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Abstract: In critical supply chains like pharmaceuticals, balancing operational cost with service resilience is
paramount. While complex adaptive models dominate academic literature on inventory routing, the potential of
simpler, managerially intuitive heuristics remains underexplored, creating a gap between theory and practice. This
study investigates whether a rigorously optimized, simple time-based heuristic can achieve superior performance
and robustness compared to a state-of-the-art, multi-parameter adaptive policy within a stochastic Vendor-Managed
Inventory (VMI) system. We formalize a time-to-stockout rule into a novel, single-parameter metaheuristic called
the Optimized Urgency Threshold (OUT) policy. Using a simulation-optimization framework powered by a Genetic
Algorithm (GA), we benchmarked the OUT policy against a non-optimized heuristic and a complex Dynamic Inertial
policy across five problem instances subjected to environmental shocks. The OUT policy demonstrated superior
performance, achieving the lowest average total cost (EUR 58,595.46) and reducing stockouts by 66.3% compared
to the Dynamic Inertial model. Sensitivity analysis confirmed the OUT policy’s balanced robustness to demand and
capacity shocks, whereas the complex policy exhibited service failures under demand surges. Our findings show
that a parsimonious, optimized heuristic can outperform a complex adaptive model, challenging the assumption that
parametric complexity is necessary for high performance in stochastic IRPs. The OUT policy provides a transparent,
effective, and easily implementable solution for enhancing supply chain resilience and mitigating stockouts.

Keywords: Vendor-managed inventory; Inventory routing problem; Simulation optimization; Metaheuristic; Supply
chain resilience; Pharmaceutical logistics

1 Introduction

The fundamental challenge in modern supply chain management lies in navigating the trade-off between economic
efficiency and service level resilience, a dichotomy that is particularly acute in pharmaceutical distribution where
stockouts can directly impact patient outcomes [1, 2]. The COVID-19 pandemic exposed systemic vulnerabilities,
with global medicine shortages becoming a critical public health issue, prompting calls from organizations like the
WHO for more resilient and responsive supply chains [3]. In this context, collaborative strategies such as Vendor-
Managed Inventory (VMI) have become essential for mitigating the bullwhip effect and enhancing operational
efficiency by centralizing replenishment decisions [4—6]. This centralization is operationalized through the Inventory
Routing Problem (IRP), a complex optimization task that seeks to minimize total system costs while ensuring product
availability. In the pharmaceutical sector, the imperative to prevent stockouts elevates the service level from a simple
performance metric to a critical component of public health infrastructure [7, 8].

To address the stochastic IRP, academic literature has primarily developed along two distinct streams: the
development of sophisticated, multi-parameter adaptive policies, and the application of simpler, more intuitive
heuristics. This bifurcation forms the basis of the comparison in this study. The first stream focuses on creating
complex, state-dependent policies that dynamically adjust their parameters based on real-time system information,
such as the inertial models that use smoothed signals to filter demand noise and have been shown to be effective
in various dynamic control contexts [9-11]. The second stream employs practical, often time-based heuristics,
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such as rules based on a pharmacy’s time-to-stockout, which are computationally simpler and more managerially
intuitive [12].

Despite the richness of these two streams, neither fully addresses the practical trade-offs faced in pharmaceutical
VMI systems. This reflects the prevailing paradigm in advanced IRP policy design: multi-parameter adaptive models
optimized via computationally intensive methods. However, this very complexity can hinder implementation and
interpretation in practice, making their logic opaque to practitioners, a significant barrier to real-world adoption [13—
15]. Conversely, simple time-based heuristics are rarely subjected to rigorous optimization in the academic literature;
their core parameters are often set based on arbitrary rules, which leaves their true potential unknown and prevents
a fair comparison against optimized benchmarks [16]. This leads to a critical and unresolved question in the field.

It remains an open question whether the added complexity of state-of-the-art adaptive models is truly necessary,
or if a simple-yet-optimized heuristic achieves superior performance. This study addresses this gap by asking: what
is the true potential of a time-based policy if it were subjected to the same rigorous optimization as its more complex
counterparts? This study aims to answer precisely this question by formalizing and rigorously optimizing a simple
time-based heuristic. We introduced the Optimized Urgency Threshold (OUT) policy, a novel metaheuristic that
transforms a simple time-based rule into a fully optimizable model with a single, powerful parameter. Through a
comprehensive simulation-optimization study, we benchmark the OUT policy against both a non-optimized heuristic
and a highly complex Dynamic Inertial policy. We demonstrate that this simple-yet-optimized model achieves a
superior balance of cost and service level, challenging the prevailing assumption that parametric complexity is a
prerequisite for high performance in stochastic VMI systems.

2 Literature Review

Research on the IRP aims to integrate two of the most critical functions in logistics management: inventory
control and vehicle routing. The field is extensive, and comprehensive reviews by Mosca et al. [17] and, more
recently,various researchers provide a thorough classification of IRP variants and solution methodologies [18-20].
In this section, we first review the evolution of replenishment policies within the IRP literature, highlighting the
established strengths and weaknesses of the dominant adaptive control paradigm. We then critically examine the
role of simpler, time-based heuristics, identifying a significant gap between their practical relevance and their formal
optimization in academic research. Finally, we establish simulation-optimization as the state-of-the-art methodology
for the fair and robust comparison of inventory policies, thereby positioning our contribution.

2.1 The State-of-the-Art in Adaptive Inventory Control

To overcome the limitations of rigid, static (s,S) policies in stochastic environments [21, 22], a significant stream
of research has focused on dynamic and adaptive policies. These models adjust their replenishment decisions based
on real-time system state information. The methodologies range from formal dynamic programming approaches
to sophisticated adaptive metaheuristics. For example, Johnn et al. [23] developed an adaptive large neighborhood
search (ALNS) for the IRP that modifies its own search operators based on their past success, demonstrating the
principle of responsive adaptation. Building on this, recent studies have extended ALNS-based frameworks to
address increasingly realistic and uncertain environments. One approach integrates forecasting models with ALNS
to anticipate demand and minimize container overflow and route failures, showing superior robustness when tested on
real-world data [24]. Another line of work combines chance-constrained programming with adaptive local and large
neighborhood search heuristics to generate cyclic delivery schedules under non-stationary and correlated demand,
achieving near-optimal results for large-scale IRP instances [25]. Similarly, Alarcon Ortega et al. [10] modeled
intra-day stochastic demand using a finite-horizon dynamic program with iterative lookahead and ALNS, reporting
more than 20% cost savings compared to traditional per-period planning. Extending this direction, Cuellar-Usaquén
et al. [11] proposed a stochastic lookahead approach integrating purchasing, inventory, and routing decisions under
uncertain demand, prices, and supply volumes, employing adaptive learning to approximate routing costs efficiently.

Collectively, these contributions underscore the growing reliance on adaptive metaheuristics, stochastic program-
ming, and dynamic policies to capture real-world uncertainty in inventory routing. Parallel to this, exploratory
work with Deep Reinforcement Learning (DRL) has emerged, where agents learn replenishment strategies directly
from simulated environments [23]. While DRL holds promise, adaptive heuristics such as ALNS remain more
interpretable, computationally efficient, and closer to industrial practice, making them appropriate benchmarks for
simulation-based evaluations.

A notable feature of adaptive policies is their ability to respond to system-wide conditions, such as aggregate
inventory levels or backorders across the network. The Dynamic Inertial policy, employed in this study as a
benchmark, exemplifies this principle by using an exponentially smoothed signal of system-wide demand urgency to
balance responsiveness with robustness to daily fluctuations. This reflects the prevailing paradigm in advanced
IRP policy design: multi-parameter adaptive models optimized via computationally intensive methods. For
instance,integrating VMI with a Consignment Stock policy under a Robust Stochastic Optimization framework
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with CVaR, achieving a 14.8% cost reduction in a healthcare supply chain while highlighting the parametric
complexity of such adaptive approaches [26] . However, despite their effectiveness, these models face criticism
for their parametric complexity, which can hinder implementation and interpretation in practice while demanding
significant computational investment [27].

2.2 The Role of Heuristics and Time-Based Metrics in Logistics

Parallel to the development of complex adaptive models, a more practical stream of research and industry
application has focused on simpler, more intuitive heuristics. A common and managerially resonant metric is the
concept of days of supply or its inverse, the time-to-stockout (TTS). This metric translates a raw inventory quantity
into a more actionable piece of information: time. While foundational IRP literature focused primarily on inventory
levels [28], the use of time-based metrics is implicit in many practical systems and has been recognized as a key
performance indicator in healthcare contexts [29]. This is because TTS serves as a powerful, forward-looking
indicator of risk. Indeed, recent work has focused on developing advance stockout risk estimation systems for
inventory control, where the time until the next stockout is a primary output [30].

However, in the academic literature, replenishment rules based on these metrics are often presented as fixed,
non-optimized heuristics. For example, a system might be designed to simply serve the N most urgent customers
each day based on their TTS, a logic we implement in our VMI Urgency Heuristic benchmark. This concept of
using an urgency or criticality function to create a real-time replenishment sequence has proven highly effective in
practice. For instance, Cao et al. [31] developed a priority-based policy for central fill pharmacy systems where a
“criticality function,” incorporating inventory levels and consumption rates (the core components of TTS), was able
to prevent over 90% of inventory shortages. Similarly, studies on emergency shipments often trigger replenishment
when the inventory level falls below a certain threshold within a review period, which is conceptually a time-based
trigger [32].

While the logic of these heuristic and time-based rules is sound and service-oriented, their academic treatment
often leaves their core parameters (e.g., the number of customers to visit, the criticality threshold) to be set by arbitrary
means or simple rules. Their performance against rigorously optimized policies is therefore rarely evaluated on a
level playing field, as their full potential remains untapped. Mesquita and Tomotani [33] made progress in this regard,
but broader comparative analyses remain scarce. For instance, Askin and Xia [34] developed hybrid heuristics for
the infinite-horizon IRP, primarily focusing on routing tours and visit frequencies, yet without directly contrasting
such heuristics with adaptive, multi-parameter policies. Our study addresses this gap by rigorously benchmarking an
optimized time-based heuristic (the OUT policy) against a state-of-the-art adaptive model (Dynamic Inertial policy)
under identical stochastic conditions. This direct comparison demonstrates that optimized simplicity can outperform
parametric complexity, providing a novel contribution to IRP policy design.

2.3 Simulation-Optimization for Fair Policy Comparison

Given the NP-hard nature of the IRP and the added complexity of stochastic demand, analytical solutions are
intractable for problems of realistic scale [35, 36]. Consequently, simulation-optimization has become the gold
standard for designing and evaluating inventory policies [37, 38], due to its inherent capability to model complex
stochastic systems and evaluate policy performance under uncertainty. Within this framework, metaheuristics like
Genetic Algorithms (GAs) are widely and successfully used for this purpose [39, 40]. The GA is particularly
favored because they do not require gradient information, which is often unavailable in complex simulations, and
can effectively explore large, non-convex solution spaces.

Crucially, this approach allows for a fair and robust comparison of different policy architectures. As argued
by Sorensen [41], for a comparison to be scientifically valid, each heuristic or policy must be tuned to its highest
potential. Simply comparing a new, highly tuned algorithm to a poorly parameterized benchmark is a common
methodological flaw. By using a GA to optimize the parameters for all tunable policies under investigation, both the
complex adaptive model and our proposed simple time-based model—and benchmarking these optimized policies
against the fixed, non-optimized heuristic (which serves as a practical baseline), we adhere to this rigorous standard.

2.4 Research Gap and Contribution

The literature reveals a clear and compelling research gap at the intersection of these themes. While the
field has produced increasingly sophisticated adaptive policies, their high parametric complexity often creates a
barrier to practical implementation [27]. In parallel, simple and intuitive time-based heuristics have demonstrated
strong performance in practical settings [31], but are seldom subjected to rigorous, comparative optimization within
academic literature. Their true potential relative to state-of-the-art adaptive models therefore remains an open and
critical question.

This study directly addresses this gap. While some studies have explored heuristic tuning or comparison of
inventory policies (e.g., [16, 42]) or VMI systems (e.g., [43, 44]), none, to our knowledge, have simultaneously
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achieved the formalization of a time-based heuristic into a single-parameter, rigorously optimized policy (OUT
policy) and directly benchmarked its performance against a state-of-the-art multi-parameter adaptive model under
identical, stochastic conditions to challenge the complexity paradigm, which is the core of this paper’s novelty. This
unique combination of formalization, parsimony, and direct comparative benchmarking constitutes a significant leap
beyond prior fragmented research. Table 1 summarizes key studies that highlight this gap and situate our research
within the broader literature.

Table 1. Comparative summary of relevant literature (2018-2024) and this study’s contribution

Author(s) and Year Core Focus Methodology Contribution to This Study’s Foundation

Establishes the broad academic context and
[36] IRP state-of-the-art Literature synthesis importance of advanced IRP models,
including dynamic and stochastic variants.

. . Stochastic Represents the state-of-the-art in complex,
Stochastic IRP with . . .
[10] intra-day demand lookahead & adaptive solution methods that the dynamic
Y ALNS inertial policy embodies.

Provides empirical evidence for the
Pharmacy Simulation & real-world effectiveness of urgency-based
replenishment priority heuristic (time-sensitive) heuristics in a
pharmaceutical setting.

[31]

Validates the use of GAs as a
Multi-product IRP  Modified adaptive state-of-the-art method for optimizing
solution GA policies in complex IRPs, justifying our
methodological choice.

[14]

VMI for resilient Robust stochastic nghhghts the growing 1mp0rt.ancle of
[45] service level and robustness, motivating the

supply chains optimization . ..
PPY P need for better-performing policies.
L Introduces the first formalization of a
Optimizing . . . .. .
. . Simulation- time-based heuristic as an optimizable
This study time-based S . . .
heuristics optimization (GA) policy and proves its superiority over

complex adaptive models.

3 Modeling Framework and Policy Formulation

This section details the formal mathematical model of the multi-period IRP that underpins our simulation. It
then provides a rigorous formulation of the three distinct policy architectures under investigation: the state-of-the-art
adaptive benchmark, a practical time-based heuristic, and our novel, optimized time-based policy. Finally, it outlines
the simulation-optimization framework used to determine the optimal parameters for each policy.

3.1 General Problem Formulation

We model a multi-period stochastic IRP defined over a discrete time horizon T' = {1,..., H}. A central depot
(node 0) serves a set of N pharmacies, as shown in Table 2.

Objective function:

The objective is to minimize the expected total system cost over the planning horizon, which combines
transportation, inventory holding, and stockout costs:

H
Minimize E Z(Clransporl,t + Cholding,t + Cstockout,t) (1)
t=1
where, the daily costs are defined as:
Holding cost:
N
Chotdingt = Ch X »_ Tir, where I; > 0 @
i=1
Transportation cost:
Clranspor,t = Ct x VRP_Cost(V%, dist, Q) 3)
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Stockout cost:

N
C(stockoul,t =C, X Zmax(07 D — Ii,t—l) “)

i=1

The set of pharmacies visited on day ¢, V;, is determined by the specific replenishment policy in effect, where

Table 2. Notation list

Notation Description
Indices and sets
N The set of all pharmacies.
T The set of all time periods in the planning horizon.
i, 7 Index for transportation nodes (pharmacies), where ¢, j € N.
t Index for time periods (days), where t € 7.
State variables
I; Inventory level of pharmacy ¢ at the end of day ¢.
Bt Backorder level (unmet demand) for pharmacy ¢ at the end of day ¢.

Stochastic variable
D Stochastic demand at pharmacy 4 on day ¢, drawn from N (u;, o7).

General system parameters

i Mean daily demand for pharmacy .
distij Distance between locations ¢ and j.
Q Vehicle capacity (units).
Cap; Maximum storage capacity at pharmacy <.
Policy-specific parameters
B Sensitivity parameter for Dynamic Inertial Policy (0 < 5 < 1).
o Smoothing factor for EWMA Dynamic Inertial Policy (0 < a < 1).
Cost parameters
Cholding,t Unit holding cost [€/unit/day].
Cstockout,t Unit stockout penalty [€/unit].
Clransport,t Transportation cost per kilometer [€/km].

Decision variable
Qit Binary replenishment decision for pharmacy ¢ on day ¢.

3.2 Policy Architectures

The core of this study lies in the comparison of three distinct policy architectures that determine the daily
replenishment decisions (a;;). Each policy’s logic is designed to address the challenge of replenishment from a
different conceptual standpoint.

3.2.1 The dynamic inertial policy (state-of-the-art adaptive benchmark)

This policy represents a sophisticated, multi-parameter adaptive model. It adjusts the base reorder point (s?3)
using a smooth signal of system-wide stress. The parameter vector to be optimized is composed of IV base reorder
points (s2*°) plus 3 and v, totaling N + 2 parameters (52 parameters for N = 50 pharmacies). These N base reorder
points are optimized individually within the GA framework. First, the Demand-Weighted Urgency Index (DWUI) is

calculated: N s
Ut gw = Doica Mi - I(Ti—1 < 83™°) (6)
’ Zj:l K

This signal is then smoothed using an EWMA:
Utsmoolh = - Ut,dw + (1 _ a) . tsglgolh (7)
This smooth signal modulates a dynamic reorder point, s;;, for each pharmacy:

Sip = Sl?ase % (1 + 5 . Utsmooth) (8)

?
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The final replenishment decision is then made by comparing the current inventory to this daily dynamic threshold.
The parameter vector to be optimized is:

b. b b.
Oinertial = [Slase’ 52a567 ceey Snase7 B, Oé] 9

The complete operational logic of this policy is visually represented in Figure 1.

Stage 1 ] f Stage 2 ) f Stage 3 ]
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. h v, b r, " .

Figure 1. Operational framework of the dynamic inertial policy

The process begins with the collection of daily inventory and demand data from the pharmacy network (stage
1). This data is aggregated to compute the system-wide DWUI, represented as a dynamic gauge (stage 2). This raw
urgency signal, which can be volatile, is then passed through an Exponentially EWMA filter to produce a stable,
smoothed signal (stage 3). This smoothed signal is used to calculate the final, adaptive replenishment trigger for the
current day, which is then routed efficiently by the VRP solver.

3.2.2 The VMI urgency heuristic (non-optimized heuristic benchmark)

This policy uses a simple, time-based heuristic common in practice. It does not use reorder points. Instead, it
calculates the TTS for each pharmacy:

Hi
The continuous, priority-driven replenishment cycle of this policy is visualized in Figure 2. Each day, all
pharmacies in the network are ranked by their TTS, creating a dynamic service queue that prioritizes the most urgent
locations. The central depot’s daily logistics capacity, represented by a pre-determined fixed parameter p = 20% of
the total pharmacies, chosen to represent a typical operational capacity limit, is allocated to the most urgent locations.
This policy has no optimizable parameters.

Ts,i,t = (10)

3.2.3 The OUT policy (proposed novel policy)

Our novel policy formalizes the time-based heuristic into a metaheuristic, transforming it into a parsimonious,
optimizable model by encapsulating complex decision-making into a single, optimized parameter, the Urgency
Threshold (Uyy,). This integration of an optimization problem (finding the optimal U, ) within a heuristic framework
for replenishment decisions is central to its matheuristic character. It uses the same TTS calculation from Eq.(10)
but replaces the arbitrary ranking rule with the GA-optimized threshold, (Uyy,).

The replenishment decision rule is:

ait = I(Ts 50 < Upn) (11)

The parameter vector to be optimized contains only this single variable:

bour = (U] (12)
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Figure 2. Conceptual framework of the VMI urgency heuristic

Its operational logic, visualized in Figure 3, makes it highly interpretable and actionable precisely because of
its parsimonious, single-parameter design and intuitive time-based rule. Optimized via a GA, the threshold ensures
both technical rigor and managerial relevance, aligning closely with decision-makers’ intuitive models.

(B .

Non-urgent pharmacy
(TTS = Uy,)

[;E Urgent pharmacy

(TTS < Ugy) @

" b = (‘;m /!

Optimized route [m : =N A

(VRP solution) g {m‘\

- -ﬂ’
n I'.‘; Depot

Figure 3. Operational visualization of the OUT policy

For all policies, when a visit s triggered (a,;; = 1), the replenishment quantity g;; is determined by an Order-Up-To
logic, refilling the pharmacy to its maximum capacity, C'ap;.

3.3 Simulation-Optimization Framework
The optimal parameter vectors 6 for the Dynamic Inertial and OUT policies are found by solving the following
optimization problem:
E[Ciora1(0)] minimizey (13)

where, Ciora () is the total cost resulting from operating the system with a given parameter vector 6.

Due to the stochastic and complex nature of the problem, this is solved using a simulation-optimization approach.
A GA is employed to search the parameter space, where the fitness of each candidate vector € is evaluated as the
average total cost over multiple simulation replications.
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4 Methodology
The experimental methodology is designed for rigor and reproducibility, following a structured, multi-stage

process as visualized in the Simulation Methodology Framework (Figure 4).
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Figure 4. Simulation methodology framework

4.1 Simulation Environment and Experimental Design

A discrete-time simulation model was developed in Python 3.9, leveraging the Pandas and NumPy libraries for
data management and numerical operations.
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Network Structure: The model simulates a VMI network consisting of a single central depot and N = 50
pharmacies. The study utilizes five distinct problem instances, each with a unique spatial configuration of pharmacies,
to ensure the findings are not specific to a single network topology.

Simulation Horizon: Each simulation run spans a time horizon of 7" = 30 days. This period is sufficiently long
to observe the dynamic effects of the replenishment policies and the impact of demand stochasticity.

Stochastic Demand: Daily demand, D;;, at each pharmacy is modeled as a stochastic variable, drawn from a
truncated Gaussian distribution with a unique mean (y;) and standard deviation (o;) for each pharmacy. To ensure
the robustness and generalizability of our findings, the entire set of experiments was conducted across 10 global
random seeds, each generating a unique, year-long sequence of daily demands.

Replications: To account for short-term stochastic variations, the fitness evaluation for each candidate solution
within the GA is based on the average performance across 5 distinct simulation replications, each using a different
internal random seed (num_replications = 5). Each internal random seed is deterministically derived from the
global seed by adding an incremental offset for each replication (e.g., global seed + replication index), ensuring
independence while maintaining a reproducible sequence per global seed.

The full experimental design thus consists of 10 global seeds x 5 instances x 3 policies, resulting in 150
independent optimization runs and a comprehensive dataset for analysis.

4.2 Vehicle Routing Heuristic

On each simulated day, the set of pharmacies selected for replenishment, V;, is passed to a VRP solver to
determine the delivery routes and calculate the transportation cost. Given the NP-hard nature of the VRP, we employ
a two-phase heuristic approach that is standard in IRP literature. To ensure full reproducibility, we explicitly detail
the heuristic specifications as implemented in our simulation code.

Route Construction: An initial set of routes is built using a Nearest Neighbor heuristic. This greedy algorithm
constructs routes iteratively by starting at the depot and sequentially adding the closest unvisited pharmacy that can
be serviced without exceeding the vehicle’s capacity (@). This process continues until no additional customers from
the daily visit list can be feasibly assigned, at which point the vehicle returns to the depot and a new route begins.

Route Improvement: The initial solution is refined using a Tabu Search metaheuristic that operates on a 2-opt
neighborhood, systematically exploring improvements by swapping pairs of edges within each constructed route.
To guide the search and prevent cycling, moves are stored in a tabu list with a fixed tenure of five iterations. An
aspiration criterion is implemented, allowing a tabu move to be selected if it yields a solution better than the
current best-known. The improvement process for each individual route terminates after 50 iterations, providing a
balance between solution quality and computational efficiency. These precise specifications ensure the clarity and
replicability of our VRP solution framework.

4.3 Policy Optimization via Genetic Algorithm

A GA was chosen to optimize complex, multi-parameter vectors 6 for Dynamic Inertial and OUT policies. The
GA is particularly well-suited for this task for several reasons:

Global Search: 1t is a global search metaheuristic, making it less prone to getting trapped in local optima
compared to simpler gradient-based methods.

Derivative-Free: It does not require gradient information, which is essential for simulation-based optimization
problems where the fitness landscape is often a “black box™.

Robustness: Its population-based approach allows it to explore a wide range of solutions, making it effective for
navigating the complex and non-convex search spaces typical of IRPs [14].

The GA was configured with the following parameters, determined through preliminary tuning experiments:

Population Size: 50 individuals.

Number of Generations: 40.

Selection: Tournament Selection (tournament size = 3).

Crossover: One-point crossover for (offspring inherits prefix from one parent and suffix from the other); for
scalar parameters (3, o) offspring take the arithmetic mean of parents.

Elitism: top 2 individuals copied unchanged to the next generation.

Mutation: A small, fixed mutation rate of 0.02 (2%).

Fitness evaluation: each individual evaluated by averaging performance over 5 simulation replications
(num_replications = 5).

The complete algorithmic framework for the GA is detailed in Algorithm 1.
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Algorithm 1. Robust GA for policy optimization

1: Initialize population P with |P| = 50 random solutions 6.
2: for generation g = 1 to G (G = 40) do
3: for each individual p € Pdo
4:  replication_costs + ||
5 for replication r = 1 to R (R = 5) do
6 cost < RunSimulation(p, seed = )
7 Append cost to replication_costs
8:  end for
9:  fitness(p) < Average(replication_costs)
0: end for
I: Pjest < GenerateNextPopulation(P)
// Apply elitism, tournament selection, uniform crossover, and mutation
12: Copy top-2 individuals from P into P,.,; // elitism
13: while | Pyeqt| < |P|do
14:  Select parentl, parent2 via tournament selection (size = 3)
15:  Of fspring < OnePointCrossover(parentl, parent2)
// st4s¢ split at random point, 3 and o averaged
16:  Add Of fspring to Ppeqt
17: end while
18: P <+ Ppeut
19: // Log best solution Opes; (every 10 generations)
20: end for
21: return 6*  // Best solution found

4.4 Statistical Analysis

Upon completion of all simulation runs, the resulting dataset was analyzed to determine the statistical significance
of the performance differences between the policies. A one-way Analysis of Variance (ANOVA) was performed on
the two primary KPIs: Final Optimized Cost and Final Stockout Quantity. When the ANOVA F-test was significant
(p < 0.05), a Tukey’s Honestly Significant Difference (HSD) post-hoc test was conducted to perform all pairwise
comparisons between the policies. A significance level of av = 0.05 was used for all statistical tests.

4.5 Sensitivity Analysis

To assess the robustness and reliability of the top-performing policies beyond their optimized baseline performance,
a comprehensive post-hoc sensitivity analysis was conducted. This analysis serves two purposes: (1) to evaluate
the policies’ resilience to significant environmental shocks, and (2) to understand the sensitivity of each policy to
perturbations in its own optimized parameters.

Environmental Sensitivity: The champion policies were subjected to three distinct environmental shock
scenarios, simulated on a representative problem instance (instance_I). Each scenario was run for 30 replications to
ensure stable results. The scenarios were:

1. Demand Surge: The mean demand (u;) for all customers was multiplicatively increased by 25% (f4j-new =

i X 1.25).
2. Variability Shock: The demand standard deviation (o;) for all customers was multiplicatively increased by
50% (0new = 05 X 1.50).

3. Capacity Crunch: The vehicle capacity (@) was reduced by 25%.

The performance degradation, measured by the percentage increase in total cost, was used to quantify each
policy’s resilience.

Parameter Sensitivity: To assess the robustness of the optimized policies, we perturbed key parameters by +20%
from their optimal settings, one at a time, and measured resulting changes in total cost and stockout quantity. Since
the VMI Urgency Heuristic lacks tunable parameters, it is excluded from this procedure. For the OUT policy, only its
single threshold parameter is varied. For the Dynamic Inertial Policy, perturbations are applied separately to 5 and
while keeping the base reorder points 5?2 fixed at their optimal values, to isolate the effect of dynamic adjustment.
A policy is considered robust if performance degrades smoothly (i.e., no abrupt jumps in cost or stockouts) under
these deviations. This sensitivity analysis protocol mirrors recent state-of-the-art IRP studies—for example, Liicker
et al.[46] conduct extensive parameter perturbations to test policy brittleness across benchmark instances.
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This two-pronged sensitivity analysis provides critical insights into the practical applicability of each policy,
moving beyond simple cost-efficiency to evaluate their performance under the stress and uncertainty characteristic
of real-world supply chains.

5 Results and Analysis

The experimental campaign was designed to rigorously evaluate the performance of the three distinct policy
architectures: the adaptive benchmark (Dynamic Inertial), the non-optimized heuristic, and our proposed OUT
policy. The analysis is presented in four stages: a comparative analysis of baseline performance, an evaluation using
a unified KPI, a robustness assessment via environmental sensitivity analysis, and a final assessment of parameter
sensitivity for the optimized policies.

5.1 Baseline Performance Analysis

The grand mean performance of the three policies, averaged across all seeds and instances, is summarized in
Table 3. The results reveal a clear and significant performance stratification. The novel OUT policy achieved the
lowest average total cost (€58,595.46), establishing a new benchmark for economic efficiency. At the other end of the
spectrum, the VMI Urgency Heuristic incurred the highest cost, approximately 21.5% greater than the OUT policy,
primarily due to its aggressive, service-driven replenishment logic which leads to higher transport and holding costs.

Table 3. Grand mean performance metrics per policy (baseline conditions)

Policy Model Avg. Total Cost Std. Total Cost Avg. Stockout Qty. Std. Stockout Qty. Per. Stockout Qty. (%)
Dynamic (s, S) inertia 62,435.71 1,745.87 116.88 26.76 0.44%
VMI urgency heuristic 74,680.29 3,125.95 2.80 1.82 0.01%
OUT policy 58,595.46 1,109.51 39.29 11.66 0.14%

Crucially, a stark inverse relationship between cost and service level is observed among the benchmarks. The
VMI Urgency Heuristic, while most expensive, achieved a near-perfect service level with an average stockout quantity
of only 2.80 units. The Dynamic Inertial policy offered a lower cost but at the expense of a significantly higher
stockout level of 116.88 units. The OUT policy successfully breaks this trade-off, achieving a low stockout quantity
of 39.29 units—a 66.3% reduction compared to the Dynamic Inertial policy—while also securing the lowest total
cost.

To better understand the underlying factors contributing to total cost, we decomposed the average cost for each
policy into its primary components—Transport, Holding, and Stockout Penalty costs—as depicted in Figure 5. This
decomposition reveals that the main difference in total cost is not operational efficiency (with transport and holding
costs remaining relatively stable across policies), but rather the capacity to prevent service failures. Specifically, the
superior cost performance of the OUT and Dynamic Inertial policies is almost entirely explained by their substantial
reduction in stockout penalty costs, underscoring the pivotal role of service level in determining overall economic
efficiency (see Figure 5).
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Figure 5. Comparative breakdown of baseline costs by category, including penalty stockout cost
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A stark trade-off between cost and service is observed between the benchmarks. The VMI Urgency Heuristic
achieved a near-perfect service level (99.99%), while the Dynamic Inertial policy offered a lower cost but at the
expense of a significantly worse service level (99.56%). As illustrated by the service level comparison in Figure 6,
the OUT policy successfully broke this trade-off, achieving a high service level (99.86%) while simultaneously
securing the lowest total cost.

99.56 Dynamic Inertial

99.86 OUT Policy

99.99  VMI Urgency Heuristic
99.3 994 995 996 997 998 999 100
Figure 6. Benchmarking the average service level performance of the three policies
The distributions of the two primary KPIs are visualized in Figure 7. The box plots confirm the findings from
Table 3, showing a clear cost advantage for the OUT policy (Figure 7a) and a dramatic service level advantage for

the VMI Urgency Heuristic (Figure 7b). Crucially, the OUT policy exhibits a much tighter distribution for stockouts
compared to the Dynamic Inertial policy, signifying more consistent and reliable performance.
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Figure 7. Box plot analysis of (a) total cost ; (b) stockout quantity for the three policies

To determine the statistical significance of these differences, a one-way ANOVA was performed, followed by
a Tukey HSD post-hoc test. The ANOVA was highly significant for both Final Optimized Cost (p < 0.001) and
Final Stockout Quantity (p < 0.001). The Tukey HSD results (Table 4) confirm that the OUT policy is statistically
significantly cheaper than the VMI Urgency Heuristic and statistically superior to the Dynamic Inertial policy in
reducing stockouts.

Table 4. Tukey HSD results for the 3 policies

Groupl Group2 Mean Diff. P-adj Lower Upper Reject
OUT Policy VMI urgency heuristic ~ 16399.53 0.0 15254.62 175444  True
OUT Policy dynamic (s, S) inertia 4154.95 0.0 3010.04  5299.86  True

VMI urgency heuristic ~ dynamic (s, S) inertia ~ -12244.57 0.0 -13389.48 -11099.6  True

The trade-off between the policies is visualized on the efficient frontier in Figure 8. The plot clearly shows that
the OUT policy establishes a new dominant point on the frontier, rendering the Dynamic Inertial policy obsolete.
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Cost vs, Stockout Trade-Off (Efficient Frontier)
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Figure 8. Cost—service trade-off and efficient frontier positioning of policies

5.2 Unified KPI Analysis

To synthesize the cost-service trade-off into a single, managerially relevant metric, we formulated a Unified KPI
Score. This score represents a penalty-adjusted total cost, where a strategic weight is applied to each unit of stockout.
For this analysis, a weight of €50 per unit was chosen, representing a moderate business impact for a service failure.
The formula is:

Unified KPI Score = Final Optimized Cost + (50 x Final Stockout Quantity) (14)

The results of this analysis are presented in Table 5. When both cost and service level are considered under this
unified metric, a clear stratification of policy performance emerges. The OUT Policy achieves the lowest Unified
KPI Score of €60,068.76, making it the most balanced and effective overall strategy under this strategic valuation.

Table 5. Unified KPI score analysis (lower is better)

Policy Architecture Unified KPI Score ()

Dynamic (s, S) inertia 68,279.71
VMI Urgency Heuristic 74,820.29
OUT Policy 60,068.76

This demonstrates its superior ability to manage the cost-service trade-off effectively. The Dynamic Inertial
policy, while incurring a higher raw operational cost than OUT, positioned itself as the second-best option with a
Unified KPI Score of €68,279.51. The VMI Urgency Heuristic, despite its near-perfect service level (as noted in
prior sections), is heavily penalized by its inherently high operational costs, resulting in the highest Unified KPI Score
of €74,820.29, making it the least effective option when stockout penalties are considered. The relative performance
of each policy according to this unified KPI is visualized in Figure 9.

Furthermore, to evaluate the robustness of the results, we analyzed the sensitivity of each policy’s total cost to
variations in the stock-out penalty. Figure 10 presents the simulated total costs of the three policies across a penalty
range from €25 to €500 per unit. The OUT policy consistently exhibits the lowest and most stable cost trajectory,
confirming its resilience. In contrast, the Dynamic Inertial policy shows a clear inflection point at approximately
€125 per unit (five times the base penalty), beyond which its costs increase sharply and diverge from the other
strategies. The VMI Urgency Heuristic policy, while achieving near-perfect service levels, remains relatively flat
but persistently more expensive than the OUT policy, rendering it uncompetitive across the entire range. The OUT
policy maintains cost leadership until the upper bound of the tested penalties, thereby demonstrating its robustness
and adaptability under diverse managerial priorities. Overall, these results confirm that the OUT strategy consistently
offers the most favorable cost—service trade-off.

117



80,000.00
60,000.00
@:40,000.00

20,000.00

Penalty-Adjusted Total Cost

0.00
OUT Policy Dynamic Inertial VMI Urgency
Heuristic

Figure 9. Bar chart of unified KPI scores for the three policies
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Figure 10. Simulated total cost vs. stock-out penalty cost for the three policies

5.3 Environmental Sensitivity and Robustness Analysis

The robustness of the policies was evaluated under three disruption scenarios. Table 6 summarizes the percentage
increase in total cost for each policy relative to its own baseline.

Table 6. Environmental sensitivity—percentage increase in total cost

Policy Baseline Demand +25% (Surge) Variability +50% (Shock) Capacity -25% (Crunch)
VMI urgency heuristic  75,516.93 76,850.80 75,548.65 80,171.65
Optimized threshold  60,213.61 66,526.61 63,079.83 62,316.76
Dynamic inertial 63,581.98 75,594.42 65,349.30 66,030.95

The results reveal distinct robust profiles. The VMI Urgency Heuristic is almost completely immune to demand-
side shocks. The Optimized Threshold policy demonstrates strong, balanced robustness across all scenarios. In stark
contrast, the Dynamic Inertial policy proved to be brittle, with its cost increasing by a substantial 18.89% during the
demand surge. This cost increase was driven by a catastrophic failure in service level, as shown in Table 7.

While the VMI Urgency Heuristic maintained its near-perfect service, the stockouts for the Dynamic Inertial
policy more than tripled, increasing by 258%. The Optimized Threshold policy, while seeing an increase in
stockouts during the variability shock, maintained a much more controlled service level during the critical demand
surge, proving its superior resilience compared to the adaptive benchmark. The results, also visualized in Figure 11,
reveal distinct robustness profiles.
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Table 7. Environmental sensitivity—absolute stockout quantity

Policy Baseline Demand +25% (Surge) Capacity -25% (Crunch) Variability +50% (Shock)
VMI urgency heuristic 0.00 1.10 0.00 0.00
Optimized threshold 77.40 60.60 77.40 189.20
Dynamic inertial 128.90 461.50 128.90 199.10
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012 105%
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Figure 11. Environmental robustness analysis: total cost sensitivity across disruption scenarios

A final sensitivity analysis was conducted by perturbing the key parameters of the two optimized policies by
+20%. The results are summarized in Table 8. The analysis reveals that the OUT policy exhibits a desirable
asymmetric sensitivity. Being overly cautious (increasing Uy, by 20%) results in a negligible 1.27% cost increase
while dramatically improving service. Conversely, being too aggressive (decreasing Uy, by 20%) is correctly
penalized with a 7.56% cost increase. In contrast, the Dynamic Inertial policy is extremely insensitive to its own
dynamic parameters, suggesting its performance is primarily driven by its base-stock levels and has reached a
conceptual performance plateau.

Table 8. Parameter sensitivity analysis for optimized policies

Policy Scenario Final Optimized Cost Final Stockout Quantity Cost Increase Pct
Optimized urgency Optimal (Uy, = 2.11) 60,184.89 77.10 0.00
Ut -20% 64,736.91 351.00 7.56
Ui, +20% 60,947.89 19.75 1.27
Dynamic inertial ~ Optimal (8 = 0.50, o« = 0.43) 64,148.96 133.45 0.00
B -20% 64,065.41 140.90 -0.13
B +20% 64,195.75 131.35 0.07
a -20% 64,105.41 133.00 -0.07
a +20% 64,101.51 133.85 -0.07

6 Discussion

This study embarked on a critical examination of inventory replenishment policies within VMI systems,
specifically challenging the prevailing assumption that parametric complexity is a prerequisite for high performance
in stochastic environments. Our findings robustly demonstrate that a simple, rigorously optimized time-based
heuristic can not only match but often surpass the performance of more complex, state-of-the-art adaptive policies.
This discussion delves into the interpretation of these results, their theoretical and managerial implications, and
outlines avenues for future research.

6.1 Interpretation of Findings: Simplicity Outperforms Complexity

The most striking finding is the superior performance of the OUT policy. Across baseline conditions, the OUT
policy achieved the lowest average total cost (€58,595.46) while maintaining a significantly lower stockout quantity
(39.29 units, a 66.3% reduction) compared to the Dynamic Inertial policy. This directly challenges the established
paradigm favoring multi-parameter adaptive models [10, 23]. The cost decomposition in Figure 5 highlights that the
OUT policy’s economic advantage primarily stems from its effective stockout prevention, underscoring the critical
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role of service level in overall cost efficiency, particularly in pharmaceutical supply chains where stockout penalties
are severe. The VMI Urgency Heuristic, while achieving near-perfect service (2.80 units stockout), did so at a
prohibitive operational cost (€74,680.29), confirming the inefficiency of non-optimized, rigid heuristics.

The unified KPI analysis further solidified the OUT-policy’s effectiveness under varying strategic valuations
of stockouts (Table 6, Figure 9). Indeed, the OUT policy consistently showed the lowest Unified KPI Score,
demonstrating its superior balance of cost and service even with high stockout penalties. Further sensitivity analysis
on the stockout penalty (Figure 10) unequivocally showed the OUT policy maintaining cost leadership across nearly
the entire tested range. The Dynamic Inertial policy’s performance rapidly deteriorated beyond a certain penalty
threshold, indicating a fundamental brittleness in its underlying cost-service trade-off. This suggests that while
adaptive policies aim for robustness, their inherent complexity can lead to unforeseen vulnerabilities under shifting
cost structures.

The environmental sensitivity analysis (Table 6 and Table 7) highlights the distinctive robustness profile of the
OUT policy. During a demand surge of +25%, the OUT policy resulted in only 60.60 stockouts, compared to
461.50 stockouts under the Dynamic Inertial policy, underscoring its superior capacity to absorb sudden disruptions.
Under a +50% variability shock, the OUT policy recorded 189.20 stockouts, which accounts for merely 0.72% of
total demand during the shock period. This reflects a controlled and predictable degradation of service rather than
catastrophic failure, thereby sustaining operational stability. Such behavior aligns with recent findings in supply
chain resilience research, which emphasize that policies built around clear threshold-based mechanisms often achieve
a more stable balance between robustness and efficiency compared to dynamically adjusted strategies [46].

Finally, the parameter sensitivity analysis (Table 8) provided crucial insights into the “brittleness” of the optimized
policies. The OUT policy exhibited a desirable asymmetric sensitivity: a cautious increase in the urgency threshold
(U, +20%) led to a minor cost increase (1.27%) and significant service improvement, while an aggressive decrease
was appropriately penalized (7.56% cost increase). In stark contrast, the Dynamic Inertial policy was remarkably
insensitive to perturbations in its own dynamic parameters (8 and «). This insensitivity, rather than indicating
robustness, points to a potential performance plateau where further fine-tuning yields negligible gains. This
finding has broader implications for resource allocation in research and development, suggesting diminishing returns
for further investment in optimizing such complex models and thereby redirecting efforts towards the rigorous
optimization of simpler, more interpretable models as discussed in foundational VMI literature like [47, 48].
It reinforces our hypothesis that the intellectual overhead of complex adaptive models might not translate into
commensurate performance gains, especially when a simpler, well-optimized alternative exists.

Thirdly, our analysis of robustness and parameter sensitivity offers a nuanced perspective on policy design. The
observed “brittleness” of the Dynamic Inertial policy under demand surges and its insensitivity to parameter changes
suggests potential for diminishing returns in complex adaptive models, especially regarding their interpretability and
tuning. In contrast, the OUT-policy’s single, clear parameter provides enhanced managerial interpretability and ease
of understanding, significantly lowering the cognitive load for decision-makers. This highlights a direct benefit of
simplicity and aligns with recent arguments in the supply chain literature that emphasize the value of parsimonious,
interpretable models over opaque complexity [49].

6.2 Managerial Implications

The managerial implications of the OUT policy are profound, particularly for industries like pharmaceuticals

where both cost efficiency and service level are paramount.

* Simplified Decision-Making and Implementation: The OUT policy offers a single, intuitive parameter
(Urgency Threshold) for managers to optimize. Its operational logic, visualized in Figure 3, makes it highly
interpretable and actionable precisely because of its parsimonious, single-parameter design and intuitive
time-based rule, which aligns well with managers’ mental models. This explicitly connects simplicity to
interpretability.

* Reduced Medicine Shortages and Enhanced Public Health: By significantly reducing stockout quantities
while also lowering total costs, the OUT policy directly addresses the critical public health issue of medicine
shortages, a vulnerability exposed during events like the COVID-19 pandemic [3]. For pharmaceutical
distributors, this translates into more reliable patient access to essential medicines.

* Cost-Effective Resilience: The OUT policy’s demonstrated robustness across various environmental shocks
(demand surge, variability shock, capacity crunch) means that businesses can achieve higher supply chain
resilience without incurring the higher operational costs typically associated with overstocking or overly
complex systems. This is a crucial advantage in today’s volatile global supply chain landscape.

* Strategic Resource Allocation: The “bubble of urgency” created by the OUT policy (Figure 3) allows for
more efficient vehicle routing by concentrating visits to geographically clustered, at-risk pharmacies. This
spatial clustering significantly improves vehicle utilization and reduces routing costs, a well-documented
advantage in inventory routing problems, particularly when integrating VRP solutions [50, 51].
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* Evidence-Based Policy Design: Our simulation-optimization framework provides a rigorous method for
practitioners to validate and optimize simple heuristics. This approach empowers managers to move beyond
arbitrary rule-setting and leverage data-driven insights to unlock the full potential of their existing operations.

7 Limitations and Future Research

Despite the rigor of our methodology, this study has several limitations that offer clear directions for future
research.

Firstly, the current model assumes a fixed vehicle capacity and a single depot. For this foundational comparative
study, a single-depot system and a homogeneous fleet were intentionally chosen to isolate the impact of the
replenishment policy design and ensure computational tractability. Future research could explore multi-depot
systems, heterogeneous fleets, and dynamic vehicle capacities. The fundamental concept of TTS within the OUT
policy is inherently scalable, as each depot could independently manage its assigned pharmacies based on their local
TTS, akin to decentralized inventory control strategies in multi-echelon systems [52, 53].

Secondly, demand stochasticity was modeled using a truncated Gaussian distribution. While robust for continuous
demand, real-world pharmaceutical demand can exhibit seasonality, trends, and infrequent large spikes. Future work
will investigate discrete demand patterns, which are often characteristic of many pharmaceutical items, and specific
non-stationary patterns such as sudden spikes or gradual trends. The OUT policy can directly accommodate
such patterns by making its mean demand (u;) calculation adaptive (e.g., using exponentially EWMA) to update
the TTS dynamically [54]. Furthermore, the single-parameter nature of the OUT policy facilitates adaptation to
non-stationary demand by periodic re-calibration of the optimal Uy, using the simulation-optimization framework,
drawing inspiration from adaptive control literature [55].

Thirdly, the study focused on cost and service level as primary KPIs. Future research could incorporate other
critical factors such as product perishability, cold chain requirements, and carbon emissions. The clarity and
parsimony of the OUT policy would simplify its integration into multi-objective optimization frameworks that
explicitly consider such metrics (e.g., NSGA-II as in [56]), offering a more actionable path to broader impact
compared to integrating complex adaptive models.

Fourthly, while the GA proved effective, exploring other metaheuristics or hybrid approaches (such as Particle
Swarm Optimization (PSO) or metaheuristics combining exact methods with heuristics [57]) could yield further
improvements.

Finally, the study was simulation-based. While providing a controlled environment for rigorous comparison,
real-world pilot implementation and validation of the OUT policy in a pharmaceutical VMI system would offer
invaluable practical insights. A concrete plan for such validation would involve a phased approach, starting with a
small-scale trial and outlining KPIs such as actual stockout rates, average inventory levels, and transportation costs
before and after OUT policy implementation [58].

8 Conclusion

This study sets out to critically evaluate the performance of simple, time-based inventory replenishment
heuristics against complex, adaptive policies in stochastic VMI systems. Through a comprehensive simulation-
optimization approach, we introduced and rigorously optimized the novel OUT policy. Our findings demonstrate
that this parsimonious, time-based policy achieves a superior balance of cost efficiency and service level resilience,
consistently outperforming both a non-optimized heuristic and a state-of-the-art multi-parameter adaptive benchmark.

The OUT policy’s intellectual contribution lies in its ability to transform an intuitive time-to-stockout metric
into a powerful, single-parameter decision rule. Methodologically, our use of a robust simulation-optimization
framework ensures a fair and unbiased comparison, revealing that the added complexity of adaptive models does not
always translate into superior performance or robustness. Managerially, the OUT policy offers a highly interpretable,
easily implementable, and cost-effective solution for reducing medicine shortages and enhancing supply chain
resilience in critical sectors like pharmaceuticals. It empowers practitioners to make data-driven decisions with a
clear understanding of the cost-service trade-offs.

By successfully challenging the prevailing notion that complexity is synonymous with performance in stochastic
VML, this research opens new avenues for policy design, advocating for the strategic optimization of simpler, more
intuitive heuristics. Future research should extend this work to multi-depot systems, incorporate more complex
demand patterns, and validate the OUT policy in real-world implementations, further solidifying its role as a
pragmatic and powerful tool for modern supply chain management.
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