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Abstract: Accurate smoke detection in complex industrial environments, such as chemical plants, remains a
significant challenge due to the inherently low contrast, transparency, and weak texture features of smoke, which
often exhibits blurred boundaries and diverse spatial scales. To address these limitations, YOLOv8n-AM, an
enhanced lightweight detection framework belonging to the YOLO (You Only Look Once) series, was developed
by integrating advanced architectural components into the baseline YOLOv8n model. Specifically, the conventional
Spatial Pyramid Pooling-Fast (SPPF) module was replaced with an Attention-based Intra-scale Feature Interaction
(AIFI) Convolution Synergistic Feature Processing Module (SFPM), i.e., AIFC-SFPM, enabling more effective
semantic feature representation and an improvement in detection accuracy. In parallel, the original convolutional
module was optimized using a Multi-Scale Downsampling (MSDown) module, which reduces model redundancy and
computational overhead, increasing the detection speed. Experimental evaluations demonstrate that the YOLOv8n-
AM model achieves a 1.7% improvement in mean Average Precision (mAP), accompanied by a 9.1% reduction in
Giga Floating-point Operations Per Second (GFLOPs) and a 15.4% decrease in parameter count when compared to
the original YOLOv8n framework. These improvements collectively underscore the model’s suitability for real-time
deployment in resource-constrained industrial settings where rapid and reliable smoke detection is critical. The
proposed architecture thus provides a computationally efficient and high-precision solution for safety-critical visual
monitoring applications.
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1 Introduction

In the modern industrial field, especially in large chemical plant areas, rapid detection and monitoring of smoke
are crucial for ensuring safe production and preventing environmental pollution [1]. Chemical plants often involve the
production, transportation, and storage of hazardous substances. Once a leak or accident occurs, the spread of smoke
can pose a great threat to on-site workers and the surrounding environment. Therefore, developing efficient and
accurate smoke detection methods has become a research focus. However, due to the complexity of the environment
in the chemical plant area, the diversity of smoke forms, and the variability of meteorological conditions, traditional
smoke detection technology [2] faces problems such as insufficient perception, a high false detection rate, and a
slow response speed. With the continuous development of industrial automation and intelligence, smoke detection
technology, as a key means of environmental monitoring and safety protection, has gradually received widespread
attention. At present, research mainly focuses on two directions: traditional image processing-based detection
methods and intelligent detection methods based on deep learning.

In terms of traditional video smoke detection technology, Pundir et al. [3] studied methods for extracting smoke
features in different color spaces. In the Red, Green, and Blue (RGB) color space, the color features of smoke were
extracted and converted into the YCbCr color space to calculate brightness values (Y) and chromaticity values (Cb
and Cr). These features provide an effective basis for further smoke detection, especially under complex backgrounds
and variable lighting conditions, which can significantly improve detection accuracy. However, it lacks sensitivity
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to low contrast or transparent smoke and is susceptible to interference from complex backgrounds such as cloud
layers and vapors. Lin et al. [4] extracted suspicious areas in the foreground using Gaussian mixture models and
background subtraction, and established smoke color models in the RGB and Hue, Saturation, and Intensity (HSI)
color spaces. By combining contour features, a feature vector was formed and classified using Support Vector
Machine (SVM) [5] to accurately identify smoke areas. Although it can extract contour features, its robustness
to dynamic lighting changes is poor. Zhao et al. [6] classified smoke using the Cost-Sensitive Adaptive Boosting
(CS-Adaboost) algorithm by extracting its movement, heat, and color features. However, it is difficult to detect static
or slowly spreading smoke, and the computational complexity is high. Yuan et al. [7] proposed a smoke detection
method based on fuzzy logic, which reduces negative effects such as sky clouds and lighting changes by taking the
differences between RGB and HSI models as inputs. The use of the Extended Kalman filtering (EKF) to reshape the
input-output of fuzzy rules improves the flexibility of the detection method. But the anti-interference ability is weak.
Jia et al. [8] proposed a smoke pixel classification detection method based on saliency detection, which enhances
smoke color nonlinearly, measures saliency by combining enhancement maps and motion maps, and uses motion
energy and saliency maps for smoke detection. But its generalization ability is weak, making it difficult to adapt to
the changing smoke patterns and environmental disturbances in chemical plants.

In summary, in recent years, traditional smoke detection research based on feature extraction has been continuously
deepening and has achieved certain results. However, it can be observed that traditional methods have limitations.
On the one hand, due to the single feature extraction of smoke recognition classification and the fact that manually
set features such as color and texture cannot fully represent smoke, the false detection rate of smoke detection is
relatively high. On the other hand, it performs poorly in dynamic lighting, noise interference, or diverse data.

With the rise of deep learning technology, especially the application of the convolutional neural network (CNN),
smoke detection technology has been significantly improved. Deep learning can automatically learn and extract
deep-level features of images, reducing reliance on manually designed features and significantly improving the
model’s generalization ability and detection accuracy. In this type of research, the most representative ones are
object detection networks, such as YOLO series [9], Faster Region-based Convolutional Neural Network (Faster
R-CNN) [10], Single Shot MultiBox Detector (SSD) [11], etc., which have excellent real-time performance and
detection accuracy.

In terms of improving the application of the attention mechanism, Li et al. [12] proposed a Local Binary
Pattern Silhouette Coefficient Variable (LBPSCV) for industrial smoke segmentation, which uses the variation of the
silhouette coefficient as the weight to calculate the local binary pattern (LBP). The extracted texture features make it
easier to detect smoke. But the segmentation effect is not good for low contrast and transparent smoke. He et al. [13]
constructed a smoke dataset containing multiple positive and negative samples by combining online collection with
offline shooting. In terms of model design, a module was embedded that combines the spatial attention mechanism
and the channel attention mechanism into the second convolutional layer of Visual Geometry Group 16 (VGG16) to
enhance the model’s ability to detect smoke features and further improve the overall performance of the algorithm.
But the contribution of high- and low-layer features has not been distinguished, resulting in background noise
interference. Li et al. [14] introduced a lightweight framework for smoke video detection, which utilizes BFBlock
to enhance feature extraction and considers the influence of weather factors to improve the robustness and accuracy
of detection. Although lightweight design helps to improve detection speed, it sacrifices some detection accuracy
while pursuing speed.

In terms of module optimization and lightweight design, Khan et al. [15] proposed a CNN-based smoke
detection and segmentation framework aimed at effectively handling outdoor clear and hazy scenes. In this
framework, EfficientNet was used for smoke detection, ensuring efficient feature extraction and accuracy. Meanwhile,
DeepLabv3+ was applied to segment smoke areas to achieve optimal localization results. The proposal of this
method provides a new solution for smoke detection. Although high-precision segmentation was achieved, the
multi-scale feature fusion was not optimized, resulting in a high missed detection rate for small targets. Masoom
et al. [16] improved the algorithm’s ability to locate smoke by using smoke principal component analysis (PCA)
as a preprocessing module to remove redundant features. Although PCA helps reduce computational complexity,
the additional detection scale added may increase the computational cost of the improved network. Huo et al. [17]
proposed a single-scene smoke detection algorithm based on the depthwise separable convolution, which effectively
reduces model complexity. However, the depthwise separable convolution was performed in a two-dimensional
plane, making it difficult to fully utilize the feature information at the same spatial position between channels.

In the improved method based on object detection networks, Sun et al. [18] proposed an improved CNN
that achieves automatic feature extraction through optimization strategies in multi-convolutional kernels and batch
normalization processes without manual intervention. This improvement significantly optimizes the loss function,
thereby improving the smoke recognition rate and providing new ideas and methods for the development of smoke
detection technology. But the feature fusion strategy is single. Wang et al. [19] used YOLOv5m [20] as the base
model and improved the model’s ability to extract smoke features by adding a spatial channel attention mechanism
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to the module composed of the convolutional layer, the Batch Normalization (BN) layer, and the LeakyReLU
activation function in its backbone network. Although the feature extraction capability was improved, redundant
calculations were not reduced. Shao et al. [21] introduced a new method for small target fire and smoke detection
called YOLOv7scb, which enhances the model’s ability to effectively extract features from small targets. However,
the module is not lightweight, and the entire framework still requires a large amount of computing resources
during runtime. Chen et al. [22] proposed a lightweight forest fire detection model for unmanned aerial vehicle
applications based on the YOLOv7 model. The model adopts the GSConv convolution design and constructs
the GSELAN and GSSPPFCSPC modules, which significantly reduce the number of parameters in the model and
improve computational efficiency. In addition, the model introduces a coordinate attention mechanism, which further
enhances the ability to extract smoke features and effectively improves the detection performance of the model in
complex natural environments. Although the model is lightweight, high-level semantic representation has not been
optimized for smoke transparency. Deng et al. [23] proposed an integrated attention mechanism for aircraft hangar
fire detection based on the YOLOv8n framework. However, the module structure that is not lightweight is difficult
to deploy widely.

In recent years, deep learning technology has significantly promoted the development of smoke detection, with
its core advantage being the end-to-end feature learning achieved through CNNs, effectively breaking through
the limitations of traditional manual features. Despite these achievements, several persistent challenges remain
unresolved. On the one hand, it is difficult for existing methods to accurately detect small, localized smoke to large,
diffuse smoke. On the other hand, the complexity of network models can waste computational resources for simple
smoke recognition requirements.

This study proposes a new smoke detection model, YOLOv8n-AM, by combining AIFC-SFPM and the MSDown
module based on the above-mentioned previous studies.

2 YOLOv8n-AM

The development of the YOLOv8n-AM model was guided by the need to address two critical challenges in smoke
detection:

(a) Smoke usually manifests as low-contrast, transparent or semi-transparent areas with weak texture and edge
information, and it may appear at different scales, ranging from small local smoke to large diffuse smoke, making it
difficult to be accurately detected.

(b) The high computational complexity and resource consumption of detection models make it difficult to deploy
on low-power mobile terminals, which limits the widespread application of smoke detection technology. Therefore,
there is a higher demand for lightweight and real-time detection models.

In response to the above issues, this study mainly improves the YOLOv8n-based model and proposes a smoke
detection model, YOLOv8n-AM. Replacing the SPPF module of YOLOv8n with AIFC-SFPM significantly increases
the accuracy of model detection. By using the MSDown module to improve the Conv module, it greatly reduces
redundancy, lowers model complexity, and improves detection speed. The YOLOv8n-AM network architecture is
shown in Figure 1.

The working principle of the technique is shown in Figure 1.

2.1 YOLOv8 Object Detection Neural Network

The main structure of YOLOv8 [24] includes a backbone network, a neck network, and a head network. The
backbone network is responsible for extracting meaningful features from input images, capturing simple patterns
such as edges and textures in the image, and providing multi-scale feature representations at different levels, thereby
providing rich information for subsequent object detection. As a bridge between the backbone network and the head
network, the neck network mainly performs feature fusion operations, integrates different levels of feature information,
constructs feature pyramids to ensure that the network can detect objects of different sizes, and improves detection
accuracy by considering a wider range of scene context information, while reducing spatial resolution and resource
dimensions to accelerate computation speed. As the final part, the head network is responsible for generating the
final output of object detection, such as generating bounding boxes associated with objects that may exist in the
image and assigning a reliability score to each bounding box to represent the likelihood of object existence. At the
same time, objects in the bounding boxes are classified and sorted according to their categories.

YOLOv8 includes multiple versions, namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x.
The smallest version is YOLOv8n. Under the same dataset, the YOLOv8n model has the shortest training time,
smallest size, and real-time efficiency. YOLOv8n was improved in this study by expanding the dataset through data
augmentation during the input stage.

242



Figure 1. YOLOV8n-AM network framework

2.2 AIFC-SFPM

AIFC-SFPM combines the single-scale Transformer (AIFI) and convolution operation (Conv) to achieve collaborative
processing of high-level semantic features and local detail features.

Due to the fact that smoke typically appears as low-contrast, transparent or semi-transparent areas, its texture and
edge information are weak and susceptible to background noise interference. However, high-level features contain
richer semantic information, which can more effectively represent the overall shape and semantic features of smoke.
The AIFI module is a key technology aimed at optimizing the semantic richness and computational efficiency of
high-level feature representations. AIFI focuses on the internal interaction of high-level feature maps, effectively
balancing the detection performance and inference speed of the model by eliminating redundant calculations of
multi-scale features. AIFI only processes high-level features at specific scales (such as S5), reducing unnecessary
computational complexity. The AIFI module enhances its modeling ability for global semantics through single-scale
interaction with high-level feature S5, making it suitable for capturing features of diffuse smoke. In addition, in
smoke detection, low-level features such as edges and textures may be affected by background noise such as ground
textures or tree contours.
2.2.1 Single-scale interaction strategy

The main interaction strategy of AIFI is to focus on the highest-level feature Ss and apply the Transformer [25]
self-attention mechanism to process it. In multi-scale features, low-level features such as S3 and S4 often contain
more detailed information such as edges and textures and are easily affected by background noise interference. The
high-level feature Ss has stronger semantic expression ability, and performing self-attention calculation on it can
avoid redundant calculation on low-level features and reduce the interference of irrelevant information.
2.2.2 Lightweight design

AIFI only uses one Transformer layer, which ensures effective information exchange for high-level features
without introducing too many parameters and computational complexity. Before performing the self-attention
computation, the features of input S5 were flattened and converted into a format suitable for Transformer Block
processing to obtain Q,K, and V .

Q = K = V = Flatten (S5) (1)

The result F5 calculated was restored based on the Transformer self-attention mechanism to the same spatial
shape as S5 for subsequent module processing.

F5 = Reshape(AIFI(Q,K, V )) (2)
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2.2.3 Two-dimensional sine-cosine positional embedding
In order to enable the model to perceive the position information of each element in the feature map, a two-

dimensional sine-cosine positional embedding was constructed using AIFI. Firstly, a function was used to generate
grid coordinates grid-w and grid-h in the width and height directions, respectively, and generate a two-dimensional
grid. Then the embedding dimension was calculated for each direction to generate the frequency parameter omega.
After flattening the grid coordinates, matrix multiplication was performed with frequency parameters to obtain out
w and out i. Finally, the sine and cosine values were concatenated to form a two-dimensional positional embedding.

Conv has high efficiency in extracting local features and can quickly capture information such as edges and
textures in images. AIFI, combined with Conv’s local perception capability, can flexibly process features at different
levels. Compared with SPPF, this combination may have higher computational efficiency in processing multi-scale
features, especially in smoke detection, which can provide improved accuracy. In addition, when processing high-
resolution images, it can avoid the problem of excessive computational resource consumption caused by SPPF’s
global pooling operation. The structure of AIFC-SFPM is shown in Figure 2.

Figure 2. AIFC-SFPM structure diagram

2.3 MS-Down Module

The MS-Down module is a downsampling module used in neural networks. This module is designed to achieve
multi-scale feature extraction and fusion while maintaining computational efficiency through reasonable selection of
the convolution kernel size, stride, and pooling operations. Compared to some complex downsampling methods, it
avoids excessive consumption of computational resources. In practical applications, especially for smoke detection
tasks that require real-time processing, this computational efficiency advantage can ensure that the model processes
a large number of video frames in a limited time, detects smoke conditions in a timely manner, and does not impose
an excessive burden on system resources. The main structure of the MS-Down module is shown in Figure 3.

Figure 3. Diagram of the MS-Down module structure

As shown in the above figure, the input tensor enters the average pooling layer AvgPool for an average pooling
operation, with a pooling kernel size of 2, stride of 1, and padding of 0. This operation mainly reduces the
size of the input feature map. Average pooling suppresses noise while maintaining spatial resolution, making
it suitable for preliminary feature extraction of low-contrast objects such as smoke. After average pooling, the
pooled feature map is split into two parts, x1 and x2, in the channel dimension. x 1 is input to the first depthwise
separable convolution module cv1 for processing, and the depthwise separable convolution can significantly reduce
computational complexity.

The other branch first performs a max pooling (MaxPool) operation, with a pooling kernel size of 3, a
stride of 2, and padding of 1. Max pooling preserves edge information through downsampling, balancing feature
compression and detail preservation. Then, it is processed through the convolutional layer of the second depthwise
separable convolution module cv2 to reduce computational complexity. Then x 1 and x 2 are input separately
into the channel attention module for processing. Finally, after concatenating along the channel dimension, the
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concatenated result is returned. This concatenation operation helps to integrate feature information processed by
different branches, enabling the network to comprehensively consider multiple feature representations, thus more
comprehensively describing the input data and improving the accuracy of object detection. Channel attention
enhances the complementarity of features between the two branches, significantly improving the multi-scale feature
fusion effect.

3 Experimental Design and Result Analysis
3.1 Experimental Environment

The experiment was conducted on a Windows 10 operating system equipped with an Intel(R) Core(TM) i9-
14900K processor and an NVIDIA GeForce RTX 4090 GPU, supported by 16 GB of system memory. The model
training was implemented using Python 3.9, with GPU acceleration enabled via CUDA 11.8, and the deep learning
tasks were performed on the PyTorch 2.3.1 framework. The training parameter settings are as follows: the input
image size is 640×640, the training period is 200, the initial learning rate is 0.01, and the batch processing volume
is 16. The experimental environment of the model in this study is shown in Table 1.

Table 1. Experimental environment configuration

Parameter Configuration
GPU NVIDIA GeForce RTX 4090

System environment Windows 10
CUDA version CUDA 11.8

Programming language version Python 3.9
Deep learning framework PyTorch 2.3.1

3.2 Dataset

A self-made smoke dataset, which contains smoke images and videos from different scenes and weather
conditions, was used as the experimental dataset. A total of 2,127 images and 135 videos were converted into
3,256 images through frame extraction. After data cleaning, 4,127 images were finally obtained, of which 3,700
images were used as the training set and 427 images as the testing set.

The smoke dataset contains 12 factory areas, including typical scenarios such as tank areas and reaction equipment
areas, eight forest areas covering different vegetation types such as coniferous forests and broad-leaved forests, and
five types of industrial plants. The types of smoke were mainly divided into two types: industrial smoke and fire
smoke, with most smoke images having a small amount of interference. The partial images in the dataset are shown
in Figure 4.

3.3 Model Evaluation Indicators

In order to comprehensively evaluate the performance of the improved model and effectively compare it with
existing detection methods, this study adopts multiple common evaluation metrics, covering multiple dimensions
such as accuracy, recall, detection speed, and computational complexity of single- and multi-class detection tasks.
Specifically, single-class precision (AP) and multi-class precision (MAP) were used to quantify the detection accuracy
of the model in different categories. In addition, the precision (P) and recall (R) of the model are important indicators
for evaluating its predictive ability, which were used to measure the proportions of True Positive (TP) predictions
in all predicted and actual positive samples, respectively, aiming to comprehensively evaluate the accuracy and
completeness of the model. TP refers to the cases where both ground truth and prediction are positive; False Positive
(FP) refers to the cases where the prediction is positive but ground truth is negative; and False Negative (FN) refers to
the cases where the prediction is negative but ground truth is positive. The application of these evaluation indicators
helps to reveal the comprehensive performance of the improved model in terms of accuracy, speed, and computational
resources, thereby providing a theoretical basis for its optimization and practical application.

P reflects the probability of the model correctly detecting the target:

P =
TP

TP + FP
(3)

R reflects the probability of the model detecting all targets:

R =
TP

TP + FN
(4)

Ap reflects the accuracy of the model on a single detection object:
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Figure 4. Samples of the dataset images

AP =

∫ 1

0

P (R)dR (5)

By adding up the values of all categories and taking their average, an overall measure was provided to evaluate
the detection performance of the model across all categories. A higher MAP value usually means that the model has
strong detection ability in various categories and can generalize well. The MAP formula is as follows:

MAP =

∑N
n=1 APN

N
(6)

where, N represents the target detection category, and APN represents the AP value of category N .

3.4 Ablation Experiment

In order to comprehensively evaluate the effectiveness and reliability of the improvement plan on the performance
of the YOLOv8 model, this study adopts a strategy of selectively eliminating the improvement module to explore
the specific roles played by each improvement in the optimization process. By systematically removing certain
improvements and comparing the performance differences of the model before and after the removal, the contribution
of each improvement to the overall detection performance can be quantified. This method not only helps to verify the
actual effectiveness of improvement schemes in enhancing model performance but also enables an in-depth analysis
of the specific roles of various optimization measures in enhancing model capabilities. Through this evaluation
process, the reliability of the improvement plan can be effectively judged, ensuring that the proposed optimization
measures have scientific and practical value and providing a theoretical basis for further improvement in the future.
The equipment parameters used in the experiment are completely consistent, and the experimental results are shown
in Table 2.

The study verified the contribution mechanism of each improved module to the model performance through
modular ablation experiments. The experimental results in Table 2 show that AIFC-SFPM has built global semantic
modeling capability on high-level features S5 by introducing the Transformer selfattention mechanism. This module
enables mAP@0.5 to have an increase of 1.0%, which is mainly attributed to the effective capture of smoke
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Table 2. Comparison of the ablation experimental performance

Models AIFC-SFPM MSDown P/% R/% mAP/% Parameters GFLOPs
Yolov8n × × 74.7 61.3 72.5 3151888 8.7

Yolov8-A √ × 75.2 65.6 73.5 3079456 8.6
Yolov8n-M × √ 76.8 66.3 73.9 2739232 8.1

Yolov8n-AM √ √ 80.5 62.9 74.2 2666784 7.9

diffusion characteristics. In addition, the single-scale interaction strategy of the AIFI module reduces computational
redundancy by 2.3%, verifying its balanced design between semantic enhancement and computational efficiency.

The MSDown module achieves lightweight optimization while maintaining feature diversity through a multi-
branch downsampling architecture. This module uses the depthwise separable convolution to reduce GFLOPs by
6.8%, and its multi-scale feature fusion strategy effectively preserves the edge details of low-contrast smoke. The
feature map processed by MSDown shows a 14.7% improvement in the gradient amplitude index, confirming its
enhancement effect on weak texture features.

Yolov8n-AM achieves a synergistic optimization of semantic enhancement and computational efficiency through
the cascade design of AIFC-SFPM and MSDown. The combination of the two modules reduces the total parameter
count by 15.4% and GFLOPs by 9.1%.

As shown in Figure 5, the precision, recall, and mAP curves of YOLOv8n-AM tend to stabilize after 100 epochs,
with smaller fluctuations than YOLOv8n, YOLOv8-A, and other models, indicating better training stability and a
more balanced parameter optimization process. The sharp fluctuations in the precision curve in the early stages
reflect the model’s insufficient ability to distinguish difficult samples such as occluded targets, which can lead to
false or missed detections in the early-stage training. Overall, YOLOv8n-AM outperforms the comparison models
in terms of reliability due to its more stable training curves, but its performance bottleneck is also evident, i.e., the
detection ability for extreme scenarios such as highly overlapping targets needs to be further improved.

Figure 5. Comparison of different indicators

3.5 Comparative Experiment

To further validate the effectiveness and generalization ability of the Yolov8n-AM model, the dataset was kept
unchanged and compared with multiple advanced object detection models. The results are shown in Table 3.

The YOLOv8n-AM model performs the best in smoke detection tasks, ranking first with an mAP of 74.2%, while
maintaining minimal parameter and computational complexity, significantly outperforming traditional models such
as YOLOv5n, YOLOv7, RT-DETR-r18 and surpassing YOLOv10n with similar parameter quantities. Compared to
the pure Transformer architecture Swin Transformer-T and the lightweight model EfficientDet-D0, YOLOv8n-AM
achieves breakthroughs in both accuracy and efficiency. Its advantages stem from the AIFC-SFPM’s enhancement
of high-level semantic features and the MSDown module’s multi-scale lightweight design, making it suitable for
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Table 3. Comparison of the ablation experimental performance

Models Parameters GFLOPs P/% R/% mAP/%
RT-DETR-r18 19873044 56.9 78.8 63.1 71.5

Yolov5n 1765270 4.2 75.2 69.3 69
Yolov7 37196556 105.1 77.2 68.7 72.6

Yolov8n 3151888 8.7 76.8 92 72.5
Yolov10n 2694806 8.2 82 63.1 73.5

Swin Transformer-T 2850983 145 78.2 59.7 72.5
EfficientDet-D0 498359 12 77.6 63.8 71.2

Yolov8n-AM 2666784 7.9 80.5 62.9 74.2

industrial safety monitoring scenarios. However, further optimization of recall is needed to reduce missed detections.

3.6 Test Results

Figure 6 and Figure 7show the detection results of smoke in the factory area under different scenarios using
the original YOLOv8n network and the improved YOLOv8n-AM network, respectively. These images clearly
indicate that YOLOv8n-AM surpasses the original model in detection accuracy. Specifically, it can be seen from the
first column of images that in different outdoor lighting environments, YOLOv8n-AM performs better in detection
accuracy and has a better effect on actual smoke localization. In the second column of images, the improved model
accurately identifies smoke areas in complex indoor environments, while the original model fails to accurately
identify targets. In the third column of images, at the junction of smoke and clouds, the original model fails to
accurately identify the target, while the YOLOv8n-AM model performs better. Overall, YOLOv8n-AM demonstrates
excellent detection capabilities for smoke targets in complex environments, making it suitable for detection tasks in
monitoring chemical scenes.

Figure 6. Detection results of the YOLOv8n model

Figure 7. Detection results of the YOLOv8n-AM model

4 Conclusion

YOLOv8n-AM, an improved smoke detection model, was proposed in this study by integrating AIFC-SFPM
and MSDown. The experimental results demonstrate that replacing the traditional SPPF module with AIFC-
SFPM enhances the semantic representation capability and accuracy of smoke detection, while the MSDown
module effectively reduces redundancy and computational complexity, significantly accelerating the detection speed.
Specifically, compared to the original YOLOv8n model, YOLOv8n-AM achieves a 1.7% increase in accuracy, a 9.1%
reduction in GFLOPs, and a 15.4% decrease in parameter count, demonstrating a clear balance between performance
and model efficiency.

However, certain limitations remain in this study, which need to be addressed in future research. The detection
performance of YOLOv8n-AM under extreme environmental conditions, such as severe illumination variations,
heavy occlusions, or highly complex background scenarios, requires further investigation. Additionally, detecting
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smaller or partially occluded smoke targets still presents challenges. Future research should explore advanced
background suppression techniques and integrate context-aware mechanisms to further enhance detection robustness
under complex conditions. It is also essential to validate the model’s effectiveness across a broader range of industrial
environments and on low-power, edge-computing platforms.

In conclusion, the proposed YOLOv8n-AM model demonstrates significant potential for real-time smoke
detection tasks, particularly in safety monitoring of chemical plants, contributing to enhanced industrial safety
and environmental protection.
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