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Abstract: Job scheduling for a single machine (JSSM) remains a core challenge in manufacturing and service
operations, where optimal job sequencing is essential to minimize flow time, reduce delays, prioritize high-value
tasks, and enhance overall system efficiency. This study addresses JSSM by developing a hybrid solution aimed at
balancing multiple performance objectives and minimizing overall processing time. Eight established scheduling
rules were examined through a comprehensive simulation based on randomly generated scenarios, each defined by
three parameters: processing time, customer weight, and job due date. Performance was evaluated using six key
metrics: flow time, total delay, number of delayed jobs, maximum delay, average delay of delayed jobs, and average
weight of delayed jobs. A multi-criteria decision-making (MCDM) framework was applied to identify the most
effective scheduling rule. This framework combines two approaches: the Analytic Hierarchy Process (AHP), used
to assign relative importance to each criterion, and the Evaluation based on Distance from Average Solution (EDAS)
method, applied to rank the scheduling rules. AHP weights were determined by surveying expert assessments, whose
averaged responses formed a consensus on priority ranking. Results indicate that the Earliest Due Date (EDD) rule
consistently outperformed other rules, likely due to the high weighting of delay-sensitive criteria within the AHP,
which positions EDD favourably in scenarios demanding stringent adherence to deadlines. Following this initial
rule-based scheduling phase, an optimization stage was introduced, involving four Tabu Search (TS) techniques: job
swapping, block swapping, job insertion, and block insertion. The TS optimization yielded marked improvements,
particularly in scenarios with high job volumes, significantly reducing delays and improving performance metrics
across all criteria. The adaptability of this hybrid MCDM framework is highlighted as a primary contribution, with
demonstrated potential for broader application. By adjusting weights, criteria, or search parameters, the proposed
method can be tailored to diverse real-time scheduling challenges across different sectors. This integration of rule-
based scheduling with metaheuristic search underscores the efficacy of hybrid approaches for complex scheduling
problems.
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1 Introduction

Job sequencing refers to the process of determining the most efficient order in which tasks should be processed
at one or more workstations. Since workstations typically handle multiple tasks, effective sequencing is vital to
minimizing costs associated with job delays and idle time at workstations [1]. Poor scheduling can lead to job
congestion and long waiting queues, adding complexity and pressuring management to develop more effective
scheduling solutions [2].

Job scheduling involves determining the optimal order for completing a set of jobs or orders on a single machine
or a group of machines. The goal is to achieve the best possible outcome based on a specific objective [3].
By establishing an optimal sequence, it is possible to calculate start and end times for each job, along with key
performance metrics for both jobs and machines. Efficient scheduling is essential for optimizing resource use,
meeting customer requirements within designated timeframes, and reducing inventory levels [4].
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In this context, a variety of priority sequencing rules or heuristics have been used to determine the sequence
in which jobs can be processed at workstations. These rules guide decision-making regarding the allocation of
workstations for further processing. The use of priority sequencing rules offers advantages, as they integrate current
knowledge of operational conditions into scheduling processes [5]. The performance of a given sequence generated
by a priority sequencing rule is assessed using key performance indicators, such as average job completion time,
average number of jobs in the system, mean job tardiness, and the number of delayed jobs. Selecting the most
appropriate sequencing rule for job processing presents a complex challenge, and no single rule can be universally
regarded as the best option for all scenarios [6].

Thus, from a managerial decision-making perspective, a detailed method for selecting the optimal sequencing
rule is essential. The chosen methodology should account for the problem’s complexity by explicitly considering
multiple criteria, leading to more informed and improved decisions. MCDM techniques address these requirements
by structuring complex problems and facilitating the evaluation of multiple criteria simultaneously [7].

Despite the potential benefits of integrating MCDM techniques with sequencing rules, there has been limited
research exploring this hybrid approach. Only a few studies have investigated the effectiveness of combining MCDM
methods with priority sequencing rules [8]. This research gap presents an opportunity to examine the benefits of these
hybrid methodologies for optimizing job sequencing across various contexts. By leveraging MCDM techniques,
which allow for the explicit consideration of multiple criteria, and incorporating them into sequencing rule selection,
researchers can enhance the decision-making process and improve the performance of job sequencing systems.
Therefore, further exploration and empirical validation of the approach integrating MCDM with sequencing rules
are necessary to advance understanding and practical applications in this area.

Classic scheduling rules have been offered to address scheduling problems. Some scenarios, however, frequently
fail to perform well when numerous competing requirements are involved. As real-world scheduling problems get
more complicated, hybrid approaches combining MCDM with metaheuristic algorithms like Genetic Algorithms
(GA), Simulated Annealing (SA), and TS have grown in popularity [1]. These methods aim to integrate the qualities
of two frameworks: MCDM techniques provide a systematic mechanism for evaluating and ranking, whereas
metaheuristics methods like TS are used to refine and improve initial solutions.

Most previous studies have focused on finding solutions using traditional scheduling rules and deciding how
to arrange these rules best, either manually or using mathematical models based on a single objective function by
choosing one of the performance criteria. The main objective of this research is to create a more efficient framework
for tackling single-machine scheduling problems by combining hybrid MCDM methodologies and meta-optimization
methods. The goal is to handle the issues of balancing several conflicting performance criteria by ranking these rules
based on their performance across six key criteria: total flow time, total delay, number of delayed jobs, maximum
delay, average tardy, and average weight of tardy jobs. Another major objective is to employ the best ranking rule
from the MCDM evaluation as the initial solution for the TS algorithm. To improve scheduling results, the study
applies a variety of TS search strategies, including job swapping, block swapping, job insertion, and block insertion.

2 Methodology

Figure 1 illustrates the methodology adopted to achieve the objectives. Job parameters include processing time,
customer importance, and due date. Calculations were made for eight different scheduling rules for 50 random JSSM
scenarios. Hybrid MCDM was designed to analyze performance criteria, i.e., flow-time, total tardiness, maximum
tardiness, number of tardy jobs, average tardiness, and average weight of tardy jobs. The best solution was then
identified and used as the starting initial solution for the TS algorithm, which improves the solution in four methods.
The resulted data was compared and discussed.

2.1 Scheduling Rules

The assumptions used in this research are as follows:
J : Number of jobs; J = {J1, J2, . . . , Jn}
Oi : Number of operations; i = 1
Ri : Release date; {R1, R2, . . . , Rn} = 0
Si : Setup time; {S1, S2, . . . , Sn} = 0
Ci : Cost; {C1, C2, . . . , Cn} = 0
PTi : Processing time; PTj = {PT1, PT2, . . . , PTn}
DDi : Due date; DDi = {DD1, DD2, . . . , DDn}
Wi : Customer importance; Wi = {W1,W2, . . . ,Wn}
First-come, first-served (FCFS), sometimes known as first in, first out (FIFO), is the simplest work scheduling

algorithm. It schedules jobs in the order they entered the ready queue. The average waiting time is not always the
shortest, and throughput can be low because lengthy jobs might overwhelm the entire workload, forcing short jobs
to wait for an extended period, and making it difficult for this system to fulfill deadlines.
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Figure 1. Development of the MCDM framework and JSSM simulation

Last-come, first-served (LCFS), also known as last in, first out (LIFO), reverses the previous rule by processing
jobs in the opposite order they were received. This method can be irrational and has numerous disadvantages when
it comes to deadlines.

Shortest Processing Time (SPT), also known as Shortest-Job-Next (SJN) or Shortest Job First (SJF), is a non-
preemptive scheduling policy that requires work to be done based on the SPT. In other words, the jobs that have the
shortest execution time are prioritized to start first. This rule is effective since it is simple and reduces the average
length of time that each job must take to finish. However, if short jobs are introduced regularly, they may starve jobs
that can take a long time to complete. Another drawback of using this algorithm in many industries is that the total
execution time of a job must be known before execution.

Longest Processing Time (LPT), also known as Longest Job Next (LJN) or Longest Job First (LJF), is a scheduling
system that arranges jobs so that each subsequent job has a shorter processing time than the previous one. When
the machine is freed, the longest job ready at that time can begin working. This regulation increases the work in
progress and may lead numerous short jobs to miss their deadlines.

EDD, earliest deadline first, or shortest deadline first, is a real-time scheduling method that prioritizes activities.
When a scheduling event occurs (a job completes, a new job is released, etc.), the queue is searched for the process
closest to the deadline, which becomes the next process scheduled for execution.

Least Slack Time (LST), also known as least slack first, is a dynamic priority scheduling technique. It prioritizes
jobs depending on slack time, which is the amount of time remaining after completing a job if it begins now. It is
mostly used in systems with several operations.

Priority scheduling: it is focused on prioritizing the jobs or the customers with the highest relevance or value
and then moving down to the lowest. The disadvantage with this method is that it does not take into account delivery
time, which can result in a substantial total delay.

Critical Ratio (CR): the CR scheduling rule determines the CR by dividing the total time remaining to the
deadline by the total production time remaining. Priority is given to items in the production cycle with the smallest
CR.
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2.2 Mathematical Representation of Criteria

Flow time (FT) refers to the amount of time it takes for a job to be processed. This includes the time from when
the job is entered until when it is done, which also means that it concerns all the jobs that were completed before this
current job.

Flow Timei = Processing T imei + Flow Timei−1 (1)

Total F low Time =

n∑
i=1

Flow Timei (2)

Tardiness for each job is the difference in value between the completion time and due date, which is deemed zero
if the value is negative. However, total tardiness (TT) is the aggregate of all jobs’ tardiness.

Ti = max (0, Ci −Di) (3)

where, Ti represents the tardiness of job i, Ci is the completion time of job i, and Di is the due date of job i.

Total Tardiness =

n∑
i=1

Ti (4)

Number of tardy jobs (NO. TJ) refers to the number of jobs that are late, which is the count of jobs whose
completion time exceeds delivery time.

Number of Tardy Jobs =

n∑
i=1

I (Ti > 0) (5)

Maximum tardiness (MAX T) refers to the maximum value of tardiness among all the tardy jobs.

Tmax = max {T1, T2, . . . , Tn} (6)

Average tardiness (AVG T) describes the median delay of the tardy jobs.

Average Tardiness =

∑
Ti>0 Ti∑n

i=1 I (Ti > 0)
(7)

Average weights of tardy jobs (AVG W) is the mean weight of the jobs that their completion time is bigger than
the due date.

AverageWeights of Tardy Jobs =

∑
Ti>0 Wi∑n

i=1 I (Ti > 0)
(8)

2.3 Development of the Hybrid MCDM

MCDM is a strong analytical framework that helps in evaluating and prioritizing multiple, often conflicting,
criteria in a decision-making process [9, 10]. In complex decision scenarios, where qualitative and quantitative
factors are involved, MCDM provides a structured approach to the assessment of alternatives to optimize the decision
outcome [11, 12]. MCDM uses techniques such as AHP in systematic analyses by the decision-makers, which include
trade-offs among criteria [13, 14]. It is, therefore, an indispensable tool in decision-making within diverse fields,
including engineering, management, and public policy, toward more informed and transparent decisions [15, 16].

This study employed two MCDM techniques: the AHP and the EDAS. The AHP was used to evaluate the six
criteria and assign weights to them in order to estimate the relative importance of each criterion over another in the
decision-making process. As for the EDAS, the distance between the criteria was utilized to bring the values of the
criteria closer to each other, and the rules were then ranked based on this approximation.
2.3.1 AHP

The AHP is a mathematical and psychological strategy for organizing and analyzing complex decisions, as well
as a precise approach to quantifying decision criteria weights. The analytic hierarchy approach was developed in the
1970s by Thomas L. Satty, who collaborated with Ernest Forman to create the Expert Choice program in 1983 [17].
Since then, it has been extensively researched and refined. The process is divided into three parts: the ultimate goal
or problem to be solved; all feasible solutions, known as alternatives; and the criteria used to evaluate the alternatives.
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The AHP provides a rational framework for reaching a desired decision by identifying its criteria and alternative
options.

Specialists and decision-makers use a customized questionnaire to compare the relative importance of two factors
at a time. The analytic hierarchy procedure translates these opinions into numerical values that can be compared to
all possible criteria. This ability to measure distinguishes the AHP from other decision-making techniques. The final
part of the process involves calculating numerical priorities for each of the different possibilities. These numbers
represent the most desirable options, based on the values of all participants in the evaluation.

AHP is extremely useful for making decisions for complex, high-stakes problems. It stands out from other
decision-making techniques because it measures criteria and options that are traditionally difficult to measure with
numbers. Rather than describing the “right” decision, AHP assists decision-makers in finding the values that best
fit their understanding of the problem. Involving all stakeholders is critical since various specialists can weight
criteria differently. AHP also differs from classic surveys or questionnaires because it eliminates bias from the
decision-making.

One of the most essential steps in the hierarchy is the binary matrix, which is often used to represent the
preferences of criteria for one another and was utilized in this study to calculate the weights of criteria by comparing
them to the others.

The steps are as follows:
Step 1: The criteria to be evaluated and their numbers were defined. The numbers represent the size of the binary

matrix, which in this case was 6×6.
Step 2: The scale below was used to compare each pair of criteria, determining which is relatively more important

than the other and to what extent it is preferred. The gray cells on the top are the inverse of the white cells at the
bottom (Table 1).

Table 1. AHP binary matrix

Criteria C1 C2 C3 C4 C5 C6

C1 1 C21 C31 C41 C51 C61

C2 C12 1 C32 C42 C52 C62

C3 C13 C23 1 C43 C53 C63

C4 C14 C24 C34 1 C54 C64

C5 C15 C25 C35 C45 1 C65

C6 C16 C26 C36 C46 C56 1

Step 3: The summation of factors was calculated for each criterion and the total of these values was found
(Table 2).

Si =

n∑
j=1

Cij (9)

STotal =

n∑
i=1

Si (10)

Table 2. AHP binary matrix (summation)

Criteria C1 C2 C3 C4 C5 C6 Summation
C1 1 C21 C31 C41 C51 C61 S1 = 1 + {A1 +A2 +A3 +A4 +A5}
C2 C12 1 C32 C42 C52 C62 S2 = 1 + {B1 +B2 +B3 +B4 +B5}
C3 C13 C23 1 C43 C53 C63 S3 = 1 + {C1 + C2 + C3 + C4 + C5}
C4 C14 C24 C34 1 C54 C64 S4 = 1 + {D1 +D2 +D3 +D4 +D5}
C5 C15 C25 C35 C45 1 C65 S5 = 1 + {E1 + E2 + E3 + E4 + E5}
C6 C16 C26 C36 C46 C56 1 S6 = 1 + {F1 + F2 + F3 + F4 + F5}

STotal

Step 4: The weights were determined by following the equation, as shown in Table 3:

Wi =
Si

STotal
, where WTotal = 1 (11)
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Table 3. AHP binary matrix (weight determination)

Criteria C1 C2 C3 C4 C5 C6 Summation Weights
C1 1 C21 C31 C41 C51 C61 S1 W1

C2 C12 1 C32 C42 C52 C62 S2 W2

C3 C13 C23 1 C43 C53 C63 S3 W3

C4 C14 C24 C34 1 C54 C64 S4 W4

C5 C15 C25 C35 C45 1 C65 S5 W5

C6 C16 C26 C36 C46 C56 1 S6 W6

STotal WTotal = 1

2.3.2 EDAS
The EDAS is an MCDM ranking mechanism that is particularly useful for evaluating and finding the rank of

alternatives that have multiple weighted criteria [18].
The following steps were taken using the EDAS method [19]:
Step 1: The criteria and the alternatives were determined, which were eight rules and six criteria in this case.
Step 2: Each criterion was categorized as beneficial (where higher values desired) or non-beneficial (where lower

values desired). In this case, they were all non-beneficial.
Step 3: A decision matrix was prepared and the average value of each criterion was calculated for the alternatives,

as shown in Table 4.

AV Gj =

∑n
i=1 xij

n
(12)

where, i refers to criteria, and j refers to alternatives.

Table 4. Average of each criterion

Weightage Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6
W1% W2% W3% W4% W5% W6%

Alternative 1 X11 X21 X31 X41 X51 X61

Alternative 2 X12 X22 X32 X42 X52 X62

Alternative 3 X13 X23 X33 X43 X53 X63

Alternative 4 X14 X24 X34 X44 X54 X64

Alternative 5 X15 X25 X35 X45 X55 X65

Alternative 6 X16 X26 X36 X46 X56 X66

Alternative 7 X17 X27 X37 X47 X57 X67

Alternative 8 X18 X28 X38 X48 X58 X68

AV Gj AV G1 AV G2 AV G3 AV G4 AV G5 AV G6

Step 4: Positive and negative distance from average determines how much better or worse the alternative is
compared to the found average for each criterion. In other words, the positive distance is calculated by subtracting
the value of alternative (n) at criterion (x) from the average of criterion (x), where n and x represent a specific
alternative and criterion. If the difference is larger than zero, it is divided by the average value and multiplied by the
weight percentage for this specific criterion (which was previously determined using AHP). If the difference is less
than zero, the value is set equal to zero (Table 5).

If criterion is beneficial, then

PDAij =
max (0, (Xij −AV Gj))

AV Gj
(13)

If criterion is non-beneficial, then

PDAij =
max (0, (AV Gj −Xij))

AV Gj
(14)

However, for negative distance, the average of criteria (x) is subtracted from the value of alternative (n) at
criterion (x). If the difference is greater than zero, it is divided by the average value, which is then multiplied by the
weight percentage for this specific criterion. Otherwise, the value is returned to zero (Table 6).
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If criterion is beneficial, then

NDAij =
max (0, (AV Gj −Xij))

AV Gj
(15)

If criterion is non-beneficial, then

NDAij =
max (0, (Xij −AV Gj))

AV Gj
(16)

Table 5. Positive distance from average (PDA)

Weightage Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6
W1% W2% W3% W4% W5% W6%

Alternative 1 PDA11 PDA21 PDA31 PDA41 PDA51 PDA61

Alternative 2 PDA12 PDA22 PDA32 PDA42 PDA52 PDA62

Alternative 3 PDA13 PDA23 PDA33 PDA43 PDA53 PDA63

Alternative 4 PDA14 PDA24 PDA34 PDA44 PDA54 PDA64

Alternative 5 PDA15 PDA25 PDA35 PDA45 PDA55 PDA65

Alternative 6 PDA16 PDA26 PDA36 PDA46 PDA56 PDA66

Alternative 7 PDA17 PDA27 PDA37 PDA47 PDA57 PDA67

Alternative 8 PDA18 PDA28 PDA38 PDA48 PDA58 PDA68

Table 6. Negative distance from average (NDA)

Weightage Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6
W1% W2% W3% W4% W5% W6%

Alternative 1 NDA11 NDA21 NDA31 NDA41 NDA51 NDA61

Alternative 2 NDA12 NDA22 NDA32 NDA42 NDA52 NDA62

Alternative 3 NDA13 NDA23 NDA33 NDA43 NDA53 NDA63

Alternative 4 NDA14 NDA24 NDA34 NDA44 NDA54 NDA64

Alternative 5 NDA15 NDA25 NDA35 NDA45 NDA55 NDA65

Alternative 6 NDA16 NDA26 NDA36 NDA46 NDA56 NDA66

Alternative 7 NDA17 NDA27 NDA37 NDA47 NDA57 NDA67

Alternative 8 NDA18 NDA28 NDA38 NDA48 NDA58 NDA68

Weighted values were calculated by multiplying the weight percentage per each criterion by PDAij and NDAij ,
as shown in Tables 7 and 8.

WPDAij = Wj ∗ PDAij (17)

WNDAij = Wj ∗NDAij (18)

The summation of WPDAij of each alternative value was calculated as follows:

SPi =

n∑
j=1

WPDAij (19)

SNi =

n∑
j=1

WNDAij (20)

The highest values of SPi and SNi were extracted and normalized values of NSPi and NSNi were found:

NSPi =
SPi

Maxi (SPi)
(21)

NSNi = 1− SNi

Maxi (SNi)
(22)

138



Table 7. Weighted sum of PDA (WPDA)

Weightage Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6 SPi

Alternative 1 WPDA11 WPDA21 WPDA31 WPDA41 WPDA51 WPDA61 SP1

Alternative 2 WPDA12 WPDA22 WPDA32 WPDA42 WPDA52 WPDA62 SP2

Alternative 3 WPDA13 WPDA23 WPDA33 WPDA43 WPDA53 WPDA63 SP3

Alternative 4 WPDA14 WPDA24 WPDA34 WPDA44 WPDA54 WPDA64 SP4

Alternative 5 WPDA15 WPDA25 WPDA35 WPDA45 WPDA55 WPDA65 SP5

Alternative 6 WPDA16 WPDA26 WPDA36 WPDA46 WPDA56 WPDA66 SP6

Alternative 7 WPDA17 WPDA27 WPDA37 WPDA47 WPDA57 WPDA67 SP7

Alternative 8 WPDA18 WPDA28 WPDA38 WPDA48 WPDA58 WPDA68 SP8

Table 8. Weighted sum of NDA (WNDA)

Weightage Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6 SNi

Alternative 1 WNDA11 WNDA21 WNDA31 WNDA41 WNDA51 WNDA61 SN1

Alternative 2 WNDA12 WNDA22 WNDA32 WNDA42 WNDA52 WNDA62 SN2

Alternative 3 WNDA13 WNDA23 WNDA33 WNDA43 WNDA53 WNDA63 SN3

Alternative 4 WNDA14 WNDA24 WNDA34 WNDA44 WNDA54 WNDA64 SN4

Alternative 5 WNDA15 WNDA25 WNDA35 WNDA45 WNDA55 WNDA65 SN5

Alternative 6 WNDA16 WNDA26 WNDA36 WNDA46 WNDA56 WNDA66 SN6

Alternative 7 WNDA17 WNDA27 WNDA37 WNDA47 WNDA57 WNDA67 SN7

Alternative 8 WNDA18 WNDA28 WNDA38 WNDA48 WNDA58 WNDA68 SN8

The values of NSPi and NSNi were normalized, as shown in Table 9.

ASi =
1

2
∗ (NSPi +NSNi) (23)

Table 9. ASi calculations

SPi SNi NSPi NSNi ASi

Alternative 1 SP1 SN1 NSP1 NSN1 AS1

Alternative 2 SP2 SN2 NSP2 NSN2 AS3

Alternative 3 SP3 SN3 NSP3 NSN3 AS4

Alternative 4 SP4 SN4 NSP4 NSN4 AS5

Alternative 5 SP5 SN5 NSP5 NSN5 AS6

Alternative 6 SP6 SN6 NSP6 NSN6 AS7

Alternative 7 SP7 SN7 NSP7 NSN7 AS8

Alternative 8 SP8 SN8 NSP8 NSN8 AS9

Finally, the ranking was found by arranging alternatives in descending order based on ASi values.

2.4 TS Algorithm

TS is a metaheuristic optimization local search method that solves combinatorial problems by first implementing
an initial solution and then enhancing it by making minor adjustments (or “moves”) to the present solution and
examining surrounding alternatives. The quality of a neighborhood is important since it influences the possibility
of a local search. The chosen TS method, Tabu list, and aspiration criteria influence the algorithm’s decision on
which neighborhood to explore and which moves to consider, allowing it to avoid redundant or low-quality solutions.
TS enables the algorithm to accept non-improving moves temporarily to escape from local optima and explore new
sections of the solution space. To do this, the search employs a short-term memory structure (Tabu list) that retains
recently visited solutions or movements (or characteristics of those solutions) to keep track of forbidden moves
and prevent the algorithm from returning to these solutions for a certain number of iterations. However, the Tabu
list is not absolute; the aspiration criterion is a rule that permits certain moves, even those on the Tabu list, to be
reconsidered under certain situations. The search constantly improves the solution by testing new moves, updating
the Tabu list, and applying aspiration criteria, and it will stop when a preset condition is fulfilled, such as reaching a
maximum number of iterations, a time restriction, or no further improvement is discovered after a particular number
of iterations.
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TS steps are as follows:
Step 1: Let S be the set of all potential solutions.
Step 2: An initial solution so was adopted, with scurrent = so.
Step 3: The objective function f(s) was defined to evaluate the quality of the solution s, aiming to minimize the

solution and find S∗, with f (s∗) ≤ f(s).
Step 4: The neighborhood function N (scurrent) was defined.
Step 5: Iteration k and kmax were defined.
Step 6: The best solution was initialized and found s∗ = so.
Step 7: The Tabu list T = {s1, s2, s3, . . . , si} was established, where si is the recently visited solution, and l is

the tenure length.
Step 8: The objective function for each solution in the neighborhood f (s′) was evaluated, where s′ indicates

that it is Tabu and cannot be visited for k number of iterations.
Step 9: The best non-Tabu solution was selected from the neighborhood sbest.
Step 10: After setting scurrent = sbest, the best-know solution can be updated if improvement is found f (scurrent ) <

f(s).
Step 11: After adding solutions to the Tabu list, the oldest entry can be removed if l exceeds the maximum length

specified.
Step 12: The steps should be repeated until a stopping criterion is met, such as a maximum number of iterations,

a time restriction, or no improvement in the range of the set number of iterations.
TS is often applied to problems such as scheduling, routing, and assignment. Below is a breakdown of what are

called operators, techniques, or methods used in TS for solving job scheduling problems.
Job swapping: It refers to exchanging two jobs in the initial solution. For example, as for the jobs {J1,J2,J3,J4,

J5,J6, . . . , Jn} in a series, exchanging jobs would swap the positions of two jobs, such as switching J2 and J3,
so that the schedule becomes J1, J3, J2, J4, J5, J6, . . . , Jn. This method is used to investigate adjacent solutions
by determining whether changing the placements of two functions improves the objective function which is the
scheduling performance (by minimizing the six criteria).

Block swapping: It is similar to job swapping, except that it entails swapping a block that contains more than
one job with another block. For example, as for jobs {J1, J2, J3, J4, J5, J6, . . . , Jn} in a sequence, swapping block
{J5, J6} with block {J1, J2} may improve the solution, making the solution {J5, J6, J3, J4, J1, J2, . . . , Jn}. Blocks
can have more than two jobs, and this TS method is effective when tiny modifications do not result in considerable
improvements.

Job insertion: It involves removing a job from its current position and inserting it in a different position in
the sequence. For example, for jobs {J1, J2, J3, J4, J5, J6, . . . , Jn}, removing J3 from its current position and
inserting it after J6 in the sequence makes the solution {J1, J2, J4, J5, J6, J3, . . . , Jn}. This procedure offers more
comprehensive schedule alterations by moving one job to a more optimal position.

Block insertion: This method is similar to inserting jobs, but entire blocks are removed and inserted at different
locations within the sequence. For jobs {J1, J2, J3, J4, J5, J6, . . . , Jn}, removing {J4, J5} from their current
location and inserting it after J1 in the sequence results in {J1, J4, J5, J2, J3, J6, . . . , Jn}. This method is useful
when a group of jobs has to stay together.

3 Development of the Hybrid MCDM and TS Model

Simulation study refers to the use of a computational model to simulate the behavior or the performance of a
system under various parameters. The purpose of using a stochastic simulation (random) is to have different results
due to the randomness of selecting different values of the parameters, which can lead to a better understanding of
how the system behaves under these multiple scenarios and improve the processes.

To demonstrate the proposed steps, a large-scale project with a capacity of processing 50 jobs was considered.
One machine must process these jobs in 30 different scenarios. A total of 1500 jobs that were generated by a
simulation model select random numbers with pre-defined constraints and parameters, with job processing time from
1 to 20 days, delivery time from January 1, 2024, to March 30, 2025, and the weight of the job or customer value
from a scale of 1 to 10.

3.1 AHP and EDAS

Five professionals and academics in engineering project management completed a questionnaire to assess the
weights of the criteria. The average of the individuals’ evaluations was then taken, producing the binary matrix in
Table 10 below.

Given the weights, the EDAS method was used to rank the rules, and all 30 case studies concluded that the EDD
scheduling rule was the best way to organize the 50 jobs.
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Table 10. Results of the AHP binary matrix

Criteria FT TT No. TJ MAX T AVG T MAX W Summation Weights
FT 1.00 0.33 0.25 0.50 0.50 0.33 2.917 5.92%
TT 3.00 1.00 0.33 0.50 1.00 1.00 6.833 13.87%

No. TJ 4.00 3.00 1.00 0.33 0.50 0.33 9.167 18.61%
MAX T 2.00 2.00 3.00 1.00 0.50 0.33 8.833 17.94%
AVG T 2.00 1.00 2.00 2.00 1.00 0.50 8.500 17.26%

MAX W 3.00 1.00 3.00 3.00 2.00 1.00 13.000 26.40%
49.250 1.0

3.2 TS Computational Model

The EDD scheduling rule was chosen as an initial solution to improve scheduling performance in all cases using
the TS algorithm.
3.2.1 TS programming

The code was used to program TS via the Google Colab application. The steps are as follows:
Step 1: Input data was extracted, such as processing times, weights, due dates, and initial job sequence.
Step 2: A function was defined to evaluate the solution based on total flow time, tardiness, and number of tardy

jobs.
Step 3: A function was defined to generate neighboring solutions by swapping, inserting jobs, or moving blocks

of jobs.
Step 4: As for implementation of the TS algorithm, the best solution and Tabu list were initialized. For a fixed

number of iterations, after generating neighbors, the best neighbor not in the Tabu list was evaluated and selected.
After updating the best solution if the neighbor improves the result, the selected neighbor was added to the Tabu list,
ensuring its size limit.

Step 5: The TS was executed using different methods (job swapping, block swapping, job insertion, block
insertion).

Step 6: The results were output after the completion of the search process.
3.2.2 TS results

The above programming gives the results of TS scheduling with four Tabu methods presented previously (job
swapping, block swapping, job insertion, and block insertion) for the 50 cases included in the input process. The
program then compares the performance of the TS scheduling outcomes to the initial solution (EDD), which was
chosen primarily because it outperformed the other scheduling rules.

The TS produced results for six performance criteria across all the simulated scenarios. Some methods outper-
formed others in the number of improved cases on some criteria, while others outperformed others. For one criterion,
the initial solution remained the one with the highest number of cases with the best solution. This means that the
solution did not improve on the Tabu.

4 Results and Discussion

JSSM was thoroughly simulated by creating 50 job determinants for 30 randomly chosen scenarios. Each work
had a processing time, customer value, and a due date assigned. A separate table was utilized to schedule the jobs
according to ranking rules. The rules were reviewed using the MCDM. The EDD scheduling rule proved to be the
most effective in all cases. This is due to the fact that EDD is usually beneficial for reducing delays, while four of the
six evaluation criteria are delay-related, with a combined weight of about 70% according to the binary evaluation
matrix. Using Tabu, the model represented four Tabu approaches in comparison to the initial solution. The outcomes
of each criterion improved. The values in Table 11 represent the number of cases, out of 30, in which method j has
the best result for criterion i. The table shows that the initial solution using EDD produces 30 better results in terms
of the maximum tardiness. It also outperforms Tabu methods in the number of cases that produce a better result in
the average tardiness and the average weight of tardy jobs criteria by 15 and 11 cases, respectively. However, it was
discovered that the job swapping method produces the highest score in terms of flow time by improving the solution
for 20 cases, while the total tardiness and the number of tardy jobs rank second.

Block swapping improves the solution and achieves acceptable results in the average tardiness by improving
the solution in nine cases, ranking second after the initial solution results, while the improvement in the solution is
regarded as minor in the remaining five criteria. The job insertion method exceeds all other methods in terms of total
tardiness and number of tardy jobs with 15 and 17 cases, respectively, and ranks second in terms of average weight

141



of tardy jobs with seven cases. The block insertion method showed its highest improvement in the average weight of
tardy jobs criterion with only four cases, ranking sixth overall.

Table 11. Comparison of the four methods with the initial solution

Solutions/
Performance

Total Flow
Time

Total
Tardiness

Number of
Tardy Jobs

Maximum
Tardiness

Average
Tardiness

Average Weight
of Tardy Jobs

Initial solution 0 0 0 30 15 11
Job swapping 20 14 8 0 3 6

Block swapping 5 0 3 0 9 2
Job insertion 4 15 17 0 1 7

Block insertion 1 1 2 0 2 4

5 Conclusions

In this study, hybrid MCDM methods based on AHP, weight assignment, and EDAS were created to evaluate the
eight scheduling rules used for JSSM and select the optimal rule. The TS model worked in four ways to improve
the solution and provided better solutions to the performance criteria. Tabu’s results and the initial solution were
compared to see how much the performance criteria were improved. The model provides flexibility in changing
the proposed performance criteria (flow time, total tardiness, number of tardy jobs, maximum tardiness, average
tardiness of tardy jobs, average weights of tardy jobs) and their weights based on the knowledge of experts to obtain
new rankings for the rules. It also allows modification to the values of the three parameters (processing time,
delivery time, job weight or importance) to generate additional case studies and thus varied results provide a better
understanding and accuracy for the simulation study.
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