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Abstract: Click fraud is a deceptive malicious strategy that relies on repetitive mimicking of human clicking on online
advertisements, without actual intention to complete a purchase. This fraud can result in significant financial loses
for both advertising companies and marketers, and at the same time destroying their public images. Nevertheless,
detection of these illegitimate clicks is very challenging as they closely resemble to authentic human engagement.
This study examines the utilization of artificial intelligence approaches to detect deceptive clicks, by identifying
subtle correlations between the timing of the clicks, taking into account their geographical or network sources and
linked application sources as indicators to separate legitimate from malicious activity. This study highlights the
application of recurrent neural networks (RNNs) for this task, keeping in mind that the process of selection and
tuning of the model’s hyperparameters plays a vital role in the performance. An adapted implementation of crayfish
optimization algorithm (COA) was consequently proposed in this paper, and used to optimize RNN models to
enhance their general performance. The developed framework was evaluated utilizing actual operational datasets
and yielded encouraging outcomes.

Keywords: Cybersecurity; Click fraud; Recurrent neural networks; Optimization; Hyperparameter tuning; Swarm
intelligence; COA

1 Introduction

Online advertising has revolutionized how businesses engage with consumers by providing targeted and quantifiable
promotional campaigns. Nevertheless, this digital approach has also given rise to advanced fraudulent activities,
including click frauds [1, 2]. Click fraud is a malicious practice based on artificially synthesized fraudulent clicks
aiming to affect advertising metrics and deplete advertising budgets. These fraudulent activities can be accomplished
by utilizing automated bots, orchestrated click farms or even by competitors deliberately targeting to exhaust a rival’s
resources. The consequences of these practices can be devastating: key performance indicators like conversion rates,
return on investment (ROI), and cost-per-click (CPC) are distorted, resulting in misinformed business strategies and
possible considerable financial losses [3, 4].

The detection of click frauds can be particularly challenging because of the dynamic and evolving nature of
fraudulent behavioral patterns. Traditional rule-based methods, which were utilized as a first line of defense through
static IP block-lists and heuristic-based anomaly detection, are easily breached by fraudsters who continue to enhance
and adapt their techniques to mimic genuine user behavioral patterns. In light of these obstacles, contemporary
detection techniques have included application of artificial intelligence and deep learning, offering the capability to
learn intricate patterns in immense volumes of data [5, 6].

In this study, a novel click frauds detection framework was proposed, relying on recurrent neural networks
(RNNs) [7]. These networks are designated to analyze temporal click data and effectively differentiate among
genuine and fraudulent actions by learning the underlying sequential patterns. To further improve the robustness and
accuracy of the model, an adapted variant of swarm intelligence metaheuristics, in particular COA [8] was integrated
into the suggested framework. This modified COA was tasked to automatically fine-tune the hyperparameters of the
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RNN, ensuring that the network adapts promptly to emerging fraudulent patterns while maintaining high detection
accuracy.

This research was consequently driven by three primary objectives:
• Development of a modified variant of COA algorithm, particularly devised to overcome the constraints of the

baseline method and tailored for the click frauds detection challenge.
• Development of an RNN-based framework able to capture the intricate sequential dependencies linked with

click frauds, consequently reducing false positives and enhancing the overall model reliability.
• Devised COA variant was integrated to this RNN-based security framework to perform hyperparameter

optimization, with a goal to secure optimal performance for the problem in hand.
The rest of this manuscript is structured as follows: Section 2 yields a review of related literature on cybersecurity

and click fraud detection. It also discusses hyperparameter optimization and the RNN architecture together with
its role in analyzing sequential click data. Section 3 describes the elementary COA algorithm, and proposes an
adapted version of this metaheuristics. Next, Section 4 outlines the experimental setup while Section 5 presents the
experimental results. Ultimately, Section 6 discusses the implications of the findings and delineates future research
directions.

2 Related Works

Click frauds detection has been a subject of active research over the years. Early approaches predominantly
relied on rule-based systems, making use of static IP block-lists, heuristics, and threshold-based anomaly detection
methods for identification of suspicious activities. Paper [9] explored the application of block-list driven firewall
implementations to counter large-scale fraudulent activities, while authors [10] investigated IP-based classification
mechanisms to filter out malicious traffic. Despite their initial success, these conventional approaches have several
inherent constraints. As fraudsters adopted more sophisticated and adaptive techniques, static rules quickly became
deprecated. More recent research published [11] have highlighted that these conventional methods frequently fail to
scale properly and adapt to the nuanced attacks employed by modern click fraudsters.

The recent advances of deep learning have provided an adaptive alternative to traditional approaches, with RNNs
emerging as particularly well-suited for processing sequential data. RNNs are capable of identifying temporal
dependencies and modeling dynamic behavior found inside data, making them a natural choice for clickstream data
analysis. Moreover, development of attention mechanisms has further refined the capabilities of RNNs by providing
the models with capability to focus on the most salient parts of the input sequence [12]. Complementary studies [13]
and [14] have demonstrated that deep learning structures can greatly improve the identification of subtle behavioral
patterns, consequently enhancing the overall performance of fraud detection systems.

However, the biggest obstacle in deployment of deep learning models in general is the optimization of hyperpar
ameters. The performance of these models is highly sensitive to the configuration of their hyperparameters, which
encompass learning rates, weight initialization schemes, and architecture-specific parameters. Manual tuning of
these hyperparameters is not practical, and deterministic methods are not feasible since this is widely regarded
as NP-hard problem. Metaheuristic approaches have emerged as a powerful solution to this problem. Among
these, nature-inspired algorithms like particle swarm optimization (PSO) [15] and genetic algorithm (GA) [16]
have been successfully applied to optimize model parameters. More recently, COA has shown promising results in
navigating high-dimensional parameter spaces effectively [8].along with several other contemporary methods like
red fox optimizer (RFO) [17], elk herd optimizer (EHO) [18] and salp swarm algorithm (SSA) [19].

The notable examples of successful hyperparapeters tuning by metaheuristics algorithms range over different
application domains. These algorithms were used in medicine [20, 21], smart power grids [22], software development
[23, 24], and sentiment analysis [25–27]. The field of cybersecurity also utilized this kind of approach, for intrusion
detection [28, 29], insider threat detection [30], phishing detection [31], Metaverse and IoT networks in general [32].

In this research, a modified variant of COA was integrated into RNN framework, with a goal to optimize RNNs
hyperparameters and enhance the accuracy and adaptability of click fraud detection systems.

2.1 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are a class of neural networks specifically designed for sequential data analysis.
Unlike traditional feedforward networks, RNNs incorporate feedback loops that allow information to persist, thereby
enabling the network to capture temporal dependencies. In many applications, such as natural language processing
and time-series forecasting, RNNs have demonstrated the ability to learn complex patterns that evolve over time.

In this formulation, the RNN is designed to process clickstream data by maintaining a hidden state that
encapsulates information from previous time steps. At each time step t, the RNN receives an input Xt and
updates its hidden state ht based on both the current input and the previous hidden state ht−1. This update is
performed using a nonlinear activation function, which in this case is the hyperbolic tangent function (tanh). The
update equation is given by:
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ht = tanh(WxhXt +Whhht−1 + bh) (1)

where, Wxh is the weight matrix associated with the input, Whh is the recurrent weight matrix for the hidden state,
and bh is a bias term. This recurrent formulation allows the network to “remember” previous inputs, which is crucial
for detecting patterns in click behavior that may span multiple time steps.

Once the hidden state is updated, the network generates an output Yt through a linear transformation of the hidden
state:

Yt = Whyht (2)

In this equation, Why is the weight matrix that maps the hidden state to the output space. The simplicity of
this architecture ensures that the RNN can be trained efficiently while still capturing the essential temporal features
present in the clickstream data. Although attention mechanisms have been introduced in many recent works to
further enhance performance, this papers focus in this section is on the fundamental RNN structure that forms the
basis of the detection model.

3 Methods

This section first discloses the baseline implementation of COA metaheuristics. Afterwards, it points out the
constraints of the original COA, and proposes an adapted variant that was later employed in the experiments which
were carried out.

3.1 COA

Hyperparameter tuning is critical for the performance of deep learning structures, however, the high dimensionality
of the parameter space and the dynamic nature of the problem domain often render traditional deterministics
approaches inefficient and error-prone. COA [8] offers a robust, nature-inspired solution to this problem by mimicking
the exploratory and social behaviors observed in crayfish.

Fundamental traits of metaheuristics algorithms encompass two primary stages: exploration and exploitation.
A bio-inspired algorithm modeled after a tiny freshwater creature crayfish is referred to as COA. This organism
is particularly attractive due to its intolerance of heat exceeding 30 degrees Celsius and its instinctive behavior for
locating and fighting over shelters. Its competitive tendency become more exposed during the exploitation stage,
as once a refuge is identified, that specific location may be claimed or found by another individual in the same
time. The crayfish exits the refuge or sanctuary once the ambient temperature falls back below the 30 degrees mark,
showcasing its adaptive response to environmental conditions.

While in exploration stage, the shelter is defined by Eq. (3).

Xshade =
XG +XL

2
, (3)

where, the XG depicts the optimal position over iterations, while the ideal position of the present collection of
individuals is XL. While the synthesized rand number is lower than 0.5, a crayfish enters the cave without fighting
over it as given by Eq. (4).

Xt+1
i,j = Xt

i,j + C2 × rand × (Xshade −Xt
i,j), (4)

where, the t signifies the ongoing iteration, t+ 1 depicts the following one, and C2 is computed with Eq. (5).

C2 = 2− t

T
, (5)

where, T represents the maximal count of rounds.
In case the rand number is over 0.5, the Eq. (6) is used to model the competition among individuals.

Xt+1
i,j = Xt

i,j −Xt
z,j +Xshade, (6)

where, z represents a random crayfish that is given by Eq. (7).

z = round(rand × (N − 1)) + 1. (7)

The feeding phase commences when temperature falls below threshold of 30 degrees Celsius. The feeding supply
is labeled by Xfood = XG, while the foraging behavior is outlined within Eq. (8).

X(13), t+1i,j = Xti,j +Xfood × p× (cos(2× π × rand)− sin(2× π × rand)). (8)
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In case the food supply is too big for the individual to eat it, it will break it into smaller pieces. The food size
limit can be modeled by Q ≤ C3+1

2 , while the remainder of this task is provided by Eq. (9).

Xfood = exp

(
−1

Q

)
×Xfood, (9)

where, the Q signifies the food size delineated with Eq. (10).

Q = C3× rand ×
(

fitnessi
fitnessfood

)
, (10)

in this equation, the C3 represents the biggest food supply with constant score 3, fitnessi depicts the i-th crayfish’s
fitness score while the fitnessfood represents its location.

In case food supply is not too large, crayfish begins consuming it as depicted with Eq. (11).

Xt+1
i,j = (Xt

i,j −Xfood)× p+ p× rand ×Xt
i,j . (11)

3.2 Modified COA Metaheuristics

Notwithstanding that COA is a novel algorithm that exhibited excellent performance in different domains, it still
has the potential for improvement. More precisely, both exploration and exploitation stages of the baseline COA are
the candidates for further improvement. Therefore, this study proposes an adaptive version of the algorithm that can
enhance both aspects of COA.

In the first half of the execution (first T/2 iterations), the target is to booster the exploration. The individual
having the poorest fitness score (the worst crayfish) is substituted by the fresh individual created as a hybrid between
a pair of random crayfish units, by applying uniform crossover procedure inherited from genetic algorithm GA [16].

During latter T/2 rounds, the target is drifted toward exploitation. In this stage, the weakest crayfish in population
is substituted by a hybrid between the most superior individual and a random crayfish, again by utilizing crossover
operation. This adapted variation of COA is labeled adaptive COA (ACOA), while its pseudo-code is outlined by
Algorithm 1.

Algorithm 1 ACOA metaheuristics pseudo-code
Produce starting population P of N random solutions
while (t < T ) do

for (every crayfish in P ) do
Utilize original COA search process

end for
Arrange individuals in P with respect to their fitness scores
if (t < T/2) then

Replace the poorest crayfish within P by a hybrid between a pair of arbitrary individuals, utilizing crossover mechanism.
else

Replace the poorest crayfish within P by a hybrid between the best crayfish and an arbitrary crayfish, utilizing crossover
mechanism.

end if
end while
return Crayfish with the best fitness score in P

Taking into account that this adaptation does not add any supplementary fitness function evaluations (FFE), that
is regarded as the most processing heavy operation during metaheuristics execution, the suggested ACOA complexity
is the same as the original COA with respect to FFEs.

4 Experimental Setup

This study employs dataset which is publicly available on Kaggle to evaluate introduced click fraud detection
framework. Since this dataset is extremely large in the original format (having more than 11GB of samples), it was
reduced to approximately 1% of original size to simplify and streamline the train and test tasks. Additionally, as the
baseline dataset is highly imbalanced, where just around 1% of samples are linked to the real click fraud activities,
models in this study were allocated with a balanced data consisting of 50% normal and 50% malicious samples to
execute training procedure. This was achieved by the majority class undersampling strategy. The resulting balanced
data was split into 70%/30% portions utilized for train and test activities for the observed models.

The performance of the introduced ACOA metaheuristic algorithm was evaluated by side by side comparisons
to a set of powerful modern optimizers, encompassing baseline COA [8], GA [16], particle swarm optimization
(PSO) [15], Harris hawks optimization (HHO) algorithm [33], whale optimization algorithm (WOA) [34], reptile
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search algorithm (RSA) [35] and sinh cosh algorithm (SCHO) [36]. Contending algorithms were developed
independently in Python, making use of default configurations of their control parameters as suggested by their
respective creators. Every evaluated algorithm was assigned 8 solutions in populace and 8 iterations to execute
optimization. Since metaheuristics algorithms inherit randomness factor from their stochastic nature, simulations
were run in 30 separate executions. All regarded optimizers were given the task to enhance the models’ performance
through hyperparameter optimization. Table 1 outlines the collection of adjusted RNN parameters along with their
search domains.

Table 1. RNN tuned parameters and their ranges.

Constraint Learning Rate Dropout Learning Rate Neurons within Layer Count of Layers
Min 0.0001 0.05 5 32 1
Max 0.0100 0.20 10 128 2

Inside the model optimization stage, Matthews correlation coefficient (MCC) [37] was employed as the target
optimization function for training the RNN architectures. The resulting structures were assessed utilizing a
conventional suite of classifier’s performance indicators across the conducted experiments [38]. This set of evaluation
criteria included accuracy, precision, recall and the f1-score, as formally specified in Eqs. (12)–(15). Classification
error rate was used as indicator through the simulations.

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 score =
2 · Precision ·Recall

Precision+Recall
(15)

5 Simulation Results

Table 2 outlines the outcomes for the objective function tuning experiments over 30 independent executions,
where the finest score in each class is denoted in bold text. The suggested ACOA exhibited superior performance,
by attaining the best outcomes for the best run, mean and median values of 0.571087, 0.568229 and 0.569089,
respectively. In this scenario, HHO obtained the finest score in the worst execution, while GA exhibited superior
stability of the outcomes across independent executions, having the smallest scores for standard deviation and
variance among the regarded optimizers.

Table 2. Fitness function scores for optimized RNN models

Method Best Worst Mean Median Std Var
RNN-ACOA 0.571087 0.564395 0.568229 0.569089 0.002519 6.35E-06
RNN-COA 0.567076 0.564786 0.566084 0.566671 0.001035 1.07E-06
RNN-GA 0.564996 0.562849 0.563754 0.563636 0.000814 6.62E-07
RNN-PSO 0.570810 0.563710 0.566789 0.565632 0.002591 6.72E-06
RNN-HHO 0.569627 0.565489 0.567465 0.566769 0.001681 2.83E-06
RNN-WOA 0.566591 0.562206 0.565235 0.565937 0.001562 2.44E-06
RNN-RSA 0.566549 0.561275 0.563912 0.564391 0.001896 3.59E-06

RNN-SCHO 0.565918 0.562831 0.564168 0.564241 0.001109 1.23E-06

Figure 1 showcases comparisons of the regarded optimizers’ stability across separate executions. Exhibited
violin diagram suggests that the suggested ACOA is not the most stable optimizer, as it is clearly surpassed by several
other metaheuristics including GA, original COA and SCHO. However, despite these other methods performed more
consistently, it did not help them secure the best overall score, which was attained by ACOA, suggesting their tendency
to get stuck in local optimums easier than proposed algorithm. On the same Figure 1, the convergence graphs of
the objective are also depicted, providing valuable information into the capabilities of regarded algorithms to handle
falling into local optimums, and successfully converge to better regions of the search realm. It is obvious that the
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suggested ACOA established the finest overall solution during the fourth iteration of the best run, outperforming
other regarded algorithms that were struggling to overcome local optimum pitfalls.

The working principle of the technique is shown in Figure 1.

Figure 1. Objective function distribution and convergence diagrams

Table 3 depicts the outcomes of the indicator function (classification error). In this metric, SCHO obtained
the finest overall outcome with error rate of 0.217883. Despite error rate was not established as the tuning target,
introduced ACOA also attained respectable outcome, having the best score of 0.218978. Additionally, Figure 2
outlines the box plots and convergence graphs of the error rate.

Table 3. Indicator function (error) scores for optimized RNN models

Method Best Worst Mean Median Std Var
RNN-ACOA 0.218978 0.219708 0.219051 0.218978 0.001092 1.19E-06
RNN-COA 0.220073 0.218978 0.218905 0.218978 0.000963 9.27E-07
RNN-GA 0.220438 0.220803 0.220511 0.220438 0.000273 7.46E-08
RNN-PSO 0.222628 0.220073 0.219270 0.218613 0.001978 3.91E-06
RNN-HHO 0.218613 0.218248 0.218613 0.218248 0.001199 1.44E-06
RNN-WOA 0.218248 0.223358 0.220073 0.218978 0.002165 4.69E-06
RNN-RSA 0.218613 0.221533 0.219635 0.218978 0.001068 1.14E-06

RNN-SCHO 0.217883 0.220438 0.219343 0.219708 0.000864 7.46E-07

Figure 2. Error function distribution and convergence diagrams

Table 4 provides insight into the extensive comparative evaluation of the metrics for the best produced RNN
models by every regarded optimizer. The introduced ACOA generated RNN structure that obtained excellent accuracy
of 0.781022, accompanied by good overall values of macro and weighted averages, and balanced per class precision,
recall and f1-score. It is also obvious that other optimizers also produced excellent RNN structures, with less than
1% differences in accuracy between the finest produced RNNs by each metaheuristics.

Figure 3 shows supplementary visualizations of the attained outcomes in the form of the best ACOA produced
RNN’s confusion matrix and ROC diagram. Finally, the hyperparameter selections for the best produced RNNs by
every regarded optimizer are summarized within Table 5, to facilitate possible future replications of these simulations
and support the consistency of the experimental outcomes. The configurations shown in Table 5 achieved the scores
presented in Table 4.
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Table 4. Best performing model detailed metric comparisons.

Method Metric Normal Click-fraud Accuracy Macro Avg Weighted Avg
RNN-ACOA precision 0.738095 0.840909 0.781022 0.789502 0.789877

recall 0.866176 0.697101 0.781022 0.781639 0.781022
f1-score 0.797023 0.762282 0.781022 0.779653 0.779526

RNN-COA precision 0.740929 0.832335 0.779927 0.786632 0.786966
recall 0.855882 0.705072 0.779927 0.780477 0.779927

f1-score 0.794268 0.763437 0.779927 0.778852 0.778740
RNN-GA precision 0.743871 0.826050 0.779562 0.784961 0.785261

recall 0.847794 0.712319 0.779562 0.780056 0.779562
f1-score 0.792440 0.764981 0.779562 0.778710 0.778610

RNN-PSO precision 0.723747 0.861842 0.777372 0.792795 0.793299
recall 0.891912 0.664493 0.777372 0.778202 0.777372

f1-score 0.799078 0.750409 0.777372 0.774743 0.774566
RNN-HHO precision 0.743131 0.832340 0.781387 0.787736 0.788061

recall 0.855147 0.708696 0.781387 0.781921 0.781387
f1-score 0.795214 0.765558 0.781387 0.780386 0.780277

RNN-WOA precision 0.754679 0.814309 0.781752 0.784494 0.784712
recall 0.830147 0.734058 0.781752 0.782103 0.781752

f1-score 0.790616 0.772104 0.781752 0.781360 0.781292
RNN-RSA precision 0.751820 0.817738 0.781387 0.784779 0.785020

recall 0.835294 0.728261 0.781387 0.781777 0.781387
f1-score 0.791362 0.770410 0.781387 0.780886 0.780810

RNN-SCHO precision 0.761480 0.805621 0.782117 0.783551 0.783712
recall 0.816912 0.747826 0.782117 0.782369 0.782117

f1-score 0.788223 0.775648 0.782117 0.781936 0.781890
support 1360 1380

Figure 3. Best model confusion matrix and ROC plot

Table 5. Parameter selection for best performing RNN models

Method Learning
Rate Dropout Training

Epochs
RNN

Layers
Layer 1
Neurons

Layer 2
Neurons

RNN-ACOA 1.00e-02 2.00e-01 10 2 93 55
RNN-COA 1.00e-02 5.00e-02 10 2 108 110
RNN-GA 9.10e-03 5.85e-02 8 2 32 71
RNN-PSO 1.00e-02 1.58e-01 6 2 73 117
RNN-HHO 8.09e-03 1.18e-01 9 2 35 96
RNN-WOA 1.00e-02 2.00e-01 10 2 128 83
RNN-RSA 9.26e-03 7.88e-02 10 2 64 65

RNN-SCHO 3.21e-03 1.98e-01 10 2 32 128

6 Conclusion

In the domain of digital advertisement business, click frauds persist as a critical obstacle, frequently resulting in
significant financial losses for advertisers and compromising the reputation of ad-serving companies. The crucial
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task of reliable separation of legitimate human interactions from fraudulent click activities requires implementation
of sophisticated detection frameworks. This research investigated the efficiency of AI-driven approaches, particularly
those utilizing RNN architectures, to identify anomalous click patterns that indicate malicious behavior. To
improve the predictive capabilities of RNN models, an adapted version of the COA algorithm was implemented
to optimize RNN hyperparameter configuration. This introduced framework was evaluated using real-world data
and demonstrated promising results, with the most effective models achieving accuracy rates of up to 78.2%.

Despite promising outcomes, this study was not without several constraints. The large volume of available
data imposed limits to the amount of data that could be feasibly employed for model training and testing activities.
Consequently, down-sampled dataset was used, that could have marginally affected overall performance results.
Additionally, the computational intensity linked to optimization tasks restricted both the population sizes and
iterations permitted to the applied optimization algorithms.

Future research will aim to address these constraints by exploring more scalable data handling strategies and
improving computational resources efficiency. Supplementary investigations will target broader applications of the
suggested ACOA and the integration of hybrid approaches to further advance the accuracy and reliability of click
frauds detection systems.
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