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Abstract: The term "classification" refers to a supervised learning technique in which samples are given class labels  based  on  predetermined  classes.  Fuzzy  classifiers  are  renowned  for  their  ability  to  address  the  issue  of outliers and deliver the performance resilience that is much needed. The major goal of this study is to provide a classification algorithm that is effective and accurate. In this work, we address Archimedean-Dombi aggregation operator by extending the similarity classifier. Earlier, Dombi operators were used to study the similarity classifier.

We  focus  on  the  application  of  Archimedean-Dombi  operators  during  the  classifier's  aggregate  similarity calculation. Since Archimedean and Dombi operators are well-known for offering appropriate generalization and flexibility respectively in aggregating data, so a different version of the similarity classifier is created. One real-world medical dataset, namely Parkinson disease data set is used to test the proposed approaches. When compared to older existing operators, the new classifiers have better classification accuracy.
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1. Introduction

In  this  study,  the  term  "classification"  refers  to  a  supervised  technique  where  samples  are  given  class  labels based on predetermined classes [1]. The issue domain provides well-established class labels where we can assign new samples. The assumption in the traditional meaning is that every sample is a member of a single class, while fuzzy techniques connect samples to classes based on the belongingness degree [2]. There is a substantial body of classification theory that encompasses decades of productive research trends [3,  4]. Work on pattern categorization and other domains has increased as a result of the necessity to create automated systems in most industries [5-9].

Fuzzy  classifiers  are  renowned  for  their  ability  to  address  the  issue  of  outliers  and  deliver  the  performance resilience that is much needed. The fuzzy set theoretic technique is used by the similarity-based classifier that this work examines.

The major goal of this study is to provide categorization algorithms that are effective and accurate. We suggest a generalized variation of a similarity-based classifier (SBC) [10] that combines similarities using Dombi operators.

This is an expansion of the research looked at in  the study [11], where the ordered weighted averaging (OWA) operator was used to study the similarity classifier. Weight creation for use with quantifiers was a challenge for the SBC employing the OWA operator faced [11]. We investigate Dombi aggregation operators' [12] application in  the  similarity  classifier  in  light  of  the  fact  that  they  don't  call  for  any  weight  generating  criteria.  Dombi aggregation operators were created by parameterizing the triangle norms and conorms that were first introduced in 1982 [13]. These operators can be used for modelling and other applications that call for parameter settings because  they  have  a  configurable  parameter.  Modeling  problems  involving  multiple  attribute  decision  making (MADM) has benefited from the use of Dombi operators [14-17]. Dombi operators were developed to include neutro- sophic sets and associated fields, and they have been used to solve real-world problems [18-21]. 

Real-world  situations  frequently  involve  data  that  has  ambiguous  boundaries  and  associated  uncertainty.
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Researchers' top priority has always been to manage these uncertainties. Numerous contributions have been made toward that end, but Zadeh's introduction of the concept of fuzzy sets (FSs) [22] marked the beginning of a real endeavor. Since then, FS theory has been used in various fields, including pattern detection [23], medical diagnosis

[24], and decision-making [25]. Numerous extensions of fuzzy sets [26-32] have been developed while keeping in mind the significance of fuzzy sets. These are all current fields of study that have been used to solve issues in the actual world [33]. 

In this study, we incorporate the Archimedean-Dombi operator system into the similarity classifier. Building ideal (mean) vectors for representing every class in the training set is the primary task for a SBC. From there, classification  choices  for  each  sample  in  the  testing  set  are  made  using  these  ideal  (mean)  vectors.  Algebraic, Einstein, Hamachar cases are all contained in the operator system of Archimedean-Dombi. Earlier, the generalised mean [34], OWA operator [11], Dombi operator [35], and other aggregation operators were examined with the similarity classifier. We will demonstrate that, when evaluated on actual data sets, the application of Archimedean-Dombi  operators  produces  better  results  than  the  previously  studied  (conventional)  similarity  classifier.  MS-EXCEL software is used for implementations and visualizations.

The following are a summary of this work's significant contributions: (i) An  algorithm  has  been  developed  around  a  novel  categorization  model.  In  this  model,  an  Archimedean-Dombi similarity classifier is used.

(ii) On real-world data sets, the proposed similarity classifier has been applied and tested.

Following is a summary of the remaining paper.

We introduce some significant and essential concepts related to our study in Section 2. In Section3, we design a methodology for similarity based classification with fuzzy Archimedean-Dombi operator. To clarify the created method, we use a case study related to Parkinson’s disease in Section 4. We draw some conclusions from the entire study and provide a summary of the prospects for the future in Section 5.


2. Basic Concepts

Here, we recall all relevant concepts.

2.1 T-Norm and T-Conorms 

In an effort to explore statistical metric spaces, Menger [36] originally introduced t-norms and t-conorms in his work for generalizing the tri-angle inequality from classical metric spaces to statistical metric spaces [37]. The axioms of t-norms and t-conorms that we cited here which were originally developed by Schweizer and Sklar [38]

developed.  Later,  as  general  aggregation  operators,  Zimmermann  and  Zysno  [39]  examined  these  procedures.

Since then, other t- norm and t-conorm varieties have been created [37]. Throughout the paper we shall use  I to denote [0, 1].

Definition 1 [37]: A fuzzy  t-norm  𝑔: 𝐼 × 𝐼 → 𝐼  is a mapping that holds the postulates in this manner: ( i) 𝑔(𝑞,  1) = 𝑞  for  𝑞 ∈ 𝐼,

( ii) 𝑔(𝑞,  𝑟) ≤ 𝑔(𝑞 ′,  𝑟 ′)  provided  𝑞 ≤ 𝑞 ′,  𝑟 ≤ 𝑟 ′  for  𝑞, 𝑞 ′,  𝑟,  𝑟 ′ ∈ 𝐼, ( iii) 𝑔(𝑞,  𝑟) = 𝑔(𝑟,  𝑞)  for  𝑞,  𝑟 ∈ 𝐼,

( iv) 𝑔(𝑞,  𝑔(𝑟,  𝑠)) = 𝑔(𝑔(𝑞,  𝑟),  𝑠)  for  𝑞,  𝑟,  𝑠 ∈ 𝐼.

Definition 2 [37]: A fuzzy  t-conorm   ℎ: 𝐼 × 𝐼 → 𝐼  is a mapping that holds the postulates as follows: ( i)  ℎ(𝑞,  0) = 𝑡  for  𝑞 ∈ 𝐼,

( ii)  ℎ(𝑞,  𝑟) ≤  ℎ(𝑞 ′,  𝑟 ′)  provided  𝑞 ≤ 𝑞 ′,  𝑟 ≤ 𝑟 ′  for  𝑞, 𝑞 ′,  𝑟,  𝑟 ′ ∈ 𝐼, ( iii)  ℎ(𝑡,  𝑟) =  ℎ(𝑟,  𝑡)  for  𝑞,  𝑟 ∈ 𝐼, ( iv)  ℎ(𝑡,  ℎ(𝑟,  𝑠)) =  ℎ( ℎ(𝑡,  𝑟),  𝑠)  for  𝑞,  𝑟,  𝑠 ∈ 𝐼.

Definition 3  [37]: A   t-norm mapping  𝑔(𝑞,  𝑟)  is said to be  strictly Archimedean   t-norm if it is continuous, 𝑔(𝑞,  𝑞) < 𝑞  for  𝑞 ∈ (0,  1),  and strictly increasing for  𝑞,  𝑟 ∈ (0,  1).

Definition 4 [37]: A  t-conorm mapping   ℎ(𝑡,  𝑟)  is said to be strictly Archimedean  t-norm if it is continuous, ℎ(𝑞,  𝑞) < 𝑞  for  𝑞 ∈ (0,  1),  and strictly increasing for  𝑞,  𝑟 ∈ (0,  1).

Definition 5 [37]: Suppose  𝜃: (0,  1] → 𝑅  is a continuous mapping such that  θ is strictly decreasing. Then a strictly Archimedean  t- norm is given by  𝛿(𝑥, 𝑥 ′) = 𝜃−1(𝜃(𝑥) + 𝜃(𝑥 ′))  for  𝑥, 𝑥 ′ ∈ (0,  1].

Definition 6 [37]: Suppose  𝜓: [0,1) → 𝑅  is a continuous mapping such that  ψ( l)=θ(1- l) for  𝑙 ∈ [0,  1)  and  ψ

is  strictly  increasing.  Then  a strictly  Archimedean  t-conorm  is  defined  by  𝜌(𝑥, 𝑥 ′) = 𝜓−1(𝜓(𝑥) + 𝜓(𝑥 ′))  for 𝑥, 𝑥 ′ ∈ (0,  1].


2.2 Dombi Operator 

Definition 7 [12]: For any two real numbers  x and  y in [0, 1], the Dombi conjunctive operator is defined as: 119
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Definition 8 [12]: For any two real numbers  x and  y in [0, 1], the Dombi disjunctive operator is defined as: c
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2.3 Similarity Measure (SM) 

 

A generalization of the idea of equivalency is the concept of similarity. In the area of fuzzy logic, Zadeh [40] 

provided a concept of similarity relations that is connected to the traditional example of equivalence relations. The concept by Zadeh offers a framework for object comparison and eventual computing of similarities between them.

However, there are a number of additional metrics used in data analysis to compare objects, the majority of which are based on distance [2]. The concepts of distance (or metric) and similarity are closely related to one another

[41]. Generalizations to more arguments can be done successfully when they are equipped with a similarity relation in  a  binary  situation.  Lukasiewicz  [42]  created  a  system  that  allows  for  the  analysis  of  similarities  between numerous objects. The fact that the mean of several similarities in a Lukasiewicz -structure is still a similarity [43] 

encourages the usage of classifiers in fuzzy set theory. We employ SMs in the generalized Lukasiewicz -structure in the classifier design with Archimedean-Dombi operators. According to popular opinion, SMs offer methods for comparing objects such that the degree of similarity can be expressed numerically. If two items are exactly the same, they have a similarity score of 1, while unrelated objects get a similarity value of 0. Other scores of similarity vary from 0 to 1. Similarities are hence values in the range [0, 1], which is essentially appropriate for the use of fuzzy  set  theory  approaches.  The  suggested  approach  is  then  presented.  For  any  two  numbers   x,  y[0,  1],  the similarity  between  them  is  defined  as:  𝑠(𝑥, 𝑦) = 1 − |𝑥 − 𝑦|  and  the  generalized  similarity  between  them  is 𝑝

defined by  𝑠̃(𝑥, 𝑦) = √1 − |𝑥𝑝 − 𝑦𝑝|, where, p≥1 is a parameter.

 


3. Methodology 

 

To define a new similarity based classifier, first we propose fuzzy Archimedean-Dombi operations.

 

3.1 Fuzzy Archimedean-Dombi Operations 

 

Definition 9: Consider the FSs  𝜁𝑗 =< 𝜇𝑗 > (𝑗 = 1,2).  Assume that 1 − 𝜃−1(𝑝) 𝛼
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Theorem 1: Consider the FSs  𝜁𝑗 =< 𝜇𝑗 >  (𝑗 = 1,2)  and  𝜆, 𝜆1, 𝜆2 > 0.  Then we have: ( i)   

 =    ,

1

AD

2

2

AD

1


120

[image: Image 9]

[image: Image 10]

( ii)  

( 

 ) = (

 )  (

 ),

AD

1

AD

2

AD

1

AD

AD

2

 

( iii)  ( +  )

 = (

 )  (

 ).

1

2

AD

1

1

AD

1

AD

2

AD

1

 

Proof: Follows from Definition 9.

 

3.2 Fuzzy Archimedean-Dombi Aggregation Operator 

 

Definition 10: Suppose  𝜁𝑗 =< 𝜇𝑗 >  (𝑗 = 1,2, . . . ,  𝑛)  is a set of FSs. Then we define the fuzzy Archimedean-𝑗=1

𝑛

Dombi geometric (FADG) operator as:  𝐹𝐴𝐷𝐺(𝜁1, 𝜁2, . . . , 𝜁𝑛) =⊗𝐴𝐷 𝜁𝑗.

Theorem 2: The aggregated value  𝐹𝐴𝐷𝐺(𝜁1, 𝜁2, . . . , 𝜁𝑛)  is also an FS. In addition, we get: 1
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Some important properties of the FFADWG operator are given below.
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3.3 Decision-Making Algorithm 

 

The challenge in classification tasks is to determine which class a test sample belongs to. Class labels may be known in some data sets, which mean that sorting of adding fresh samples to current classes is the only remaining challenge.  If  not,  training  and  testing  components  of  the  dataset  are  separated.  The  machine  is  trained  on  this portion of the training set, which contains class labels, and parameter settings are recorded. The testing portion is used for categorization after being treated as new data. We'll outline the updated categorization process and go over how to use Archimedean-Dombi operator.

Suppose X is a sample and we assign numerical values to express it’s features. Since we are interested in fuzzy values, so all the given data are transformed to values lying in [0, 1].

Step 1: Divide the test items that are to be classified into R classes (T1, T2, T3,..., TR) in the training set.

Step  2:  The  determination  of  a  mean  (ideal)  vector  that  accurately  represents  each  class,  say  using  the generalized mean, is made.

Step 3: If  𝑢𝑖 = (𝑢𝑖(𝑔1), 𝑢𝑖(𝑔2), . . . , 𝑢𝑖(𝑔𝑛))  is the ideal vector for class S i where  𝑢𝑖(𝑔𝑖)  is the value under 𝑔𝑗  in T i, then the similarity between a new class  𝑥 = (𝑥(𝑔1), 𝑥(𝑔2), . . . , 𝑥(𝑔𝑛))  and each of the ideal vectors can be calculated as:
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here,  p is the SM’s parameter. It is possible to use additional techniques (operators) to determine whether the new item and the ideal vectors are similar. The procedure moves on to the aggregation of the similarity vectors  𝑠𝑗 =

𝑝

√1 − |𝑥(𝑔𝑗)𝑝 − 𝑢(𝑔𝑗)𝑝|  and the new object to be categorized across all features.

Step 4: Aggregation of similarities  𝑠1, 𝑠2, . . . , 𝑠𝑛  is carried out using various variants of the Dombi operators previously described. Using the Archimedean-Dombi operator, for instance (signify this with the letter AD), we 121

have:
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here, the Archimedean-Dombi operator's parameter is

> 0.  x becomes a member of a class it assumes highest 𝑠𝑡𝑜𝑡𝑎𝑙, which is calculated for each class.

 

4. Case Study and It’s Solution 

 

Here, we selected the Parkinson's disease data set (Source: Max Little of the University of Oxford produced the dataset in conjunction with the National Centre for Voice and Speech, Denver, Colorado, who captured the speech signals.) In the initial investigation, feature extraction techniques for common voice abnormalities were reported.

This  dataset  includes  various  biological  voice  measurements  taken  from  31  individuals,  23  of  whom  have Parkinson's disease (PD). Each column in the table corresponds to one of the 195 voice recordings from these people,  and  each  column  in  the  table  represents  a  specific  voice  measure  ("name"  column).  According  to  the

"status" column, which is set to 0 for healthy and 1 for PD, the main goal of the data is to distinguish between healthy individuals and those with PD. The information is in CSV ASCII format. One instance per voice recording is present in each row of the CSV file. Each patient has about six recordings, and the first column lists the patient's name.

Using this dataset (Table 1 and Table 2), our aim is to investigate whether a patient has Parkinson disease or not. The attributes are:

C1: MDVP Fo(Hz),

C2: MDVP Fhi(Hz),

C3: MDVP Flo(Hz) - Minimum vocal fundamental frequency, C4: MDVP Jitter(%),

C5: MDVP Jitter(Abs),

C6: MDVP RAP,

C7: MDVP PPQ,

C8: Jitter DDP,

C9: MDVP Shimmer,

C10: MDVP Shimmer (Db),

C11: Shimmer APQ3,

C12: Shimmer APQ5,

C13: MDVP APQ,

C14: Shimmer DDA,

C15: NHR,

C16: HNR,

C17: RPDE, 

C18: D2,

C19: DFA,

C20: Spread1, 

C21: Spread2, 

C22: PPE.

Two classes are there: status - Health status of the subject (one) - Parkinson’s, (zero) - healthy For experimentation, the dataset we considered is divided into two equal portions (training and testing). Here, we denote the samples by  Ai and criteria by  Cj.

For fuzzification we use the following formula:

 

a

a

ij

 =

(if all  a  0) and

ij

 =

(if all  a  0).

j

max

ij

j

a

min

ij

a

 

ij

ij

i

i

 

 

 


122

Table 1.  The mean classifiers for class “0” and class “1”

 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 


Class 

0.7252

0.4518

0.6207

0.1619

0.1464

0.1351

0.1301

0.1351

0.1496

0.1285

0.1727

0

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

Class

0.1318

0.0977

0.1727

0.1113

0.7465

0.6611

0.8521

0.8347

0.4021

0.6491

0.2644

0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Class

0.61

0.3673

0.4518

0.2857

0.2771

0.2703

0.2591

0.2703

0.3453

0.3094

0.3826

1

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

Class

0.3188

0.2604

0.3825

0.2025

0.6324

0.7743

0.8834

0.6829

0.5843

0.7302

0.4706

1

 

Table 2.  The similarity value for each testing sample (fuzzified) with “0” and class “1”

 

 

Similarity with “0” class 

Similarity with “1” class 

A1

0.144145113

0.159773997

A2

0.575021359

0.286578035

A3

0.552410273

0.334837863

A4

0.509532218

0.361486049

A5

0.544625585

0.379381121

A6

0.351243228

0.251780189

A7

0.520272876

0.336881897

A8

0.276654887

0.234348072

A9

0.152640153

0.46719318

A10

0.161441767

0.351336005

A11

0.337241876

0.374562171

A12

0.290716689

0.457036039

A13

0.032975053

0.133548383

A14

0.552253085

0.173997534

A15

0.517859993

0.292758668

A16

0.185212864

0.408563532

A17

0.370632688

0.34024666

A18

0.508360325

0.372319016

A19

0.597596017

0.309236332

A20

0.593659654

0.205367677

A21

0.160755353

0.303007832

A22

0.212114739

0.486641385

A23

0.563133747

0.3139681

A24

0.207011957

0.225787188

A25

0.375734986

0.379791467

A26

0.231467852

0.374775554

A27

3.14698E-07

6.32418E-05

A28

0.328161506

0.313001084

A29

0.019098729

0.068894464

A30

0.053334993

0.165577266

A31

0.171163793

0.373513924
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A32

0.112200466

0.342386877

A33

0.061922531

0.376313985

A34

0.152151945

0.364173224

A35

0.30395204

0.470546678

A36

0.183708592

0.492125457

A37

0.223482397

0.398898011

A38

0.587741358

0.249142602

A39

0.215868202

0.369559093

A40

0.034110559

0.117079969

A41

0.145205121

0.389523549

A42

0.008394177

0.041071912

A43

0.480545492

0.375993986

A44

0.189886774

0.268324204

A45

0.061371942

0.210385898

A46

0.111202655

0.295579394

A47

0.324865904

0.340659101

A48

0.53093962

0.225796433

A49

0.467740157

0.473721977

A50

2.0715E-09

2.32273E-06

A51

0.005558563

0.024458049

A52

0.027095978

0.042961774

A53

0.577666166

0.278465404

A54

0.153294935

0.367524584

A55

0.406543404

0.277518885

A56

0.020123409

0.09136754

A57

0.38071519

0.388569166

A58

0.364022814

0.411819054

A59

0.541349604

0.286716465

A60

0.554301532

0.250449533

A61

0.586407246

0.290567186

A62

0.069131985

0.194848487

A63

0.207103802

0.398472474

A64

0.572431905

0.380261651

A65

0.639265443

0.299479348

A66

0.320370902

0.540050009

A67

0.288204236

0.420589354

A68

0.470748896

0.322116455

A69

0.454133344

0.390411042

A70

0.033432395

0.128777762

A71

0.234026289

0.363599557
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A72

0.092666407

0.358441774

A73

0.142770834

0.175032274

 

The mean accuracy obtained by our method is 0.71. On the other hand, the mean accuracy obtained by using Dombi disjunctive operator [35], and Dombi product operator [35] are respectively is 0.48 and 0.25. Hence, our model is more accurate.

 


5. Conclusions 

 

We've introduced a brand-new classification technique that aggregates data using Archimedean-Dombi operator.

In the past, Dombi operators were used in conjunction with other operators to model decision-making issues. To the  best  of  our  knowledge,  this  is  the  first  instance  in  which  Archimedean-Dombi  operator  has  been  used  to categorize  medical  datasets.  Although  the  Archimedean-Dombi  operator  has  a  number  of  particular  cases (algebraic, Einstein, and Hamachar operators), we have only used the simplest one in this work. A different version of the similarity classifier is offered by each operator. On a real-world medical datasets, the performance of the proposed  classifier  is  compared  with  some  existing  classifiers.  The  Dombi  classifiers  only  managed  48%

(disjunctive  form),  and  25%  (product  case)  while  the  overall  mean  classification  accuracy  with  the  Parkinson illness dataset, compared to the new classifier's 71%. Keep in mind that any advancement in medicine, no matter how little, should be lauded.
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