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Abstract: The term "classification" refers to a supervised learning technique in which samples are given class 

labels based on predetermined classes. Fuzzy classifiers are renowned for their ability to address the issue of 

outliers and deliver the performance resilience that is much needed. The major goal of this study is to provide a 

classification algorithm that is effective and accurate. In this work, we address Archimedean-Dombi aggregation 

operator by extending the similarity classifier. Earlier, Dombi operators were used to study the similarity classifier. 

We focus on the application of Archimedean-Dombi operators during the classifier's aggregate similarity 

calculation. Since Archimedean and Dombi operators are well-known for offering appropriate generalization and 

flexibility respectively in aggregating data, so a different version of the similarity classifier is created. One real-

world medical dataset, namely Parkinson disease data set is used to test the proposed approaches. When compared 

to older existing operators, the new classifiers have better classification accuracy. 

Keywords: Fuzzy set; Archimedean-Dombi operator; Fuzzy similarity measure; Classification; Parkinson’s 

disease data set 

1. Introduction

In this study, the term "classification" refers to a supervised technique where samples are given class labels

based on predetermined classes [1]. The issue domain provides well-established class labels where we can assign 

new samples. The assumption in the traditional meaning is that every sample is a member of a single class, while 

fuzzy techniques connect samples to classes based on the belongingness degree [2]. There is a substantial body of 

classification theory that encompasses decades of productive research trends [3, 4]. Work on pattern categorization 

and other domains has increased as a result of the necessity to create automated systems in most industries [5-9]. 

Fuzzy classifiers are renowned for their ability to address the issue of outliers and deliver the performance 

resilience that is much needed. The fuzzy set theoretic technique is used by the similarity-based classifier that this 

work examines. 

The major goal of this study is to provide categorization algorithms that are effective and accurate. We suggest 

a generalized variation of a similarity-based classifier (SBC) [10] that combines similarities using Dombi operators. 

This is an expansion of the research looked at in the study [11], where the ordered weighted averaging (OWA) 

operator was used to study the similarity classifier. Weight creation for use with quantifiers was a challenge for 

the SBC employing the OWA operator faced [11]. We investigate Dombi aggregation operators' [12] application 

in the similarity classifier in light of the fact that they don't call for any weight generating criteria. Dombi 

aggregation operators were created by parameterizing the triangle norms and conorms that were first introduced 

in 1982 [13]. These operators can be used for modelling and other applications that call for parameter settings 

because they have a configurable parameter. Modeling problems involving multiple attribute decision making 

(MADM) has benefited from the use of Dombi operators [14-17]. Dombi operators were developed to include 

neutro- sophic sets and associated fields, and they have been used to solve real-world problems [18-21]. 

Real-world situations frequently involve data that has ambiguous boundaries and associated uncertainty. 
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Researchers' top priority has always been to manage these uncertainties. Numerous contributions have been made 

toward that end, but Zadeh's introduction of the concept of fuzzy sets (FSs) [22] marked the beginning of a real 

endeavor. Since then, FS theory has been used in various fields, including pattern detection [23], medical diagnosis 

[24], and decision-making [25]. Numerous extensions of fuzzy sets [26-32] have been developed while keeping in 

mind the significance of fuzzy sets. These are all current fields of study that have been used to solve issues in the 

actual world [33]. 

In this study, we incorporate the Archimedean-Dombi operator system into the similarity classifier. Building 

ideal (mean) vectors for representing every class in the training set is the primary task for a SBC. From there, 

classification choices for each sample in the testing set are made using these ideal (mean) vectors. Algebraic, 

Einstein, Hamachar cases are all contained in the operator system of Archimedean-Dombi. Earlier, the generalised 

mean [34], OWA operator [11], Dombi operator [35], and other aggregation operators were examined with the 

similarity classifier. We will demonstrate that, when evaluated on actual data sets, the application of Archimedean-

Dombi operators produces better results than the previously studied (conventional) similarity classifier. MS-

EXCEL software is used for implementations and visualizations. 

The following are a summary of this work's significant contributions: 

(i) An algorithm has been developed around a novel categorization model. In this model, an Archimedean-

Dombi similarity classifier is used. 

(ii) On real-world data sets, the proposed similarity classifier has been applied and tested.

Following is a summary of the remaining paper.

We introduce some significant and essential concepts related to our study in Section 2. In Section3, we design

a methodology for similarity based classification with fuzzy Archimedean-Dombi operator. To clarify the created 

method, we use a case study related to Parkinson’s disease in Section 4. We draw some conclusions from the entire 

study and provide a summary of the prospects for the future in Section 5. 

2. Basic Concepts

Here, we recall all relevant concepts. 

2.1 T-Norm and T-Conorms 

In an effort to explore statistical metric spaces, Menger [36] originally introduced t-norms and t-conorms in his 

work for generalizing the tri-angle inequality from classical metric spaces to statistical metric spaces [37]. The 

axioms of t-norms and t-conorms that we cited here which were originally developed by Schweizer and Sklar [38] 

developed. Later, as general aggregation operators, Zimmermann and Zysno [39] examined these procedures. 

Since then, other t- norm and t-conorm varieties have been created [37]. Throughout the paper we shall use I to 

denote [0, 1]. 

Definition 1 [37]: A fuzzy t-norm 𝑔: 𝐼 × 𝐼 → 𝐼 is a mapping that holds the postulates in this manner: 

(i) 𝑔(𝑞,  1) = 𝑞 for 𝑞 ∈ 𝐼,
(ii) 𝑔(𝑞,  𝑟) ≤ 𝑔(𝑞′,  𝑟′) provided 𝑞 ≤ 𝑞′,  𝑟 ≤ 𝑟′ for 𝑞, 𝑞′,  𝑟,  𝑟′ ∈ 𝐼,
(iii) 𝑔(𝑞,  𝑟) = 𝑔(𝑟,  𝑞) for 𝑞,  𝑟 ∈ 𝐼,
(iv) 𝑔(𝑞,  𝑔(𝑟,  𝑠)) = 𝑔(𝑔(𝑞,  𝑟),  𝑠) for 𝑞,  𝑟,  𝑠 ∈ 𝐼.
Definition 2 [37]: A fuzzy t-conorm ℎ: 𝐼 × 𝐼 → 𝐼 is a mapping that holds the postulates as follows:

(i) ℎ(𝑞,  0) = 𝑡 for 𝑞 ∈ 𝐼,
(ii) ℎ(𝑞,  𝑟) ≤ ℎ(𝑞′,  𝑟′) provided 𝑞 ≤ 𝑞′,  𝑟 ≤ 𝑟′ for 𝑞, 𝑞′,  𝑟,  𝑟′ ∈ 𝐼,
(iii) ℎ(𝑡,  𝑟) = ℎ(𝑟,  𝑡) for 𝑞,  𝑟 ∈ 𝐼,
(iv) ℎ(𝑡,  ℎ(𝑟,  𝑠)) = ℎ(ℎ(𝑡,  𝑟),  𝑠) for 𝑞,  𝑟,  𝑠 ∈ 𝐼.
Definition 3 [37]: A t-norm mapping 𝑔(𝑞,  𝑟) is said to be strictly Archimedean t-norm if it is continuous,

𝑔(𝑞,  𝑞) < 𝑞 for 𝑞 ∈ (0,  1), and strictly increasing for 𝑞,  𝑟 ∈ (0,  1). 
Definition 4 [37]: A t-conorm mapping ℎ(𝑡,  𝑟) is said to be strictly Archimedean t-norm if it is continuous, 

ℎ(𝑞,  𝑞) < 𝑞 for 𝑞 ∈ (0,  1), and strictly increasing for 𝑞,  𝑟 ∈ (0,  1). 
Definition 5 [37]: Suppose 𝜃: (0,  1] → 𝑅 is a continuous mapping such that θ is strictly decreasing. Then a 

strictly Archimedean t-norm is given by 𝛿(𝑥, 𝑥 ′) = 𝜃−1(𝜃(𝑥) + 𝜃(𝑥 ′)) for 𝑥, 𝑥 ′ ∈ (0,  1].
Definition 6 [37]: Suppose 𝜓: [0,1) → 𝑅 is a continuous mapping such that ψ(l)=θ(1-l) for 𝑙 ∈ [0,  1) and ψ 

is strictly increasing. Then a strictly Archimedean t-conorm is defined by 𝜌(𝑥, 𝑥 ′) = 𝜓−1(𝜓(𝑥) + 𝜓(𝑥 ′)) for

𝑥, 𝑥 ′ ∈ (0,  1]. 

2.2 Dombi Operator 

Definition 7 [12]: For any two real numbers x and y in [0, 1], the Dombi conjunctive operator is defined as: 
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2.3 Similarity Measure (SM) 

 

A generalization of the idea of equivalency is the concept of similarity. In the area of fuzzy logic, Zadeh [40] 

provided a concept of similarity relations that is connected to the traditional example of equivalence relations. The 

concept by Zadeh offers a framework for object comparison and eventual computing of similarities between them. 

However, there are a number of additional metrics used in data analysis to compare objects, the majority of which 

are based on distance [2]. The concepts of distance (or metric) and similarity are closely related to one another 

[41]. Generalizations to more arguments can be done successfully when they are equipped with a similarity relation 

in a binary situation. Lukasiewicz [42] created a system that allows for the analysis of similarities between 

numerous objects. The fact that the mean of several similarities in a Lukasiewicz -structure is still a similarity [43] 

encourages the usage of classifiers in fuzzy set theory. We employ SMs in the generalized Lukasiewicz -structure 

in the classifier design with Archimedean-Dombi operators. According to popular opinion, SMs offer methods for 

comparing objects such that the degree of similarity can be expressed numerically. If two items are exactly the 

same, they have a similarity score of 1, while unrelated objects get a similarity value of 0. Other scores of similarity 

vary from 0 to 1. Similarities are hence values in the range [0, 1], which is essentially appropriate for the use of 

fuzzy set theory approaches. The suggested approach is then presented. For any two numbers x, y[0, 1], the 

similarity between them is defined as: 𝑠(𝑥, 𝑦) = 1 − |𝑥 − 𝑦| and the generalized similarity between them is 

defined by �̃�(𝑥, 𝑦) = √1 − |𝑥𝑝 − 𝑦𝑝|
𝑝

, where, p≥1 is a parameter. 

 

3. Methodology 

 

To define a new similarity based classifier, first we propose fuzzy Archimedean-Dombi operations. 

 

3.1 Fuzzy Archimedean-Dombi Operations 

 

Definition 9: Consider the FSs 𝜁𝑗 =< 𝜇𝑗 > (𝑗 = 1,2). Assume that 
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)

𝛼
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where 𝑝 ∈ [0,  1] and 𝛼 ≥ 1. Then, the Archimedean-Dombi (AD) operations on FSs are given below: 
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Theorem 1: Consider the FSs 𝜁𝑗 =< 𝜇𝑗 > (𝑗 = 1,2) and 𝜆, 𝜆1,  𝜆2 > 0. Then we have: 

 

(i) 1 2 2 1,AD AD    =   
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(ii) 1 2 1 2( ) ( ) ( ),AD AD AD AD AD       =   

 

(iii) 1 2 1 1 1 2 1( ) ( ) ( ).AD AD AD AD      + =   

 

Proof: Follows from Definition 9. 

 

3.2 Fuzzy Archimedean-Dombi Aggregation Operator 

 

Definition 10: Suppose 𝜁𝑗 =< 𝜇𝑗 > (𝑗 = 1,2, . . . ,  𝑛) is a set of FSs. Then we define the fuzzy Archimedean-

Dombi geometric (FADG) operator as: 𝐹𝐴𝐷𝐺(𝜁1 , 𝜁2,   . . . ,  𝜁𝑛) =⊗𝐴𝐷

𝑗=1
𝑛

𝜁𝑗 . 

Theorem 2: The aggregated value 𝐹𝐴𝐷𝐺(𝜁1, 𝜁2,   . . . ,  𝜁𝑛) is also an FS. In addition, we get: 
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Some important properties of the FFADWG operator are given below. 

Theorem 3 (Shift invariance): If 𝜁0(≠ 𝜁𝑗)  is an FS, then 𝐹𝐴𝐷𝐺(𝜁1 , 𝜁2,   . . . ,  𝜁𝑛) 

𝜁0 ⊗𝐴𝐷 𝜁2,   . . . ,  𝜁0 ⊗𝐴𝐷 𝜁𝑛) = 𝜁0 ⊗𝐴𝐷 𝐹𝐴𝐷𝐺(𝜁1, 𝜁2,   . . . ,  𝜁𝑛). 
Theorem 4 (Idempotency): If 𝜁0(≠ 𝜁𝑗) is an FS, then 𝐹𝐴𝐷𝐺(𝜁1, 𝜁2,   . . . ,  𝜁𝑛) = 𝜁0. 

Theorem 5 (Boundedness): For a collection of FSs 𝜁𝑗 =< 𝜇𝑗 >, we have 𝜁− ≺ 𝐹𝐴𝐷𝐺(𝜁1, 𝜁2,   . . . ,  𝜁𝑛) ≺ 𝜁+, 

where 𝜁− = ⟨𝑚𝑖𝑛
𝑗
𝜇𝑗⟩ and 𝜁+ = ⟨𝑚𝑎𝑥

𝑗
𝜇𝑗⟩. 

Theorem 6 (Monotonicity): If 𝜁𝑗 =< 𝜇𝑗 > and 𝜁𝑗
′ =< 𝜇𝑗

′ > are two collections of FFNs satisfying 𝜇𝑗 ≤ 𝜇𝑗
′ , 

∀𝑗, then 𝐹𝐴𝐷𝐺(𝜁1, 𝜁2,   . . . ,  𝜁𝑛) ≺ 𝐹𝐴𝐷𝐺(𝜁1
′ , 𝜁2

′ , . . . , 𝜁𝑛
′ ). 

 

3.3 Decision-Making Algorithm 

 

The challenge in classification tasks is to determine which class a test sample belongs to. Class labels may be 

known in some data sets, which mean that sorting of adding fresh samples to current classes is the only remaining 

challenge. If not, training and testing components of the dataset are separated. The machine is trained on this 

portion of the training set, which contains class labels, and parameter settings are recorded. The testing portion is 

used for categorization after being treated as new data. We'll outline the updated categorization process and go 

over how to use Archimedean-Dombi operator. 

Suppose X is a sample and we assign numerical values to express it’s features. Since we are interested in fuzzy 

values, so all the given data are transformed to values lying in [0, 1]. 

Step 1: Divide the test items that are to be classified into R classes (T1, T2, T3,..., TR) in the training set.  

Step 2: The determination of a mean (ideal) vector that accurately represents each class, say using the 

generalized mean, is made.  

Step 3: If 𝑢𝑖 = (𝑢𝑖(𝑔1), 𝑢𝑖(𝑔2), . . . , 𝑢𝑖(𝑔𝑛)) is the ideal vector for class Si where 𝑢𝑖(𝑔𝑖) is the value under 

𝑔𝑗 in Ti, then the similarity between a new class 𝑥 = (𝑥(𝑔1), 𝑥(𝑔2), . . . , 𝑥(𝑔𝑛)) and each of the ideal vectors can 

be calculated as:  
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here, p is the SM’s parameter. It is possible to use additional techniques (operators) to determine whether the new 

item and the ideal vectors are similar. The procedure moves on to the aggregation of the similarity vectors 𝑠𝑗 =

√1 − |𝑥(𝑔𝑗)
𝑝 − 𝑢(𝑔𝑗)

𝑝|
𝑝

 and the new object to be categorized across all features. 

Step 4: Aggregation of similarities 𝑠1, 𝑠2, . . . , 𝑠𝑛  is carried out using various variants of the Dombi operators 

previously described. Using the Archimedean-Dombi operator, for instance (signify this with the letter AD), we 

121



have: 
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here, the Archimedean-Dombi operator's parameter is  > 0. x becomes a member of a class it assumes highest 

𝑠𝑡𝑜𝑡𝑎𝑙 , which is calculated for each class. 

 
4. Case Study and It’s Solution 

 
Here, we selected the Parkinson's disease data set (Source: Max Little of the University of Oxford produced the 

dataset in conjunction with the National Centre for Voice and Speech, Denver, Colorado, who captured the speech 

signals.) In the initial investigation, feature extraction techniques for common voice abnormalities were reported. 

This dataset includes various biological voice measurements taken from 31 individuals, 23 of whom have 

Parkinson's disease (PD). Each column in the table corresponds to one of the 195 voice recordings from these 

people, and each column in the table represents a specific voice measure ("name" column). According to the 

"status" column, which is set to 0 for healthy and 1 for PD, the main goal of the data is to distinguish between 

healthy individuals and those with PD. The information is in CSV ASCII format. One instance per voice recording 

is present in each row of the CSV file. Each patient has about six recordings, and the first column lists the patient's 

name. 

Using this dataset (Table 1 and Table 2), our aim is to investigate whether a patient has Parkinson disease or 

not. The attributes are: 

C1: MDVP Fo(Hz), 

C2: MDVP Fhi(Hz), 

C3: MDVP Flo(Hz) - Minimum vocal fundamental frequency, 

C4: MDVP Jitter(%), 

C5: MDVP Jitter(Abs), 

C6: MDVP RAP, 

C7: MDVP PPQ, 

C8: Jitter DDP, 

C9: MDVP Shimmer, 

C10: MDVP Shimmer (Db), 

C11: Shimmer APQ3, 

C12: Shimmer APQ5, 

C13: MDVP APQ, 

C14: Shimmer DDA, 

C15: NHR, 

C16: HNR, 

C17: RPDE, 

C18: D2, 

C19: DFA, 

C20: Spread1, 

C21: Spread2, 

C22: PPE. 

Two classes are there: status - Health status of the subject (one) - Parkinson’s, (zero) - healthy 

For experimentation, the dataset we considered is divided into two equal portions (training and testing). Here, 

we denote the samples by Ai and criteria by Cj. 

For fuzzification we use the following formula: 

 

(if all 0) and (if all 0).
max min

ij ij

j ij j ij

ij ij
ii

a a
a a

a a
 =  = 
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Table 1. The mean classifiers for class “0” and class “1” 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Class 

0.7252 0.4518 0.6207 0.1619 0.1464 0.1351 0.1301 0.1351 0.1496 0.1285 0.1727 0 

C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 Class 

0.1318 0.0977 0.1727 0.1113 0.7465 0.6611 0.8521 0.8347 0.4021 0.6491 0.2644 0 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Class 

0.61 0.3673 0.4518 0.2857 0.2771 0.2703 0.2591 0.2703 0.3453 0.3094 0.3826 1 

C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 Class 

0.3188 0.2604 0.3825 0.2025 0.6324 0.7743 0.8834 0.6829 0.5843 0.7302 0.4706 1 

 

Table 2. The similarity value for each testing sample (fuzzified) with “0” and class “1” 

 
 Similarity with “0” class Similarity with “1” class 

A1 0.144145113 0.159773997 

A2 0.575021359 0.286578035 

A3 0.552410273 0.334837863 

A4 0.509532218 0.361486049 

A5 0.544625585 0.379381121 

A6 0.351243228 0.251780189 

A7 0.520272876 0.336881897 

A8 0.276654887 0.234348072 

A9 0.152640153 0.46719318 

A10 0.161441767 0.351336005 

A11 0.337241876 0.374562171 

A12 0.290716689 0.457036039 

A13 0.032975053 0.133548383 

A14 0.552253085 0.173997534 

A15 0.517859993 0.292758668 

A16 0.185212864 0.408563532 

A17 0.370632688 0.34024666 

A18 0.508360325 0.372319016 

A19 0.597596017 0.309236332 

A20 0.593659654 0.205367677 

A21 0.160755353 0.303007832 

A22 0.212114739 0.486641385 

A23 0.563133747 0.3139681 

A24 0.207011957 0.225787188 

A25 0.375734986 0.379791467 

A26 0.231467852 0.374775554 

A27 3.14698E-07 6.32418E-05 

A28 0.328161506 0.313001084 

A29 0.019098729 0.068894464 

A30 0.053334993 0.165577266 

A31 0.171163793 0.373513924 
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A32 0.112200466 0.342386877 

A33 0.061922531 0.376313985 

A34 0.152151945 0.364173224 

A35 0.30395204 0.470546678 

A36 0.183708592 0.492125457 

A37 0.223482397 0.398898011 

A38 0.587741358 0.249142602 

A39 0.215868202 0.369559093 

A40 0.034110559 0.117079969 

A41 0.145205121 0.389523549 

A42 0.008394177 0.041071912 

A43 0.480545492 0.375993986 

A44 0.189886774 0.268324204 

A45 0.061371942 0.210385898 

A46 0.111202655 0.295579394 

A47 0.324865904 0.340659101 

A48 0.53093962 0.225796433 

A49 0.467740157 0.473721977 

A50 2.0715E-09 2.32273E-06 

A51 0.005558563 0.024458049 

A52 0.027095978 0.042961774 

A53 0.577666166 0.278465404 

A54 0.153294935 0.367524584 

A55 0.406543404 0.277518885 

A56 0.020123409 0.09136754 

A57 0.38071519 0.388569166 

A58 0.364022814 0.411819054 

A59 0.541349604 0.286716465 

A60 0.554301532 0.250449533 

A61 0.586407246 0.290567186 

A62 0.069131985 0.194848487 

A63 0.207103802 0.398472474 

A64 0.572431905 0.380261651 

A65 0.639265443 0.299479348 

A66 0.320370902 0.540050009 

A67 0.288204236 0.420589354 

A68 0.470748896 0.322116455 

A69 0.454133344 0.390411042 

A70 0.033432395 0.128777762 

A71 0.234026289 0.363599557 
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A72 0.092666407 0.358441774 

A73 0.142770834 0.175032274 

 

The mean accuracy obtained by our method is 0.71. On the other hand, the mean accuracy obtained by using 

Dombi disjunctive operator [35], and Dombi product operator [35] are respectively is 0.48 and 0.25. Hence, our 

model is more accurate. 

 

5. Conclusions 

 

We've introduced a brand-new classification technique that aggregates data using Archimedean-Dombi operator. 

In the past, Dombi operators were used in conjunction with other operators to model decision-making issues. To 

the best of our knowledge, this is the first instance in which Archimedean-Dombi operator has been used to 

categorize medical datasets. Although the Archimedean-Dombi operator has a number of particular cases 

(algebraic, Einstein, and Hamachar operators), we have only used the simplest one in this work. A different version 

of the similarity classifier is offered by each operator. On a real-world medical datasets, the performance of the 

proposed classifier is compared with some existing classifiers. The Dombi classifiers only managed 48% 

(disjunctive form), and 25% (product case) while the overall mean classification accuracy with the Parkinson 

illness dataset, compared to the new classifier's 71%. Keep in mind that any advancement in medicine, no matter 

how little, should be lauded. 

 

Author Contributions 

 

Conceptualization, A. Saha; methodology, A. Saha; software, J. Reddy; validation, J. Reddy and R. Kumar; 

formal analysis, A. Saha; investigation, A. Saha; data curation, J. Reddy and R. Kumar; writing—original draft 

preparation, J. Reddy and R. Kumar; writing—review and editing, A. Saha; supervision, A. Saha; project 

administration, A. Saha. All authors have read and agreed to the published version of the manuscript.”  

 

Data Availability 

 

The data used to support the findings of this study are available from the corresponding author upon request. 

 

Conflicts of Interest 

 

The authors declare no conflict of interest. 

 

References 

 

[1] R. Duda and P. Hart, Pattern Classification and Scene Analysis, USA: John Wiley and Sons, pp. 731-739, 

1973. 

[2] H. Bandemer and W. Näther, Fuzzy Data Analysis, Dordrecht, Netherlands: Kluwer Academic Publishers 

Group, 1992. 

[3] S. Raudys, Statistical and neural classifiers: An integrated approach to design, London, UK: Springer-Verlag, 

2001. 

[4] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification algorithms based on traditional 

machine learning and deep learning,” Pattern Recognit. Lett., vol. 141, pp. 61-67, 2021. 

https://doi.org/10.1016/j.patrec.2020.07.042. 

[5] X. Zhang, Y. Fan, and J. Yang, “Feature selection based on fuzzy neighborhood relative decision entropy,” 

Pattern Recognit. Lett., vol. 146, pp. 100-107, 2021. https://doi.org/10.1016/j.patrec.2021.03.001. 

[6] H. Gweon and H. Yu, “A nearest neighbor based active learning method and its application to time series 

classification,” Pattern Recognit. Lett., vol. 146, pp. 230-236, 2021. 

https://doi.org/10.1016/j.patrec.2021.03.016. 

[7] S. Tumrani, Z. Deng, H. Lin, and J. Shao, “Partial attention and multi-attribute learning for vehicle re-

identification,” Pattern Recognit. Latters., vol. 138, pp. 290-297, 2020. 

https://doi.org/10.1016/j.patrec.2020.07.034. 

[8] G. Dougherty, Pattern Recognition and Classification, An Introduction, USA: Springer Science, 2013. 

[9] M. M. Kumbure, P. Luukka, and M. Collan, “A new fuzzy k-nearest neighbor classifier based on Bonferroni 

means,” Pattern Recognit. Lett., vol. 140, pp. 172-178, 2020. https://doi.org/10.1016/j.patrec.2020.10.005. 

[10] P. Luukka, K. Saastamoinen, and V. Kononen, "A classifier based on the maximal fuzzy similarity in the 

generalized Lukasiewicz-structure," In 10th IEEE International Conference on Fuzzy Systems, Melbourne, 

125



VIC, Australia, 02-05 December 2001, IEEE, pp. 195-198. 

[11] P. Luukka and O. Kurama, “Similarity classifier with ordered weighted averaging operators,” Expert Syst. 

Appl., vol. 40, no. 4, pp. 995-1002, 2013. https://doi.org/10.1016/j.eswa.2012.08.014. 

[12] J. Dombi, “On a certain class of aggregative operators,” Inf. Sci., vol. 245, pp. 313-328, 2013. 

https://doi.org/10.1016/j.ins.2013.04.010. 

[13] J. Dombi, “General class of fuzzy operators, the de morgan class of fuzzy operators and fuzziness measures 

induced by fuzzy operators,” Fuzzy Sets. Syst., vol. 8, no. 2, pp. 149-163, 1982. https://doi.org/10.1016/0165-

0114(82)90005-7. 

[14] C. Jana, T. Senapati, M. Pal, and R. R. Yager, “Picture fuzzy Dombi aggregation operators: Application to 

MADM process,” Appl. Soft. Comput., vol. 74, pp. 99-109, 2019. https://doi.org/10.1016/j.asoc.2018.10.021. 

[15] C. Jana, M. Pal, and J. Wang, “Bipolar fuzzy Dombi aggregation operators and its ap- plication in multiple-

attribute decision-making process,” J. Ambient Intell. Hu-maniz. Comput., vol. 10, no. 9, pp. 3533-3549, 

2019. https://doi.org/10.1007/s12652-018-1076-9. 

[16] C. Jana, G. Muhiuddin, and M. Pal, “Some dombi aggregation of q-rung orthopair fuzzy numbers in multiple-

attribute decision making,” Int. J. Intell. Syst., vol. 34, no. 12, pp. 3220-3240, 2019. 

https://doi.org/10.1002/int.22191. 

[17] C. Jana, G. Muhiuddin, and M. Pal, “Multi-criteria decision making approach based on SVTrN Dombi 

aggregation functions,” Artif. Intell. Rev., vol. 54, pp. 1-39, 2021. https://doi.org/10.1007/s10462-020-09936-

0. 

[18] Q. Khan, P. Liu, T. Mahmood, F. Smarandache, and K. Ullah, “Some interval neutro- sophic Dombi power 

Bonferroni mean operators and their application in multi attribute decision making,” Symmetry, vol. 10, no. 

10, Article ID: 459, 2018. https://doi.org/10.3390/sym10100459. 

[19] P. Liu, Q. Khan, T. Mahmood, F. Smarandache, and Y. Li, “Multiple attribute group decision making based 

on 2-tuple linguistic neutrosophic Dombi power Hero- nian mean operators,” IEEE Access, vol. 7, pp. 

100205-100230, 2019. https://doi.org/10.1109/ACCESS.2019.2925344. 

[20] S. Ashraf, S. Abdullah, and T. Mahmood, “Spherical fuzzy Dombi aggregation operators and their application 

in group decision making problems,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 7, pp. 2731-2749, 

2020. https://doi.org/10.1007/s12652-019-01333-y. 

[21] S. Ayub, S. Abdullah, F. Ghani, M. Qiyas, and M. Yaqub Khan, “Cubic fuzzy Heronian mean Dombi 

aggregation operators and their application on multi-attribute decision-making problem,” Soft Comput., vol. 

25, pp. 4175-4189, 2021. https://doi.org/10.1007/s00500-020-05512-4. 

[22] L. A. Zadeh, “Fuzzy set,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965. 

https://doi.org/10.1016/S0019-9958(65)90241-X. 

[23] W. Pedrycz, “Fuzzy sets in pattern recognition: methodology and methods,” Pattern Recogn., vol. 23, no. 1-

2, pp. 121-146, 1990. https://doi.org/10.1016/0031-3203(90)90054-O. 

[24] J. F. F. Yao and J. S. Yao, “Fuzzy decision making for medical diagnosis based on fuzzy number and 

compositional rule of inference,” Fuzzy Sets Syst., vol. 120, no. 2, pp. 351-366, 2001. 

https://doi.org/10.1016/S0165-0114(99)00071-8. 

[25] P. Y. Ekel, “Fuzzy sets and models of decision making,” Computers Mathematics with Applications, vol. 44, 

no. 7, pp. 863-875, 2012. https://doi.org/10.1016/S0898-1221(02)00199-2.  

[26] Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, vol. 11, pp. 341-356, 

1982. https://doi.org/10.1007/BF01001956. 

[27] D. Molodtsov, “Soft set theory-first results,” Comput. Math. Appl., vol. 37, no. 4-5, pp. 19-31, 1999. 

https://doi.org/10.1016/S0898-1221(99)00056-5. 

[28] K. T. Atanassov, “Introduce a novel PCA method for intuitionistic fuzzy sets based on cross entropy,” 

Applied Mathematics, vol. 20, pp. 87-96, 1983. http://dx.doi.org/10.1016/S0165-0114(86)80034-3. 

[29] M. Riaz and M. R. Hashmi, “Linear Diophantine fuzzy set and its applications to- wards multi-attribute 

decision-making problems,” J. Intell. Fuzzy Syst., vol. 37, no. 4, pp. 5417-5439, 2020. 

http://dx.doi.org/10.3233/JIFS-190550. 

[30] K. M. Lee, “Bipolar valued fuzzy sets and their operations,” Proceedings of International Conference on 

Intelligent Technologies, vol. 2000, pp. 307-312, 2000. 

[31] M. Shabir and M. Naz, “On bipolar soft sets,” Mathematics, vol. 2013, Article ID: 1344, 2013. 

https://doi.org/10.48550/arXiv.1303.1344. 

[32] T. Mahmood, “A novel approach towards bipolar soft sets and their applications,” J. Mathematics, vol. 2020, 

Article ID: 4690808, 2020. https://doi.org/10.1155/2020/4690808. 

[33] S. Khan, S. Abdullah, S. Ashraf, R. Chinram, and S. Baupradist, “Decision support technique based on 

neutrosophic yager aggregation operators: Application in solar power plant locations-case study of 

Bahawalpur, Pakistan,” Math. Probl. Eng, vol. 2020, Article ID: 6677676, 2020. 

https://doi.org/10.1155/2020/6677676. 

[34] P. Luukka and T. Leppälampi, “Similarity classifier with generalized mean applied to medical data,” Comput. 

126



Biol. Med., vol. 36, no. 9, pp. 1026-1040, 2006. https://doi.org/10.1016/j.compbiomed.2005.05.008. 

[35] O. Kurama, “A new similarity based classified with Dombi aggregative operators,” Pattern Recognit. Lett.,

vol. 151, pp. 229-235, 2021. https://doi.org/10.1016/j.patrec.2021.08.024.

[36] K. Menger, “Statistical metrics,” Proc. Natl. Acad. Sci., vol. 8, pp. 535-537, 1942.

https://doi.org/10.1007/978-3-7091-6045-9_35.

[37] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, Dordrecht, Netherlands: Kluwer Academic

Publishers, 2013.

[38] B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific J. Math., vol. 10, no. 1, pp. 313-334, 1960.

[39] H. J. Zimmerman and P. Zysno, “Latent connectives in human decision making,” Fuzzy Sets Syst., vol. 4, no.

1, pp. 37-51, 1980. https://doi.org/10.1016/0165-0114(80)90062-7.

[40] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Inform. Science, vol. 3, no. 2, pp. 177-200, 1971.

https://doi.org/10.1016/S0020-0255(71)80005-1.

[41] F. Formato, G. Gerla, and L. Scarpati, “Fuzzy subgroups and similarities,” Soft Comput., vol. 3, no. 1, pp. 1-

6, 1999. https://doi.org/10.1007/s005000050085.

[42] J. Łukasiewicz, Selected Works, Amsterdam: North-Holland, 1970.

[43] E. Turunen, Mathematics Behind Fuzzy Logic, Advances in Soft Computing, Heidelberg: Physica-Verlag,

1999.

127




