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Abstract: The decentralization of blockchain technology greatly improves the trust relationship in the supply 

chain network. In view of the lack of trust, uncertainty, and asymmetry in the supply chain network, this paper 

integrates the blockchain technology to build a network dynamics model of trust representation, calculation, and 

propagation, and explores how the blockchain influences the supply chain network. The result indicates that the 

network scale increased by 115.89%, the network connectivity increased by 60.31%, and the average shortest path 

decreased by 4.95%, after the blockchain trust framework had been deployed in the agricultural supply chain. 

Meanwhile, the network topology performance such as degree distribution and average clustering coefficient were 

optimized to varying degrees. Taking agricultural supply chain as an example, the practical significance of 

topological change was explained. Overall, the blockchain trust mechanism improves the topology of the supply 

chain network by affecting the trust relationship between nodes.  
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1. Introduction

Blockchain, which is widely used in supply chain networks [1], aims to form a trusted network connecting all

parties [2]. According to Metcalfe's law, the value of a network equals the square of the number of nodes in that 

network. Therefore, the more members connected to the network, the greater its network value; the more flexible 

the application on the blockchain, the more prosperous its ecology; the richer the data on the chain, the more 

obvious its credit amplification effect. 

However, the scale-free features of the supply chain network show that the few core enterprises usually establish 

trust relationships with multiple enterprises, while most non-core enterprises merely establish trust relationships 

with a few enterprises [3]. Besides, the interest bond between supply chain members is not perfect. The lack or 

instability of the trust relationship makes poor cooperation a common occurrence [4]. Take the agricultural product 

supply chain for example. Many small farmers are scattered geographically. The trust in the supply chain is mainly 

established through lineage and blood relations, and the cooperation between farmers and agricultural enterprises 

relies on emotional trust, which makes it difficult for small farmers, who appear on the edge of the network, to 

establish trust among supply chain members [5]. If the trust relationship between supply chain members is 

abstracted into a directed graph, the network would appear as a complex network containing sparse edges and lots 

of nodes with small in- and out-degrees. 

The literature has extensively introduced the blockchain information traceability framework [6, 7] to the supply 

chain, trying to improve the trust relationship. However, few articles and models take basis on the trust relationship, 

and study how the blockchain affects supply chain networks, from the dynamics of the trust propagation network. 

Concerning the propagation dynamics of trust networks, the existing researches focus on the selection, prediction, 

optimization and propagation incentives of propagation paths. There is still a lot of room for mining network 

topology. Kang et al. [8] explored the problem of blockchain incentive consistency propagation, and established a 
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Stackelberg game model to optimize consensus propagation. Using Hamming distance, Kou et al. [9] predicted 

the trust between two users in trust and distrust symbolic social networks. However, trust, as quantifiable 

information, is not a binary choice of 0 or 1, but a trust value distributed in a certain interval. 

To reveal the law that blockchain affects the evolution of supply chain trust network from the perspective of 

network dynamics, this paper establishes a weighted trust diffusion model based on the susceptible-infectious-

removed-susceptible (SIRS) propagation model [10], and realizes the calculation and propagation of trust in the 

supply chain network. After the blockchain trust mechanism is introduced into the network, the authors 

investigated the changes in the network topology and indices of the supply chain trust relationship, evaluated the 

value of the supply chain network, and took the agricultural supply chain as an example to explain the practical 

significance of the changes in the topology indices. 

 

2. Improved Trust Model 

 

The modeling of supply chain network is the basis for studying the evolution and propagation of trust 

relationship. In this paper, the main body of the supply chain network is abstracted into nodes, and the directed 

edges in the network represent the trust relationship between nodes. The evolution of supply chain network 

conforms to the growth and preferential connection features of the scale-free network [11]. The modeling of supply 

chain network needs to solve three problems: 

-Calculation of trust value: how nodes in the network update the trust value of other nodes according to the 

change of trust data; 

-Propagation of trust value: how trust is propagated and represented in the network; 

-Dynamic update of trust value: the trust relationship of other nodes in the network will change with the spread 

of trust, but the SIRS propagation model only considers the node state transition, without considering the changes 

of edges and edge weights in the network brought about by the node state transition. The change of the weights on 

the edge cannot reflect the reality that trust propagation changes the trust connection. 

This paper improves the SIRS model on a scale-free network, and describes the change of trust between nodes 

due to the spread of trust in the network. Different from Huo et al.’s [12] study on how the scale-free network 

evolution affects the SIRS trust diffusion model, this paper focuses on the evolution of the scale-free network 

under the effect of the SIRS trust diffusion model. Considering the reality of the supply chain trust network, the 

authors fully characterized the network topology. Based on the directed weighted scale-free network, the SIRS 

trust diffusion dynamics model was improved to describe the network evolution process, including the entry of 

new nodes in the network, the spread of trust information in the network, the representation and calculation of 

trust, the dynamic change of trust relationship, and the exit of nodes from the network. 

 

2.1 Trust Representation  

 

To depict the trust between supply chain network with complex network theory, the supply chain network can 

be abstracted as a graph G=(V,E) composed of the node set G=(V,E) and the edge set vi, where V is the node 

(enterprise or individual in the supply chain network), and vi is the trust relationship between nodes. If trust exists 

between node vi and node vj, then there is a directed edge eij=<vi,vj> between the two nodes. The trust relationship 

varies in degree between nodes. The degree of trust is represented by the trust trij on directed edge eij. Let 

trij(t)[0,1] be the trust of vi in vj at time t. The greater the trij(t), the stronger the trust; if trij(t)=0, there is no trust; if 

trij(t)=1, there is full trust. Let TR(t)=(trij(t))N×N be the network trust matrix at time t. If (vi,vj)E, trij(t) is null, 

suggesting that vi has not established the trust evaluation of vj; if trij(t)is below the trust threshold δ, then vi does not 

trust vj. 

 

2.2 Entry of New Nodes  

 

There are a large number of isolated nodes in the network. These isolated nodes enter the network as new nodes 

connecting existing nodes. Before the entry, they often do not know the trust status of the nodes in the network, 

and usually choose to connect the larger nodes in the network, i.e., the nodes with larger degrees in the network 

(including out-degree and in-degree). The probability of a new node entering the network to connect the existing 

nodes in the network can be expressed as ∏𝑖 =
𝑘𝑖

∑ 𝑘𝑗𝑗
, where ki is the degree of vi. The number of connected edges 

is m=1+[(p-δ)×10], with p(δ,1) being the trust value of the new node. 

 

2.3 Trust Calculation  

 

The nodes that are already connected by trust edges in the network are called existing nodes. These nodes will 

continuously spread the trust information. They recalculate the trust value of the partners according to the updated 
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trust information, thereby changing the trust connections. The trust of existing nodes in the network can be 

calculated by the following rules. 

 

2.3.1 Direct trust  

The trust of node vi in node j, which it has interacted with before, belongs to direct trust. If they do not trade in 

the next stage, the trust will continue to decay with time [13]. The decay factor is introduced as ft(ft<1). Then, the 

trust value decay of the next time step is: 
 

1  ij t ijt ttr f tr+ = （ ） （） (1) 

 

If they trade in the next stage, they will get a post-transaction evaluation vj. In this case, the trust value in the 

next time step is: 
 

1
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If the trust value trij(t+1)≤δ, then vi’s trust in vj turns into distrust. After a period, the state of vi relative to vj may 

turn into a trust-unaware state. Then, the directed edge eij in the network disappears. 

 

2.3.2 Recommended trust  

The recommended trust refers to the trust of nodes recommended by other nodes without interaction history. 

When the demand for direct trust partners is insufficient, the node will give priority to the recommended trust of 

trusted neighbor nodes. When calculating the recommended trust, the node will first rely on the direct trust of the 

intermediary to assess the reliability of the intermediary. If the intermediary is not credible, the trust value of the 

node its recommends will lose its reference value, because the node is more likely to trust the trust data from 

trusted users [13]. 

If node j is recommended by multiple intermediary nodes, then the more trusted the node r, the higher the weight 

trir [14]. The recommended trust can be calculated by: 
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where, n is the number of trusted intermediaries. If the recommended trust trij(t)>δ, a directed edge eij is added to 

the network. 

 

2.4 Trust Propagation  

 

Trust can be spread as information in the supply chain network, inducing the dynamic change of trust 

relationship in the network. The dynamic change of trust relationship in this network can be described by a typical 

SIRS model. 

Concerning the trust of other nodes in the network for vj, there are three types of node states in the supply chain 

network: 

Sj: Trust unknown nodes; the trust situation for vj is unknown. 

Ij: Trust propagation node; vj is believed as trustworthy, and its trust situation is spread out. 

Rj: Distrust node; vj is believed as untrustworthy; the trust situation of the node is not spread, and no rust will 

be passed onto the node. 

The purpose of trust transfer between nodes is to find trusted partners and establish a transaction relationship 

with them. Thus, the dissemination of node distrust information is not considered. 

Let Sj
k(t), Ij

k(t), and Rj
k(t) be the relative densities of trust unknown node, trust propagation node, and distrust 

node of a node with degree k at time t, respectively, k=1,2,…, kmax. Here, kmax is the maximum node degree of the 

network. Besides, Sj
k(t)+ Ij

k(t)+Rj
k(t)=1 is the normalization condition. 

The SIRS trust propagation model is shown in Figure 1. The state transition rules of the model abide by the 

following rules: 
 

 
 

Figure 1. SIRS trust information diffusion model of traditional network 
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For node vi that trusts an unknown state Sj is infected by the infected node it trusts with a trust infection rate 

α(0,1), i.e., the trust infection rate. This is related to the node's trust acceptance rate, and the willingness of 

spreading the trust information. The better the trust environment, the higher the trust infection rate. 

The node vi in the state of trust propagation Ij(trij(t)>δ) acts as an intermediary node to propagate trust, but the 

trust transmitted is usually fuzzy. It only transmits whether a certain node can be trusted, and does not transmit the 

specific degree of trust. Therefore, the trust value transmitted through the intermediary is vaguely considered as 1, 

and a trust bias 1- trij(t) is generated during propagation. The credit risk brought by the trust bias may turn trusted 

nodes into untrusted nodes, and the probability is the mean trust bias in the network 𝛾 = (1 − 𝑡𝑟𝑖𝑗(𝑡))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (trij(t)>δ). 

The trust nodes may also provide business feedback. If they do not trade for a long time, the trust will decay and 

make the node untrustworthy. This probability is set as the trust decay rate β>0. Thus, trust nodes become untrust 

nodes with probability β+γ. 

For the node vi in the untrusted state Rj, the untrusted node does not accept the trust information from vj in a 

short time, but may regard it as an unknown trust node after not accepting the trust information of the node for a 

long time. The node changes from the untrusted state to the unknown state at the probability of ω>0, which is 

usually a very low probability. 

According to the mean field theory, the propagation dynamics can be described by: 
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where, Θ(t)=∑ 𝑝(𝑗/𝑘(𝑚𝑖𝑑))𝐼𝑗(𝑡)𝑗 ; k(mid) is the number of trusted infected nodes connected by the node; k(out) is the 

out-degree of the node (0≤k(mid)≤k(mid)); Θ(t) is the probability that the node connects to any trusted infected node j 

at time t. 

 

2.5 Trust Update 

 

The spread of trust in the network will change the trust relationship between network nodes, and the transfer of 

the trust state of the node will alter the trust weight of the node to the node (Figure 2).  

Case a: Node vi has not established a trust relationship with node vj. When the trust state of vi changes from Sj 

to Ij, vi establishes the trust in vj, and trij(t)>δ;  

Case b: Node vi has established a trust relationship with node vj, and trij(t)>δ. When the trust state of vi changes 

from Ij to Rj, vi no longer trusts vj; the connection weight declines to trij(t+1)≤δ;  

Case c: Node vi has established a distrust relationship with node vj. When the trust state of vi changes from Rj to 

Sj, vi loses the trust in vj. 

 

 
 

Figure 2. Transfer of trust states 
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3. Blockchain-Based Trust Propagation 

 

The dissemination of trust information in the traditional supply chain network (indicated by the left superscript 

T) is relatively random. Recommended trust often occurs randomly with the dissemination of trust information. In 

a blockchain-based supply chain network (represented by the upper left subscript B), however, nodes can quickly 

find trusted partners to update their partner pools, according to the blockchain trust framework. The consensus 

network includes demanders and providers of the use value of trust data, consensus nodes, and computing nodes. 

Supply chain members can be demanders and providers at the same time. Mobile devices using blockchain clients 

can participate in consensus, and nodes with sufficient computing power can as a computing node. In the 

blockchain trust network, the nodes look for recommended trust nodes as follows: 

 

3.1 Trust Digest Search 

 

Each node stores its previous transaction information, and saves the obtained trust evaluation locally to assist 

itself in choosing partners. To realize the safe use of trusted data on the blockchain, the provider uses a Merkle 

tree to store the trust data [15]. The value of the tree root represents the "trust digest" of the trust data, the trust 

digest storage and the legal ID of the node. After the association is uploaded to the blockchain, the node can prove 

to other nodes that it has a certain trust data without exposing other information [15]. Consensus nodes in the 

network can view the trust digest to gain the trust data of which nodes possessed by other nodes, and the computing 

nodes can extract the trust data and perform calculations. There is a large fixed cost for a node 𝜑𝑖 =
ℎ𝑖

𝐻𝑖
 to find new 

partners through the blockchain, so nodes need to measure demand and costs. This paper uses the proportion of 

untrusted nodes relative to node 𝜑𝑖 =
ℎ𝑖

𝐻𝑖
 with trusted data to measure the willingness to use blockchain to find new 

partners: 

 

𝜑𝑖 =
ℎ𝑖

𝐻𝑖
 (h is the number of nodes requesting distrust of node vi; H is the number of nodes requesting 

trust of node vi) 
(5) 

 

3.2 Trust Demand Broadcast 

 

After confirming the trust demand, the demander broadcasts it across the network. Selecting the receivers from 

its neighbors can effectively reduce the transaction propagation delay [16]. Thus, this paper transmits trust the 

demand through neighbor nodes in the blockchain network. The collection scope of trust data determines the range 

of demand delivery. Collecting trust data in different regions will incur different costs. Therefore, nodes need to 

pre-define the range of demand delivery according to their own budgets. The trust prediction of nodes using the 

trust data of neighbor nodes is referred to as the first-level trust propagation, and the trust prediction by the trust 

data of neighbor nodes of neighbors is known as the second-level trust propagation. The rest can be deduced by 

analogy. To compare with the neighbor node propagation trust in the traditional supply chain network, this paper 

assumes that the network only performs first-level trust propagation. 

 

3.3 Consensus Processing and Trust Computing 

 

Consensus nodes carry out transaction propagation and verification, and obtain trust computing rules. To 

facilitate the use of trust data and ensure that trust data is not tampered, leaked, or misappropriated, this paper adds 

computing nodes to the network, which will verify that neighbor nodes have indeed submitted the correct trust 

data. Then, the recommended trust is calculated according to the rules provided by the consensus nodes, and the 

calculation results are returned to the demand node. 

In the traditional supply chain network, nodes do not directly disclose their trust data to other nodes. There are 

two possible reasons: First, the trust level of nodes to other nodes is fuzzy. Second, the leakage of trust data will 

cause risks to the enterprise. Therefore, the relatively vague "trust" and "distrust" information will be spread in the 

network. Here, (T)trij(t)=[0,1] represent the situation of distrust and trust in the traditional supply chain network, 

respectively, i.e., the trust value spread through the intermediary. However, the trust of a node in the intermediary 

node is not fuzzy. Therefore, calculating the recommendation trust becomes the calculation of the trust in the 

intermediary node. The recommended trust can be calculated by: 
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Since the trust of new nodes cannot be obtained, the authors set p(t)=δ, which leads to (T)m=1. 
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In the supply chain network environment supported by blockchain, trust data is completely recorded and 

traceable at all times. The collection and processing of trust data is completed by consensus nodes and computing 

nodes, avoiding trust data leakage, data tampering, and trust data spread in the network. For accurate and real trust 

data, the recommended trust value can be calculated by: 
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(7) 

 

3.4 Trust Update 

 

The demand node selects the partner preferentially according to the result returned by the consensus node, 

completes the update of the partner pool, and updates the local trust data. The blockchain trust diffusion model is 

shown in Figure 3. The state transition rules of the model are as follows: 

 

 
 

Figure 3. SIRS trust diffusion model in blockchain environment 

 

In the complex network, the trust unknown node Sj that is willing to find partners via blockchain will temporarily 

transform into a blockchain survey node. The proportion of distrust nodes is denoted by 𝜑 =
ℎ

𝐻
, which indicates 

how willing a node is to look for partners via blockchain. The greater the proportion, the stronger the desire to 

look for new trust partners, and the higher the probability of using the blockchain tool. 

The trust environment of the blockchain network is good. In this paper, the trust infection rate α of the supply 

chain network in the blockchain environment is set to 1 (considering the competition relationship, it is less than 1 

in the actual situation). 

According to the mean field theory, the propagation dynamics can be described by: 
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(8) 

 

4. Simulation and Network Evaluation 

 

To verify the validity of our model and compare topological performance between the traditional network and 

the blockchain network, network evolution experiments were performed on NetworkX plus Gephi, using a 

Windows 10 computer with 3.20 GHz R7 5800H and 16G memory. The experimental results were randomly 

selected as the average of 20 replicate experiments. The network performance was evaluated by network statistical 

indices, such as degree distribution, average shortest path, clustering coefficient, etc. The degree distribution 

measures the connectivity of nodes in the network, the average shortest path refers to the average of the shortest 

path lengths between any two nodes in the network, and the clustering coefficient indicates the degree of node 

aggregation. Some studies have shown that the supply chain network would be efficient, if the average path length 

is short and the clustering coefficient is high [17]. In addition, the agricultural supply chain was taken as an 

example to analyze the practical significance of network topology optimization. 

 

4.1 Network Initialization and Parameter Setting  

 

In this paper, NetworkX is used to randomly generate a scale-free network of 500 nodes. The probability of a 

new node randomly connecting to the existing nodes of the network according to the in-degree is 0.4, and the 

probability of the new node randomly connecting to the existing nodes of the network according to the out-degree 

22



is 0.1. The probability of connection between nodes is 0.5, and the trust value is randomly assigned to two decimal 

places. Figure 4 shows the network layout optimized by the Ruchterman-Reingold algorithm. The network is 

randomly generated in the light of the topological features of the supply chain trust network. The larger the node, 

and the greater its degree. The different colors represent the community division of the node. To improve the 

reliability of the experimental results, the experiment was repeated 20 times to generate 20 initial networks with 

an average of 808 directed edges. The maximum propagation evolution time was set as T=500; the evolution 

experiment was repeated in 20 initial networks respectively, and the average value was taken as the experimental 

result. Drawing on Hearnshaw and Wilson and Xu et al. [18, 19], the trust infection rate, immunity loss rate, trust 

decay rate, and trust threshold were set as α=0.29, ω=0.002, β=0.02, and δ=0.7, respectively. 

 

 
 

Figure 4. Original network diagram (Generation network diagram for one of the 20 experiments) 

 

4.2 Comparison of Network Topological Features 

 

The traditional trust network and the blockchain trust network are evolved with a time step of 500 on the original 

network with a scale of 500. The experiment was repeated 20 times. The resulting traditional trust network has an 

average of 958.5 nodes, 972.85 edges, and a network connectivity of 1.01. The obtained blockchain trust network 

has an average of 2069.35 nodes, 3367.05 edges, and a network connectivity of 1.63. Compared with the traditional 

network, the blockchain trust network saw its network scale increased by 115.89%, and network connectivity 

increased by 60.31%. These data show that, after the introduction of blockchain, it is easier for isolated nodes to 

establish trust connections to enter the network, thereby promoting the growth of the network. The nodes in the 

network establish more trust relationships and improve the trust connection degree of the network.  

On the basis of Figure 4, the traditional network and the blockchain network evolved respectively, as shown in 

Figure 5 and Figure 6. It can be seen that the traditional network and the original network show the same 

community aggregation, but the nodes in the blockchain network nodes do behave like this. Thus, the blockchain 

trust mechanism breaks the trust barriers of acquaintance relationships and geographical relationships in the 

traditional network, but establishes a data-based trust relationship. In the blockchain trust network, the new node 

trust endorsement mechanism greatly improves the survival rate of new nodes. The trust transfer under the 

blockchain trust framework promotes the cooperation of network nodes. That is why the blockchain network is 

larger than the traditional network. According to Metcalfe's law, the blockchain network has better value than the 

traditional one. The following indices were chosen to compare the topology performance of different networks. 

 

 
 

Figure 5. Evolution diagram of traditional network 
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Figure 6. Evolution diagram of blockchain network 

 

4.2.1 Average shortest path length 

Figure 7 shows the average shortest path length of the two networks in the 20 experiments. Except for the eighth 

group of experimental data, the average shortest path length of the blockchain trust network was less than or equal 

to the traditional trust network, and the average shortest path of the traditional network was 3.05. The average 

shortest path of the blockchain network was 2.90. After the introduction of the blockchain, the average shortest 

path was reduced by 4.95%. The nodes in the network need to pass through the intermediary nodes to obtain the 

trust data of other nodes. The more intermediary nodes to pass through, the higher the cost of obtaining the trust 

data. Therefore, the smaller the average shortest path length, the higher the network efficiency. In the blockchain 

trust network, the willingness of nodes to find new trust partners was divided, which improves the efficiency of 

nodes to find partners. As a result, the network has more connections and shorter delivery paths. Different from 

the traditional agricultural supply chain that spreads trust through social networking, the blockchain trust 

propagation is anonymous and credible, safe and transparent, as well as traceable. This significantly improves the 

efficiency of trust spreading and establishment. 

 

 
 

Figure 7. Average shortest path length 

 

4.2.2 Degree distribution 

Figure 8 presents the average degree distribution of the 20 experiments of the traditional trust network and the 

blockchain trust network. After the introduction of the decentralized blockchain evolution in the supply chain 

network, the network degree distribution still obeys the power-law distribution. The probability of nodes with a 

degree of 1 in the blockchain trust network is smaller than that of the traditional trust network. This means there 

are fewer edge nodes with only a single connection. The introduction of the blockchain trust tool helps the single-

connected edge nodes to establish a new trust relationship. This result proves that small and medium-sized farmers 

who are on the edge of the agricultural supply chain can establish more trusting and cooperative relationships 

through the blockchain. The middle part of the scatter diagram represents the intermediate group in the supply 

chain network. In this group, the probability of the blockchain trust network is greater than that of the traditional 

trust network, a sign that the trust and cooperation in the network are more concentrated in the intermediate group, 

and the degree distribution declines by a smaller degree. Thus, the power-law distribution is more balanced, and 

such a network is more robust. At the tail of the scatterplot, that is, the large nodes in the network, the degree 

distribution probability amplitude of the blockchain network is smaller and the balance is better. Judging by 

network degree distribution, the blockchain trust network structure is more balanced and stable. 
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Figure 8. Degree distribution 

 

4.2.3 Average clustering coefficient 

Figure 9 shows the average clustering coefficient distribution of the 20 experiments of the traditional trust 

network and the blockchain trust network. In the lower range of the degrees, the average clustering coefficient of 

the blockchain trust network is larger than that of the traditional trust network. In the long tail range, there is not 

much difference between the two networks. A small clustering coefficient indicates a sparse subgraph, and a large 

clustering coefficient indicates a dense subgraph. In the dense subgraph, the trust data is richer, the information 

exchange is more frequent, and the activity is higher. In the blockchain trust network, the average clustering 

coefficient among small-scale farmers is greater than that in the traditional trust network, which improves the 

survival ability of small-scale farmers. 

 

 
 

Figure 9. Average clustering coefficient 

 

5. Conclusions 

 

To reveal the topological structure and law of the supply chain trust network evolution via the gradual formation 

in the blockchain environment, this paper firstly establishes a scale-free supply chain network trust propagation 

evolution model based on the SIRS propagation model, which completely describes how the trust propagation in 

the supply chain network changes the network trust relationship. Next, the blockchain trust propagation mechanism 

is introduced into the model based on the blockchain consensus process, and the supply chain network trust 

propagation process is described under the blockchain. Finally, simulation experiments were carried out to 

compare the evolution trend and law of supply chain trust network and blockchain trust network. The simulation 

analysis shows that the blockchain trust mechanism deployed in the supply chain network has better network value, 

network efficiency, and topology performance than the traditional network. This confirms that the blockchain 

technology can improve the trust relationship of the supply chain network, and the introduction of the decentralized 
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blockchain does not affect the scale-free features. These findings are consistent with previous research. This paper 

takes a step further by studying the impact of blockchain on the supply chain network topology, and comparing 

the changes of topology indices under different degrees. As a result, it was verified that the blockchain can 

significantly improve the trust environment of non-core nodes in the network. Taking the agricultural supply chain 

as an example, the authors explained the changes of network topology indices, and the topological optimization 

encourages non-core nodes in the agricultural supply chain to actively apply blockchain technology to break 

through the trust dilemma. 

In this paper, the trust threshold is set to a fixed value that is uniform for all nodes. In practice, however, the 

trust thresholds of different nodes are different, and the trust thresholds of nodes are time-varying. The evolution 

of the actual network will be better tracked by realizing this feature of adaptive nodes. Therefore, the future 

research can focus more on the influence of adaptive trust thresholds over network evolution, as well as the 

threshold setting mechanism in the blockchain environment. 
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