local traffic scenarios, providing support for algorithm training and
optimization [28].

4.2 Experimental Results and Analysis

After implementing the aforementioned four improvements to the YOLOv5s algorithm, training was conducted
on the same traffic flow dataset for each modification, with each change trained 10 times, and the average value of
the experiment’s metrics was taken. Table 2 shows the training results.

Preliminary analysis of the experimental results showed that, after making modifications with Swin Transformer
V2 to replace part of the neural network and the SimAM, the overall average accuracy improved by about 5%, and
it could even enhance the recognition capability by up to 9% under ideal conditions. The improvement in detection
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capability with the addition of the small object detection layer to YOLOv5 was not outstanding, with a quite limited
enhancement in detection performance. Figures 8–10 show part of the testing process for different models.

Table 2. Comparison of experimental results

Model F1-Score mAP@0.5 mAP@0.5:0.95 Best mAP@0.5
YOLOv5s 0.79 0.791 0.608 0.794

YOLOv5s+Swin Transformer V2 0.86 0.854 0.685 0.882
YOLOv5s+small object detection layer 0.78 0.790 0.633 0.802

YOLOv5s+SimAM 0.83 0.838 0.680 0.859
YOLOv5s+EIoU 0.78 0.785 0.645 0.793

Figure 8. Model test A

Figure 9. Model test B

The study considers optimizing the small object detection capability of YOLOv5 by combining the small object
detection layer with different backbone neural networks. Similarly, the replacement of the original CIoU with EIoU
on the traffic flow dataset had a limited improvement effect and even impacted the detection performance, leading to
the preliminary conjecture that EIoU might not be entirely suitable for the dataset studied in this study.

To better understand the impact of various improvement modules in YOLOv5 on training and recognition effects,
especially for video detection environments, various improvement modules were combined and experimented with
step by step for comparison. Table 3 shows the comparison results.
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Figure 10. Model test C

Table 3. Comparison of experimental results

Model FPS F1-Score mAP@0.5 mAP@0.5:0.95
Swin Transformer V2+small object detection layer 55.8 0.82 0.811 0.653

SimAM+small object detection layer 64.2 0.79 0.819 0.638
Swin Transformer V2+ SimAM+small object detection layer 57.4 0.83 0.816 0.621

Swin Transformer V2+SimAM 64.7 0.82 0.827 0.657
Swin Transformer V2+EIoU 58.9 0.78 0.795 0.616

SimAM+EIoU 60.3 0.76 0.769 0.601

YOLOv5s, when combined with Swin Transformer V2+SimAM or SimAM with the small object detection layer,
could produce quite good detection effects. In addition, the detection frame rate under high-definition video was
ideal, basically meeting the requirements. After weighing the pros and cons, the YOLOv5s improvement method
combining Swin Transformer V2+SimAM was chosen for actual application testing. Table 4 shows the comparison
of algorithm evaluation metrics before and after improvement.

Table 4. Comparison of algorithm evaluation metrics before and after improvement

Model Precision (%) Recall (%) Positive Detection Rate (%) Miss Rate (%)
Initial YOLOv5s algorithm 84.72 74.21 82.91 13.53

Improved YOLOv5s algorithm 86.19 77.56 87.39 9.42

From Table 4, it can be seen that compared to the initial YOLOv5s algorithm, the improved algorithm’s positive
detection rate increases by 4.48%, and the miss rate decreases by 4.11%, indicating an enhancement over the
initial algorithm and stronger recognition capability of the improved YOLOv5s algorithm for traffic flow detection.
Figure 11 shows some of the test recognition situations.

Figure 11. Partial recognition situation
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4.3 Applying and Analyzing Video Stream Detection Using Different Improved Models

Based on the results of the ablation study in the previous chapter, combined with DeepSort, enhanced with Swin
Transformer V2+SimAM, and modifications for small target detection layers, YOLOv5 was applied to the task of
traffic flow counting. The application videos were taken in daylight with normal lighting, featuring a large number of
small passenger cars and a few buses. There were instances where the model incorrectly categorized vehicle types.
This study addresses these errors by marking incorrect data in the corresponding positions of multiple statistical
categories as ”statistical result-error quantity.” When considering the accuracy of the statistics, the quantity of the
corresponding category is also the result of subtraction. Table 5 shows the application results.

Table 5. Comparison of application scenario results

Model Number of Cars Number of Buses Statistical Accuracy
Original video 26 3 -

Initial YOLOv5 23-1 1 79.31%
Swin Transformer V2+SimAM 24-1 2 86.21%

Swin Transformer V2+ SimAM+small target
detection layer 25-1 2 89.66%

The statistical results indicate that YOLOv5, with parts of its CNN backbone network replaced by Swin Trans-
former V2 and combined with SimAM, can significantly enhance the accuracy of target recognition in traffic flow
counting application scenarios. Furthermore, adding a small target detection layer on this basis further improves the
algorithm’s ability to recognize distant traffic flows.

5 Conclusions

Addressing the challenge of detecting numerous small-sized targets with mutual occlusion in traffic flow environ-
ments, which often leads to suboptimal detection performance, this study embarks on an exploration of an improved
YOLOv5s algorithm. By modifying the network structure of the initial target detection algorithm and comparing
several common algorithm modifications, an improved method of YOLOv5s combining Swin Transformer V2 and
introducing SimAM was proposed. The experimental results proved that its detection performance was superior to
the initial YOLOv5s model. The improved method proposed in this study achieved mAP@0.5 and mAP@0.5:0.95
of 0.827 and 0.657, respectively, with a model volume not significantly different from the initial model. In practical
tests, both the positive detection rate and miss rate showed corresponding improvements, offering certain advantages
over the initial model and being more suitable for traffic flow detection tasks. In future research, the continuous
frame miss rate of the improved algorithm will be further explored, aiming to achieve higher accuracy and fewer
omissions while satisfying traffic flow video monitoring requirements.
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