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Abstract: In the realm of Wireless Sensor Networks (WSNs), energy efficiency emerges as a paramount concern
due to the inherent limitations in the energy capacity of sensor nodes. The extension of network lifespan is
critically dependent on the strategic selection of Cluster Heads (CHs), a process that necessitates a nuanced approach
to optimize communication, resource allocation, and network performance overall. This study proposes a novel
methodology for CH selection, integrating Multiple Criteria Decision Making (MCDM) with the K-Means algorithm
to facilitate a more discerning aggregation and forwarding of data to the network sink. Central to this approach
is the application of the Einstein Weighted Averaging Aggregation (EWA) operator, which introduces a layer of
sophistication in handling the uncertainties inherent in WSN deployments. The efficiency of CH selection is vital,
as CHs serve as pivotal nodes within the network, their selection and operational efficiency directly influencing the
network’s energy consumption and data processing capabilities. By employing a meticulously designed clustering
process via the K-Means algorithm and selecting CHs based on a comprehensive set of parameters, including, but not
limited to, residual energy and node proximity, this methodology seeks to substantially enhance the energy efficiency
of WSNs. Comparative analysis with the Low-Energy Adaptive Cluster Hierarchy (LEACH)-Fuzzy Clustering (FC)
algorithm underscores the efficacy of the proposed approach, demonstrating a 15% improvement in network lifespan.
This advancement not only ensures optimal utilization of limited resources but also promotes the sustainability
of WSN deployments, a critical consideration for the widespread application of these networks in various fields.
The findings of this study underscore the significance of adopting sophisticated, algorithmically driven strategies
for CH selection, highlighting the potential for significant enhancements in WSN longevity through methodical,
data-informed decision-making processes.

Keywords: Network longevity; K-Means; T -conorm; Cluster head; Low-energy adaptive cluster hierarchy; Residual
energy

1 Introduction

Since WSNs are inexpensive, scalable, and simple to set up, they are frequently utilized in real-time applications [1].
As the fundamental components of WSNs, self-organizing sensors can establish an adaptive multi-hop network and
send optimized data packets to the base station (BS) for analysis after post-processing [2, 3]. The wireless nodes’
memory and remaining energy are the biggest implementation restrictions. For this reason, in order to maximize the
benefits of these WSNs, these WSN nodes require a regulating system to regulate their interactions with the access
point and one another [4, 5]. Network lifetime can be greatly impacted by sending and receiving multimedia data,
using advanced network security techniques, and more [6–9]. Numerous techniques, like clustering and routing
protocols, are used [10] to extend the lifetime of networks and maximize energy efficiency. MCDM, combined with
entropy and the EWA operator, can improve CH selection in WSNs, contributing to a longer network lifetime. MCDM
aids in evaluating diverse criteria, such as energy consumption, connectivity, and node proximity, to identify optimal
CHs. Incorporating entropy assists in quantifying the weight of parameters, allowing for informed decisions on CH
selection. The EWA provides a mechanism to aggregate multiple criteria, considering their interdependencies. By
employing this integrated approach, WSNs can strategically select CHs based on a comprehensive criteria analysis,
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promoting efficient energy utilization and balanced network distribution. Consequently, the extension of WSN
lifetime is achieved by improving energy depletion, enhancing network resilience and optimizing resource utilization
within the specified constraints. To increase energy efficiency and maximize network lifetime, a new algorithm
must be developed. This research proposes a new algorithm to maximize the network lifetime, selecting a CH in
each round based on specific constraints. The clustering technique based on K-Means [11], which offers energy-
efficient clustering in WSN, is the foundation for cluster creation. Fuzzy logic can be effectively used to represent
uncertainty in WSNs. WSNs are often deployed in dynamic and unpredictable environments where factors like
sensor readings, communication reliability, and environmental conditions can introduce uncertainty. Fuzzy logic
provides a mathematical framework to handle this uncertainty by allowing the representation of vague and imprecise
information. triangular fuzzy numbers (TFNs) are often used to represent uncertainty because they offer a simple
yet effective way to model imprecision and vagueness in real-world data. The choice of TFNs is based on their ease
of use, interpretability, and computational efficiency. In this study, TFNs are used to represent uncertainty in WSNs.

2 Related Works

Decision-making holds great importance across scientific disciplines. Employing the MCDM approach proves
highly effective for discerning superior alternatives compared to various options in a multitude of scenarios [12].
Numerous studies have been done into clustering using MCDM within WSN, yielding promising results [13–18].
Heuristic methods are also applicable in WSN for clustering purposes [19, 20]. Clustering approaches in WSN can be
broadly categorized into static and dynamic. In the static technique, the CH remains fixed during clustering [21–23].
Conversely, dynamic clustering involves regular CH rotation. Heinzelman’s LEACH [24] stands as an example
of dynamic clustering. Despite LEACH’s lower algorithmic complexity compared to alternative approaches, its
uneven distribution of CHs results in lower energy efficiency. To address this issue in a heterogeneous environment
where some nodes possess higher energy capacities, an Energy-Efficient Heterogeneous Cluster (EEHC) [25] has
been introduced. In EEHC, nodes take on the role of CHs, with their residual energy determining a weighted
election probability. While introducing the concept of heterogeneity, this approach fails to consider several factors
in CH selection. A modified version of the LEACH protocol, known as Centralized LEACH (LEACH-C) [26], was
introduced to resolve this issue by minimizing the total sum of squared distances between all CHs. This modification
resulted in decreased energy consumption when transmitting data from non-cluster-head nodes to their respective
CHs. In WSN CH selection, El Alami and Najid [27] introduced an energy-efficient approach based on fuzzy logic.
The primary goal of this study is to leverage fuzzy parameters for minimizing energy consumption and enhancing the
overall network lifespan. Khan et al. [28] suggested a fuzzy-Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS)-based CH election in mobile networks, employing four criteria. Studies compared this approach
with conventional LEACH and fuzzy methods. Azada and Sharma [29] proposed a TOPSIS method focused on the
election of cluster leaders using a multiple attribute decision-making approach. In this study, the CHs have been
chosen by the MCDM technique based on the entropy-weighted technique. A new algorithm has been developed to
select the CHs after each round which directly helps to increase the network lifetime.

3 Preliminaries
3.1 Entropy Weighted Method

Entropy, initially formulated by the German physicist R. Clausius in 1865 as a thermodynamic metric, characterizes
the disorder or randomness arising from thermodynamic processes. Claude Shannon later introduced the concept of
information entropy in 1948 to quantify uncertainty in communication from information sources. The entropy weight
method evaluates the extent to which each criterion in decision-making preserves decision information, determining
the relative significance of different features. It essentially gauges the level of unpredictable communication through
the utilization of entropy values. The computation of entropy weight involves analyzing the choice matrix. One can
consult Sen et al. [30] for further information regarding the entropy weighted technique.

Assume thatZ = (zij)m×n be the decision matrix andw = (w1, w2, . . . , wn), where 0 ≤ wj ≤ 1 and
∑

wj = 1
be the weight vector with regard to the m alternatives Ai(i = 1, 2, . . . ,m) and n criterion Cj(j = 1, 2, . . . , n).
Now, we can calculate the weight wj , j = 1, 2, . . . , n using the following steps:

Step 1: Compute pij =
zij∑m
i=1 zij

Step 2: Compute Ej = − 1
log(m)

∑m
i=1 pij log (pij). It is to be that pij log pij → 0, when pij → 0

Step 3: Compute Uj = 1− Ej

Step 4: Compute wj =
Uj∑n

j=1 Uj
=

1−Ej∑n
j=1(1−Ej)

3.2 Triangular Fuzzy Number

A triangular fuzzy number is a representation of uncertainty that is characterized by a triangular-shaped
membership function. It is often used in fuzzy logic and fuzzy set theory to model imprecise or vague information.
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A fuzzy number Ã = (a, b, c), where a ≤ b ≤ c is called triangular fuzzy number (TFN) whose membership
function µÃ(x) : X → [0, 1] is as follows:

µÃ(x) =


x−a
b−a if a ≤ x ≤ b

1 if x = b
c−x
c−b if b ≤ x ≤ c

Let Ã = (a, b, c) be a triangular fuzzy number, thenα-level set of Ã isAα = {x ∈ X : µÃ(x) ≥ α} = [A−
α , A

+
α ],

where A−
α = a+ (b− a)α and A+

α = c− (c− b)α, α ∈ [0, 1]. Now, we can represent Ã as Ã = ∪
α∈[0,1]

Aα. Here,

we can derive the signed distance [31] from [A−
α , A

+
α ] to 0̃ as D

(
Aα, 0̃

)
= 1

2 (A
−
α +A+

α ). If Ã = (a, b, c) be the
TFN then we have D(Ã, 0̃) = 1

2

∫ 1

0
(A−

α +A+
α ) dα = 0.25(a+ 2b+ c).

3.3 K-Means algorithm

The K-Means [32] algorithm is a popular unsupervised machine learning algorithm used for clustering data. It
partitions a dataset into K clusters where each data point belongs to the cluster with the nearest mean. The algorithm
is iterative and converges to a solution where the assignment of data points to clusters minimizes the sum of squared
distances between data points and their respective cluster centers. K-Means is sensitive to the initial placement of
cluster centroids, and different initializations may lead to different results. To mitigate this, the algorithm is often run
multiple times with different initializations, and the best result in terms of the sum of squared distances is chosen.
K-Means is widely used for tasks such as customer segmentation, image compression, and pattern recognition.
However, it has some limitations, such as sensitivity to outliers and the need to specify the number of clusters in
advance.

3.4 EWA Method

The notion of a triangular norm was presented by Klement et al. [33] as an extension of the triangle inequality
observed in metrics. Schweizer and Sklar [34] are credited with developing the concept of a T -norm and the
accompanying dual operator T -conorm. Let Rj , j = 1, 2, . . . , n be the collection of real numbers; then EWA
operators can be defined as follows:

EWAw (R1, R2, . . . , Rn) = w1 ⊗R1 ⊕w2 ⊗R2 ⊕w3 ⊗R3 ⊕ . . .⊕wn ⊗Rn, where w = (w1, w2, . . . , wn)
is the weighted vector of Rj , j = 1, 2, . . . , n, such that 0 ≤ wj ≤ 1, j = 1, 2, . . . , n and

∑n
j=1 wj = 1.

It is to be noted that for two real numbers p and q we have used Einstein T -norm for product p⊗ q and T -conorm
for sum p⊕ q.

Einstein product is a T -norm function T : [0, 1]× [0, 1] → [0, 1] such that

p⊗ε q =
p.q

1 + (1− p)(1− q)
∀(p, q) ∈ [0, 1]2 (1)

Einstein sum is a T -conorm function S : [0, 1]× [0, 1] → [0, 1] such that

p⊕ε q =
p+ q

1 + p · q
∀(p, q) ∈ [0, 1]2 (2)

4 System Model Definition and Formulation

The system infrastructure comprises a solitary base station (BS) and an extensive array of sensor nodes, each
classified into two categories: common nodes and cluster head nodes. Common nodes are responsible for monitoring
the surroundings and transmitting sensor data to the designated cluster head node. The selection of the cluster head
node is a meticulous process facilitated by the common nodes. Upon receiving data from the common nodes, the
cluster head node amalgamates the information before relaying it to the BS.

The first-order radio energy model explicitly focuses on energy utilization during the communication phase,
encompassing energy expenditure in transmission, reception, and data aggregation processes. Eq. (3) represents the
computation of energy consumption within this framework, derived from the exchanged bit data between a cluster
head node and a common node.

ẼTX(L̃, d̃) = Ẽelec × L̃+ ε̃amp × L̃ (3)

ẼRX(L̃) = Ẽelec × L̃ (4)
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ẼTX(L̃, d̃) is the energy consumption during the transmission of L-bit of data and ẼRX(L̃) is the energy
consumption during receiving of data. Eq. (5) can be used to determine the amplifier’s energy usage during the
transmission phase where ε̃amp is the amplifier energy consumption during transmission phase.

ε̃amp =

{
ε̃fsd̃

2 if d̃ ≤ d̃0
ε̃mpd̃

4 if d̃ > d̃0
(5)

If the value of d̃ less than or equal to d̃0, then the sensor node will use free-space propagation model. On the
other hand, if the system uses multipath fading channel which use ε̃fs and ε̃mp communication energy parameter,
can be used to calculate the value of d̃0 by Eq. (6).

d̃0 =

√
ε̃fs
ε̃mp

(6)

Determining the number of cluster heads in each cycle is crucial for increasing the WSN’s lifetime and energy
efficiency. We have determined the optimal cluster size k̃opt as:

k̃opt =

√√√√ ε̃fs

π
(
ε̃mpd̃4toBS − Ẽelec

)M̃√
Ñ (7)

where, M̃, Ñ are represented as area covered and number of nodes in the system. BS defines the base location.

5 Experimental Setup and Results

For this research, a network comprising 100 nodes was established, as shown in Figure 1, featuring a BS located
at a central point and a random distribution of nodes throughout the area. Each packet type has a 25-byte packet
header, and data messages have a fixed length of 4000 bits. The channel bandwidth was set at a constant 1 Mb/s.
The K-Means algorithm divides the network into groups of clusters depending on the value calculated by Eq. (7), as
shown in Figure 2. As nodes start to become inactive, the number of clusters undergoes adjustments based on node
density, and the optimal value is employed to determine the initial number of clusters. Larger and smaller groups are
amalgamated. The BS is characterized as a node with limitless processing power and no energy constraints. Table 1
presents a list of symbols used in this study.

Figure 1. Distribution of 100 nodes over 100×100m2 area
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Figure 2. Clustering of nodes using K-Means algorithm

Table 1. Key parameters of our model

Symbol Description
d̃ Distance to base station
d̃0 Fixed measuring distance to base station(

C̃x, C̃y

)
Co-ordinate of cluster head in a WSNs(

Ñx, Ñy

)
Co-ordinate of node in a WSNs

Ẽinitial Initial energy
Ẽelec Electronics energy
ẼTX Data transmission energy consumption
ε̃fs Energy amplification to overcome open area
ε̃mp Energy amplification in order to navigate the multi-path
ẼRX Energy consumption while data reception
K̃opt Number of cluster heads that is optimal
L̃ Length of data
Ñ Number of nodes in the network as a whole
H̃ Distance between the special node and the common node
ñ Number of clusters
α Distance from the sink
β Average distance of cluster nodes
χ Number of neighbors
δ Residual energy

5.1 Node Selection Criteria

As shown in Table 2, the experiment in this study calculates the entropy weights of each parameter, like residual
energy, the number of neighbor nodes, the distance from the sink and the average distance of cluster nodes. The
best CHs were selected after the first simulation round based on four factors, namely, distance from the sink (BS),
average distance of cluster nodes, number of neighbor and residual energy, using the Einstein operator. Using the
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EWA operator mentioned in Section 3.4, the average weight of each node in each cluster can be calculated.

Weight (nodei) =
1

α
⊗ (0.1062)⊕ β ⊗ (0.1300)⊕ χ⊗ (0.2640)⊕ δ ⊗ (0.4980) (8)

Table 2. Entropy weight of each parameter

Distance From the Sink (α) Average Distance of
Cluster Nodes (β) Number of Neighbors (χ) Residual Energy (δ)

0.1062 0.1300 0.2640 0.4980

Eq. (8) has been used to determine the weight of each node of each cluster which decided the selection of CHs
has been shown in Table 3. We have also considered uncertain parameters for the entire network setup which has
been shown in Table 4. Also, we have estimated the optimum range of K̃opt. Here, we have considered Ñ = 100
nodes, Z̃ = 100m, ε̃fs = 10pJ, ε̃mp = 0.0013pJ and 76m < d̃0 < 168m. Therefore, the expected optimum number
of clusters to be lied in the range (1,11), i.e. 1 < k̃opt < 11 which is taken as 9 . Figure 2 shows the clustering of
100 nodes using K-Means algorithm by k̃opt value.

Table 3. Key parameter for cluster head selection

Cluster Head Residual Energy Number of
Neighbors

Distance From
the Sink

Average Distance
of Clusters Nodes

CH1 0.9795 7 156.203 11.232
CH2 0.9754 5 78.223 15.527
CH3 0.9798 9 140.173 28.937
CH4 0.9753 6 136.059 31.049
CH5 0.9788 3 93.444 49.752
CH6 0.9641 4 116.069 24.688
CH7 0.9647 5 86.988 23.348
CH8 0.9657 4 105.367 26.433
CH9 0.9649 6 102.181 18.694

Table 4. The experimental parameter utilized for WSNs

Parameters Parametric Value as per
Assumptions Defuzzified Value

Ñ 100
Ẽinitial (0.7,1,1.2) 0.975

Coordinate of BS (50,175)
Size of the data packet (495,500,510) 501.25

Hello/broadcast/CH join message (22,25,28) 25
ε̃fs (8,10,12) 10
ε̃mp (0.001,0.0013,0.0015) 0.001275
L̃ (47,50,52) 49.75

The number of cycles before the network’s single node runs out of energy is used to describe the network’s
lifespan. Figure 3 displays the experimental outcomes accordingly. Sensor nodes are dispersed at random across
a preset area. The plot of network lifetimes displays the number of active nodes with time in cycles. CHs for the
first round are selected using the MCDM technique. For the subsequent round, Algorithm 1 is implemented and
described below.

Algorithm 1:
Step 1: 100 nodes have been deployed randomly over (100,100)m2 area with BS coordinates.
Step 2: For the first rounds, the selected CHs will send the data which has been selected by using Eq. (8).
Step 3: Repeat Steps 4 to 9 to choose CHs for subsequent round until all nodes’ residual energy is not diminished.
Step 4: Increment the counter if the remaining energy of a node surpasses that of all other nodes within its

cluster.
Step 5: If a node is at a greater distance from the sink than the cumulative distance of all other nodes in the

cluster, then a counter is incremented.
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Step 6: Increase a counter if a node’s average distance from other nodes within the cluster is shorter than that of
any other nodes.

Step 7: The node with the highest counter value has been considered CHs for the next round.
Step 8: If a cluster contains less than three nodes, assign additional nodes to the nearest cluster.
Step 9: Move to the next round.
Step 10: End.

Figure 3. Number of nodes alive vs. number of rounds of proposed approach

LEACH-FC is an extension of the original LEACH algorithm, incorporating fuzzy logic for improved cluster
formation. Its main goal is to enhance energy efficiency and prolong the network lifetime of WSNs. In this study,
both the LEACH-FC clustering approach and the approach proposed in this study are implemented in the same
environment. Figure 4 shows the network lifetime of LEACH-FC. It has been found that the proposed approach
shows a 15% greater network lifetime in comparison with LEACH-FC.

Figure 4. Number of nodes alive vs. number of rounds of LEACH-FC

6 Conclusions

Research on energy efficiency in WSNs is crucial due to the constrained energy resources of sensor nodes.
Improving energy efficiency enhances the longevity of WSNs, allowing them to operate for extended periods without
frequent battery replacements. This, in turn, promotes sustainable and cost-effective deployment of sensor networks
for various applications such as environmental monitoring, healthcare, and smart cities. Efficient energy utilization
also contributes to minimizing environmental impact, making WSNs more environmentally friendly and aligning
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with the broader goal of creating energy-efficient and eco-friendly technological solutions. Entropy, MCDM and
K-Means algorithms play significant roles in creating clusters and selecting CHs in WSNs. The integration of these
algorithms enables the creation of energy-efficient and well-organized clusters in WSNs. Entropy aids in evaluating
the quality of clusters; MCDM ensures comprehensive decision-making for CH selection; and K-Means contributes
to the formation of homogeneous and resource-efficient clusters. This combined approach enhances the performance
and longevity of WSNs, particularly in applications where energy conservation and network reliability are critical.
It has been found that, by applying Algorithm 1 and using these algorithms, the proposed approach shows better
network lifetime performance in comparison with the LEACH-FC algorithm.
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