
Journal of Intelligent Management Decision 
https://www.acadlore.com/journals/jimd 

Integrated Multi-objective Optimization of Predictive Maintenance and 

Production Scheduling: Perspective from Lead Time Constraints 

Zhiyuan Zhao , Qilong Yuan*

School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, 

710048 Xi’an, China 

* Correspondence: Qilong Yuan (ccyxz@xaut.edu.cn)

Received: 06-02-2022 Revised: 07-19-2022 Accepted: 08-23-2022 

Citation: Z. Y. Zhao and Q. L. Yuan, “Integrated multi-objective optimization of predictive maintenance and 

production scheduling: Perspective from lead time constraints,” J. Intell Manag. Decis., vol. 1, no. 1, pp. 67-77, 

2022. https://doi.org/10.56578/jimd010108. 

© 2022 by the authors. Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free download 
and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license. 

Abstract: For the integrated optimization of job-shop production scheduling and predictive maintenance, this 

paper fully considers such constraints as product delivery time and changing machine failure rate, and establishes 

a multi-objective optimization model aiming to minimize the processing cost and the product processing time. The 

model includes the changing machine failure rate into the integrated optimization of job-shop production 

scheduling and predictive maintenance, and enables the prediction of the machine state according to the processing 

time of the current job, laying the basis for the decision-making of the machine activity and the reasonable and 

effective production planning. In addition, the non-dominated sorting genetic algorithm (NSGA)-II was designed 

to solve the proposed model. The algorithm performance was improved through the operator crossover and 

mutation by the simulated binary crossover algorithm (SBX). The proposed strategy was verified through a case 

study. 

Keywords: Production scheduling; Predictive maintenance; Multi-objective optimization; Lead time; Non-

dominated sorting genetic algorithm (NSGA)-II 

1. Introduction

Production scheduling and equipment maintenance are two important activities in manufacturing job-shops. In

actual production, the production schedule often cannot reach the expected effect. One of the main reasons is that 

the performance degradation and fault maintenance of the machines are not considered when the plan is formulated 

[1, 2]. The combination of predictive maintenance and production scheduling can ensure the normal operation of 

the production schedule, improve the job-shop processing efficiency, enhance product quality, effectively control 

the machine maintenance cost, and realize the integration and reasonable allocation of internal resources of the 

enterprise [3, 4]. It is of great significance to study the production scheduling and maintenance integration 

optimization of machine predictive maintenance. The relevant research helps to improve the competitiveness of 

enterprises, promote the development of manufacturing, and accelerate the intelligent transformation of enterprises 

[5, 6]. Considering equipment maintenance activities, it is now a research hotspot of production scheduling to 

integrate production scheduling with equipment maintenance scheduling. 

Liao et al. [7] proposed a maintenance strategy based on the number of operations on each machine. A machine 

is maintained when the number of operations reaches the upper limit. Mosheiov and Sidney [8] proposed the 

maintenance periodicity, that is, the maintenance activities of the machine should be combined with the working 

time and machine state. The longer it is until the failure occurs, the more expensive the time spent on maintenance. 

With minimum processing time as the goal, Cassady et al. [9] established an integrated optimization model of 

production scheduling and maintenance on a single machine, and compared the differences between integrated 

scheduling and non-integrated scheduling. Considering the strategies of perfect maintenance and imperfect 

maintenance, Chung et al. [10] applied the genetic algorithm to solve the job-shop scheduling problem based on 

the two strategies. Pan et al. [11] proposed a single-machine model based on production scheduling and predictive 
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maintenance, which can monitor and evaluate the condition of the machine at any time, and introduced the effective 

life and remaining maintenance life of the machine to describe the degradation degree of the machine. 

Targeting the parallel machine, Berrichi et al. [12] tried to minimize the maximum availability through 

optimization, and applied the multi-objective ant colony optimization (ACO) to solve the ensemble optimization 

problem. Lu et al. [13] applied minimized maintenance and preventive maintenance for a single machine with 

random failure of Weibull distribution. Chung et al. [14] took account of perfect maintenance and imperfect 

maintenance, and applied genetic algorithm to solve the job-shop scheduling problem based on perfect and 

imperfect maintenance. Ben et al. [15] integrated production and maintenance activities in the job-shop, and 

proposed an elite genetic algorithm for multi-objective problems, which optimizes and solves the model with 

completion time as the objective function. In the scheduling research of integrated preventive maintenance, Wang 

and Liu [16] applied multi-objective genetic algorithm to solve the single-machine problem with maintenance cost, 

maximum completion time, weighted completion time, delay penalty and equipment utilization as the optimization 

objectives at the same time. Nima and Hossein [17] implemented the genetic algorithm to solve the hierarchical 

maintenance scheme model in parallel machine operations. 

In actual processing and production, product orders have corresponding delivery dates, which not only limit the 

processing time of jobs, but may also generate additional processing costs [18]. Therefore, product delivery time 

is a factor that cannot be ignored in the research on integrated job-shop maintenance and scheduling. This paper 

introduces the factors of product delivery time and cost, and incorporates the machine failure rate into the job-shop 

production scheduling with predictive maintenance. Considering the changing failure rate of the machine, a multi-

objective integrated optimization model of the job-shop was established in the light of predictive maintenance, and 

a genetic solution algorithm was designed to solve the model. On this basis, the reasonable production plan was 

chosen according to different decision-making needs. 

The remainder of this paper is organized as follows: Section 2 sets up establishes a multi-objective integrated 

scheduling model considering delivery time; Section 3 designs the non-dominated sorting genetic algorithm 

(NSGA)-II was designed to solve the multi-objective optimization model; Section 4 uses examples to analyze the 

model, and verify the designed algorithm; Section 5 summarizes the research conclusions. 

 

2. Model Construction 

 

The job-shop contains m machines, each executes different operations. The jobs must be processed by every 

machine, yet following different operation sequence. Then, the following sets are defined: the set of jobs to be 

processed Jk, and the set of machines Mm. At the beginning of machine processing, all parts have arrived at the 

job-shop. Due to the limitation of the delivery period, the predictive maintenance decisions of machines must 

consider the maintenance cost and time of the entire machine, and the delivery time of the jobs to the processed, 

as well as the penalty cost of early and late completion of the jobs. 

Figure 1 shows the delivery time and fault constraint. According to the model prediction, the machine belongs 

to the dangerous interval at time A, and needs perfect maintenance. However, the perfect maintenance at this 

moment will cause the complete date of job J2 to exceed the specified delivery period, creating an additional 

processing cost. If imperfect maintenance is carried out here, the processing time and maintenance cost will rise, 

and job J2 can be completed before the delivery period, thereby avoiding the penalty cost of late completion. 

This paper proposes a multi-objective integrated optimization decision-making model. While carrying out the 

maintenance activities of the machine, the constraints of the machine state and the job delivery time were 

considered to minimize the processing time and optimize the processing cost. Multiple variables are introduced 

(Table 1) to build up the model. 

 

 
 

Figure 1. Delivery time and fault constraint 
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Table 1. Model parameters 

 
Variables Meaning 

Ji i=1,2…k, the set of jobs to be processed, k is the total number of jobs 

Oip p=1,2…n, the processing sequence of job Ji 

Mm m=1,2…q, the set of machines, q is the total number of machines 

Pm m=1,2…q, the time of perfect maintenance of machine Mm 

P’m m=1,2…q, the time of imperfect maintenance of machine Mm 

Um Decision variable, the total number of processing operations of machine Mm 

tipm Processing time of operation p of job Ji on machine m. 

Xipm Decision variable, if operation p of job Ji on machine Mm, then Xipm =1; otherwise, Xipm =0. 

Sw
ims The start time of job Ji being processed at the s-th station of machine Mm. 

Ew
ims The end time of job Ji being processed at the s-th station of machine Mm. 

Wms The waiting time of machine m after the s-th processing activity. 

Tms The processing time of the s-th processing activity of machine Mm. 

Nms The number of perfect maintenances of machine Mm for the s-th processing activity. 

N’
ms The number of imperfect maintenances of machine Mm for the s-th processing activity. 

PM1 Primary maintenance strategy (imperfect maintenance) 

PM2 Secondary maintenance strategy (perfect maintenance) 

λ Fault attenuation coefficient of perfect maintenance 

R Predicted machine state 

Dm Fault rate of machine Mm 

D[e] Threshold of fault rate 

Li Product delivery period of job Ji 

CPM Maintenance cost coefficient of stage n maintenance strategy 

α Cost operation coefficient of machine processing 

α1 Cost operation coefficient of machine waiting time 

β Early delivery penalty coefficient of machine 

β1 Late delivery penalty coefficient of machine 

 

2.1 Objective function 
 

The costs being considered mainly include the processing cost of machine, and the early/late delivery penalty 

costs. 
 

2.1.1 Processing cost  

The processing cost includes the processing operation cost of the machine and the maintenance cost of the 

machine. Whenever a machine performs a processing task, it will cause a certain cost loss; when the machine is 

turned on and idle, it will also incur costs; different maintenance methods generate different maintenance costs. 

The processing cost can be modeled as: 
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2.1.2 Penalty costs 

Based on the just-in-time system, when the finished job exceeds the given delivery time or is delivered before 

the delivery time, certain resources will be consumed, and this part of the consumed resources is called penalty 

cost. Given the early time delivery penalty coefficient β and the late delivery penalty coefficient β1, the penalty 

cost model can be established as: 
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Based on the above analysis and definition, the minimum cost and minimum processing time can be respectively 

expressed as: 
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The minimum processing time can be expressed as:  
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2.2 Processing constraints  

 

The relevant constraints are as follows: 

A job can only be processed on one machine at a time:  
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Each machine can only process one job at a time:  
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Each machine can only execute on maintenance activity at a time:  
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The start time of machine processing cannot precede the end time of machine maintenance:  
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Machine processing cannot be interrupted:  
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The start time of machine processing cannot precede the end time of the previous operation:  
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The start time of machine processing cannot precede the end time of processing of the job on the previous 

machine: 

 

1  , ,w w
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3. Algorithm Design  

 

For the established multi-objective optimization model, the multi-objective genetic algorithm was elected to 

solve the model. The multi-objective genetic algorithm is updated and optimized on the genetic algorithm. Many 

effective algorithms have been formulated by combining the concept of Pareto front solution set with the multi-

objective genetic algorithm [19, 20]. Among them, the NSGA is the most representative one.  

Step 1. Create initial variables, and set the number of iterations Items=1, the maximum number of iterations M, 

the population size N, the mutation probability Qm and the crossover probability Pm. 

Step 2. Initialize the population by randomly generating samples. 

Step 3. Computing the individual fitness Sm in the population. 

Step 4. If Items > 1, replace the individual with the lowest fitness of the new population with the individual with 

the highest fitness in the previous generation to ensure the population quality; otherwise, go to Step 5. 

Step 5. If Items < M, retain the individual with the highest fitness in the population; otherwise, terminate the 

program, and output the best individual from the previous population as the optimal solution. 

Step 6. Randomly generate the crossover probability P. If P<Pm, randomly crossover two individuals other than 

the best individual; otherwise, go to Step 7. 
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Step 7. Randomly generate the mutation probability Q. If Q<Qm, randomly mutate individuals other than the 

best individual; otherwise, go to Step 8. 

Step 8. Generate a new population by merging the parent and child populations. 

Step 9. Carry out fast non-dominated sorting, and calculate crowding degree and fitness. 

Step 10. Select the best individuals via tournament method and form a new population. Let Items=Items+1. If 

Items<M, go back to Step 3; otherwise, output the final results. 

 

 
 

Figure 2. Flow chart of NSGA-II 

 

The coding, crossover and mutation links of NSGA-II can be designed as follows (Figure 2): 

 

3.1 Coding 

 

In the process of solving the genetic algorithm, the coding and decoding rules are the basics. Algorithm coding 

effectively transforms actual parameters into algorithm units, which can better complete the solution of the 

objective function. A reasonable coding method can greatly improve the convergence speed and solution efficiency 

of the algorithm. 
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In the initial stage of encoding, double-layer encoding is adopted. The first layer represents the number sequence 

of the jobs processed by the machine. For example, {6,1,2,5,3,4} means that the jobs processed by the machine 

are: job 6→job 1→job 2→job 5→job 3→job 4. The second layer indicates whether the machine is maintained 

after the job is processed. 0 means no maintenance, 1 means minor repairs, and 2 means normal maintenance. For 

example, {0,1,0,0,2,0} means that minor repairs are performed after the first job is processed, and normal 

maintenance operations are performed after the second job is processed (Figure 3). 

 

 
 

Figure 3. Coding rules 

 

3.2 Crossover 

 

The SBX crossover algorithm is adopted to solve the multi-objective problem. This crossover algorithm 

simulates single-point binary, and is often used to solve the multi-objective model of real number coding. Let 
1 1 1

1 1 2{ , ...... }NP P P P=  and 
2 2 2

2 1 2{ , ...... }NP P P P=  be two parent individuals. After crossover of them, two new 

individuals C1 and C2 can be generated by: 
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where, β is the diffusion factor, which can be dynamically generated by: 
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η is a parameter defined by the algorithm. The greater the η value, the greater the similarity between the 

generated child and the parent after the crossover. The search performance of the entire algorithm is controlled by 

adjusting the value of η. During the crossover, SBX has the following characteristics: 

After binary decoding, the decoding average of the parent and child is the same: C1+C2=P1+P2 (Figure 4): 

 

 
 

Figure 4. SBX crossover 

 

The quotient of the difference between the decoded values after the crossover is slightly close to 1. 

The difference quotient β measures the difference of the decoded values before and after the crossover: 
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According to the above two characteristics, the child can be inversely solved according to the value of the 

parents: 
 

( ) ( )1 1 2 2 10.5 0.5C P P P P=  + −   −  (16) 
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( ) ( )2 1 2 2 10.5 0.5C P P P P=  + +   −  (17) 

 

Different child generations can be generated with different β values, which ensure the flexibility and diversity 

of the population. 

 

3.3 Mutation 

 

In the multi-objective optimization algorithm, polynomial mutation is widely used as a common mutation 

method. Polynomial mutation is also applicable to real-coded multi-objective algorithm solving. The encoding is 

divided into two parts: the first part adopts the real number encoding method, and the second part adopts the binary 

encoding method. For the mutation encoded in the first part, the authors chose the polynomial random mutation 

method. The binary encoding of the second part is the normal variation. 

Let Xk
1={1,2…K} be the first layer of codes. A random number n between [1, K] is randomly generated to 

determine the mutation position. Then, a random integer m is generated in [1, K/2], and Xn
1+m  is taken as the 

mutated value. If Xn
1+m is beyond the coding range, Xn

1-m will be treated as the mutated value. Next, search for 

the position index i of the mutated value, and make Xi
1= Xn

1 to complete the mutation operation. 

The second layer adopts binary encoding. After improvement, the second layer of coding does not have unique 

coding, and can directly carry out code mutation. 

The codes are divided into three levels, 0 for normal processing, 1 for minor repairs and 2 for normal 

maintenance. Three groups of mutation probabilities are defined, P1, P2, and P3. Each time a mutation operation 

is performed, each code in the second layer has a certain probability to mutate and generate a new code information 

node (Figure 5). 

 

 
 

Figure 5. Mutation operation 

 

When performing the mutation operation, each code element of the second layer coding has a certain mutation 

probability, i.e., the code element 0 has a P1 probability to mutate into 1, and similarly, the code element 1 also 

has a P1 probability to mutate into 0. 

 

3.4 Selection 

 

According to the fitness function of the algorithm, individuals are randomly selected from the parent population 

and retained to the next generation, while the remaining individuals are eliminated. Common selection strategies 

include roulette, random sampling, and tournament method. The tournament method selects a certain number of 

relatively superior individuals from the population to enter the tournament, which is suitable for solving the max-

min optimization problems. The specific steps are as follows: 

Step 1. Select the number of individuals according to the percentage of the population each time. 

Step 2. Randomly select individuals from the population for fitness sorting, and retain individuals with higher 

fitness the next generation. 

Step 3. Repeat Step 2 until the obtained individuals can form a new generation population. 

 

4. Case Analysis 

 

The case analysis focuses on a job-shop which intends to process six jobs, each of which needs to go through 

six operations. The operation sequence varies from job to job. The processing time is shown in Table 2. The 

machine failure rates obey the Weibull distribution, β=3.738 and η=927.535. 

 

Table 2. Processing schedule 

 
Job number Machine number, processing time (min) 

J1 (1,9) (2,40) (3,75) (4,79) (5,11) (6,71) 

J2 (1,40) (2,48) (3,97) (4,84) (5,123) (6,42) 

J3 (1,41) (2,43) (3,92) (4,89) (5,13) (6,95) 

J4 (1,58) (2,52) (3,51) (4,33) (5,91) (6,108) 

J5 (1,47) (2,29) (3,53) (4,51) (5,42) (6,13) 

J6 (1,78) (2,53) (3,90) (4,108) (5,39) (6,14) 
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Table 3. Schedule of different maintenance activities 

 

Maintenance level PM1 PM2 

Time, min 30 40 

 

Table 4. Delivery time constraints 

 
Job J1 J2 J3 J4 J5 J6 

Delivery time, min 456 537 498 502 560 423 

 

Table 5. Early/late delivery penalties 

 
Job J1 J2 J3 J4 J5 J6 

Early penalty coefficient, % 

Late delivery penalty coefficient, % 

20 

30 

20 

30 

20 

30 

20 

30 

20 

30 

20 

30 

 

Table 6. Machine cost coefficient 

 
Machine M1 M2 M3 M4 M5 M6 

Processing cost coefficient, % 

Waiting time coefficient, % 

20 

10 

25 

15 

15 

10 

20 

15 

25 

15 

20 

15 

 

The maintenance level is divided according to the processing state of the machine, and the maintenance of the 

machine is divided into two levels PM1 and PM2. Different maintenance activities are carried out according to the 

operation of the machine. The maintenance schedule is shown in Table 3. The processing costs and early/late 

delivery penalty coefficients are shown in Tables 4 and 5, respectively. The maintenance cost coefficients caused 

by the maintenance activities is uniformly set to 20% (Table 6). 

The mathematical model is established and solved by NSGA-II algorithm, which is written by MATLAB. The 

program is run on MATLAB R2014a. The relevant parameters are configured as follows: the population size 

N=300, the number of iterations 500, the mutation probability Qm within [0.95, 1), and the crossover probability 

Pm within [0.001, 0.05). After repeating the program 10 times, the Pareto front is shown in Figure 6. 

 

 
 

Figure 6. Pareto Front 

 

Table 7. Calculation results 

 
Group T1 T2 T3 T4 T5 

Processing time, min 589 598 611 618 631 

Processing cost 623.1 622.1 619.1 617.25 608.7 

Group T6 T7 T8 T9 T10 

Processing time, min 635 641 659 663 665 

Processing cost 611.9 604.8 598.8 602.3 605.8 
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The calculation data are sorted out as in Table 7. For multi-objective optimization problems, the objective 

optimization functions restrict each other, making it impossible to derive the absolute optimal solution. The 

effective solutions can only be obtained according to different objectives in the feasible solution set. This is to 

allocate the job-shop resources reasonably, so that the processing time and processing cost of the tasks can reach 

a relative balance. The optimal Gantt charts of job processing time and production cost are drawn respectively in 

the ten test results, as shown in Figures 7 and 8. 

 

 
 

Figure 7. Optimal Gantt chart of job processing time 

 

 
 

Figure 8. Optimal Gantt chart of processing cost 

 

It can be seen from the experimental data that the ideal and optimal result does not exist under the interaction 

between the processing time and the total processing cost. When the machining time is short, the processing cost 

of the machine is low, but it may result in a high early/late delivery penalty, which increases the cost. When the 

processing time is long, the penalty costs should be minimized, but the idle time of the machine will be too long, 

resulting in a waste of resources. Each solution constrains each other between effective values and achieves a 

relative balance. Therefore, the solutions in the solution set are effective and have a certain reference value. 

75



In Figure 6, a multi-objective Pareto solution set has been generated. According to Pareto theory, all solutions 

in the solution set are considered to be valid and feasible solutions. Different solutions are selected as the optimal 

target solutions according to different decision-making requirements. Decision-making is divided into the 

following three categories. 

(1) The job-shop scheduling decision is biased towards shortening the processing time, and the solutions in the 

Pareto solution set an area can be used as the target optimal solution. 

(2) The job-shop scheduling decision is biased towards reducing the production cost, and the solutions in the 

Pareto solution set C area can be used as the target optimal solution. 

(3) The job-shop scheduling decision tends to balance processing time and production costs, and the solutions 

in the Pareto solution set B area can be used as the target optimal solution. 

 

5. Conclusions 

 

Taking the job-shop as the research object, this paper clarifies the importance of the delivery time condition in 

actual job-shop processing, and discusses the integration of production scheduling and machine maintenance under 

the constraints of the delivery date. Specifically, the authors established a multi-objective optimization model with 

the goal of minimizing the total processing cost, and optimized and solved the model by NSGA-II. In addition, the 

operations of the algorithm were designed in details: The algorithm performance was enhanced by SBX-guided 

crossover and mutation. The model was verified through a set of examples. The multi-objective Pareto solution 

set was obtained, and the accuracy of the Pareto solution set was analyzed, which further proves the feasibility and 

effectiveness of the model. The proposed method can effectively reduce time delay and resource waste in job-shop 

production scheduling, and reduce equipment maintenance cost and maintenance workload. 
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