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Abstract: This study addresses the challenge of selecting appropriate electric vehicles for urban logistics, with a
specific focus on the impact of various multi-criteria analysis methods on this complex decision-making process. The
investigation utilizes a mixed methodology, combining objective weight determination methods, such as Entropy,
CRITIC (Criteria through the Inter-Criteria Correlation), and MEREC (Method Based on the Removal Effects of
Criteria), alongside standard deviation and a modified version of the standard deviation method. The Simple Additive
Weighting (SAW) method was further employed for alternative ranking. Application of these methods across nine
diverse Small Van vehicles, assessed according to 12 criteria, highlighted the paramountcy of Charge Time and Cargo
Volume as factors bearing the most significant weight in decision-making. The Toyota Proace City Verso Electric
L2 emerged as a superior choice under most conditions. Yet, the results varied when applying weights deduced
through the MEREC method, leading to the ascendency of the Renault Kangoo E-Tech. The study underscores
that the objective determination of criteria weights plays an influential role in the ranking of alternatives, hence,
the requirement for decision-makers’ subjectivity in the final choice, factoring in the unique attributes of individual
companies. This research contributes to the understanding of how multi-criteria analysis can facilitate electric vehicle
selection for urban logistics, playing a crucial part in reducing harmful urban emissions.
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1 Introduction
Evolution in market dynamics and increasing environmental conservation concerns have ushered in changes

within the automotive industry. The advent of the 21st century’s third decade has marked the onset of a new era
dominated by electric cars (e-cars) [1]. E-cars are being increasingly adopted globally, in response to an uptick in
environmental consciousness among drivers. This shift has spurred the auto industry to meet the evolving demand,
resulting in a growing array of e-car models [2].

E-cars offer numerous advantages over traditional fossil fuel vehicles, primarily characterized by their superior
energy efficiency and environmental impact [2]. Amid growing urban air pollution and noise challenges, govern-
mental bodies are seeking effective solutions [3]. This has culminated in prohibitions on diesel engines in various
urban environments [4], further enhancing the demand for both personal and commercial e-cars.

In parallel with the e-car industry’s rapid growth, the development of logistics services utilizing these vehicles
has been observed [5]. Such vehicles, besides their fundamental role in goods and people transportation, exhibit zero
environmental impact – an increasingly pertinent feature in contemporary society [5]. It has been noted that fossil
fuel vehicles consume more fuel within urban environments as compared to open roads [6], thereby significantly
contributing to urban air pollution [7]. This is being addressed through the incorporation of e-cars into urban
logistics, emerging as a critical segment within green logistics [8].

The importance of e-cars extends beyond environmental implications; they play a significant role in cost reduction
within urban logistics. It has been posited that the last mile in urban logistics can be the most intricate and account
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for up to 28% of the total costs [3]. As a solution to this, e-cars are becoming increasingly instrumental for urban
logistics firms.

The decision to select the appropriate e-car within urban logistics, especially those classified as Small Van
vehicles, is highly dependent on their technical characteristics. This selection process falls under the multi-criteria
decision-making (MCDM) problem, which involves the choice among several e-cars based on their distinct technical
characteristics [9]. It is, however, imperative to understand the importance of these technical characteristics for the
decision-maker.

In practice, there are two predominant approaches to determining the importance of these technical characteristics:
the subjective and the objective approach [9]. A hybrid of these two approaches can also be employed. Based on
these approaches, multi-criteria methods are bifurcated into subjective and objective methods for determining the
criteria weight. While subjective methods allow the decision-maker to determine the criteria importance, objective
methods calculate this importance based on alternative values, with more weight given to criteria with a greater
dispersion in alternative values [10].

The objective determination of criteria importance was employed in this study, a decision grounded in the study’s
universal applicability rather than catering to specific firms and their subjective evaluations. This study, therefore,
evaluates Small Van e-cars using their technical characteristics and examines how objective weight determination
methods impact the final choice. The significance of this study manifests in several ways:

• Assisting decision-making in e-car selection for urban logistics,
• Analyzing the influence of objective weight determination on the final choice,
• Identifying the e-car with the most advantageous technical characteristics for urban logistics,
• Promoting green logistics in urban areas through e-car utilization.
By addressing these aspects, the study contributes to filling some gaps in existing research. First, it addresses

the possibility of different weights for criteria when using objective methods, and how these weights might influence
the final decision. Second, it provides a comprehensive evaluation of e-cars, taking into account their overall
characteristics rather than isolated features. Lastly, in the face of increasing pressure to reduce pollution, especially
in urban areas, this study advocates for the use of e-cars in urban logistics as a means to mitigate pollution.

2 Literature Review
The field of study under review is the application of electric vehicles (e-cars) in urban logistics and the use of

methods for objective weight determination in the selection of these vehicles. These two intertwining areas can be
dissected in the literature from two dimensions: the practical application of e-cars and the methodological framework
for evaluating their selection.

The practical application of e-cars in urban logistics has been scrutinized under various lenses, with common
concerns centering around the vehicles’ single-charge range and battery charging systems [11]. Li et al. [11] has
specifically focused on these concerns, suggesting the optimization of route planning as a solution. The positive
impact of e-cars in urban logistics is documented by Duarte et al. [12], who present evidence of energy consumption
reduction through e-cars in Lisbon city’s urban logistics. Likewise, Settey et al. [13] have advocated for the
deployment of e-cars in urban logistics, linking this to a decrease in city pollution, a concern heightened by the
increased reliance on delivery services during the recent pandemic.

Conversely, Bac and Erdem [14] caution about the limitations of e-cars, arguing for the necessity of planning
optimal routes to increase delivery efficiency per charge. Following an economic angle, Yan et al. [5] put forward that
e-cars’ deployment in urban logistics is profitable, offering the Chinese experience as a case study. An alternative
suggestion by Melo and Baptista [15] is the utilization of electric off-road bicycles in urban logistics for enhanced
environmental and social impacts without efficiency reduction. In a bid to minimize environmental effects, Wang et
al. [16] propose a combination of e-cars and fossil fuel vehicles, whereas Strale [8] pushes for the incorporation of
e-cars into the broader framework of sustainable logistics.

Given the necessity to optimize urban logistics for total cost reduction and efficiency improvement, Muñoz-
Villamizar et al. [17] champion the use of e-cars. Furthermore, research by Edel et al. [18] on lightweight solutions
for e-cars’ bodywork indicates that textiles could be ideal for manufacturing bodies for light logistics vehicles,
compensating for battery-induced weight increases.

The second angle of the literature examines the methodological models for evaluating e-cars selection, with
varying methods for determining criteria weights. Puška et al. [19] utilize a combination of the MEREC and
CRADIS methods for e-cars selection, implementing the double normalization approach. Other research by Nguyen
et al. [20] investigates e-cars’ sales and market shares across 14 countries, employing the CRITIC method and the
Gray Relation Analysis theory of grey systems. The Entropy method and TOPSIS method are used by Dwivedi and
Sharma [21] in their assessment of different e-cars against various criteria to identify optimal performance.

Štilić et al. [22] evaluated e-cars for taxi services using SWARA, MSDM, and MABAC methods. Bączkiewicz and
Wątróbski [23] applied a range of methods, including Entropy, Standard Deviation (SD), CRITIC, Gini coefficient-
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based, MEREC, Statistical Variance, CILOS, IDOCRIW, Coefficient of Variation, and Angle weighting methods
using a Python library to determine criteria weight. The VIKOR method was then used to rank e-cars.

Thus, a thorough understanding of the existing literature underlines the increasing importance of e-cars in urban
logistics and the diverse methodological approaches employed in their evaluation. This research contributes to
this growing field by examining e-cars’ technical characteristics and evaluating how objective weight determination
methods influence final vehicle selection.

3 Methodology
In the quest to identify the most suitable electric vehicle (e-car) for urban logistics, a multi-step approach as

depicted in Figure 1 was adhered to.

Figure 1. Research methodology

The initial stage involved defining alternatives and criteria to construct an initial decision-making matrix.
Alternatives were narrowed down to Small Van e-cars, a selection process which resulted in a subset of the e-
car market most aptly suited for urban logistics. Large van vehicles were omitted, focusing instead on Small Van
delivery vehicles prevalent in the European market.

A database search of e-cars via ev-database.org yielded nine viable options, each priced below 45,000 Euros.
The reasoning behind this budget cap stems from the need to identify vehicles within a price range accessible to a
larger proportion of companies engaged in urban logistics [24]. The alternatives included: Renault Kangoo E-Tech
(A1), Citroen e-Berlingo M (A2), Toyota Proace City Verso Electric L1 (A3), Peugeot e-Rifter Long (A4), Toyota
Proace City Verso Electric L2 (A5), Peugeot e-Rifter Standard (A6), Opel Combo-e Life (A7), Citroen e-Berlingo
XL (A8), and Opel Combo-e Life XL (A9).

The evaluation criteria were determined based on a comprehensive literature review and adapted to the specific
needs of urban logistics vehicles. These are presented in Table 1.

Table 1. Criteria for selecting alternatives

ID Criterion Unit Reference Criterion
Type

C1 Price Euro [19, 21–23] cost
C2 Acceleration s [19, 21, 22, 25] cost
C3 Top Speed km / h [19, 21–23, 25, 26] benefit
C4 Range km [2, 19, 21, 22, 25, 26] benefit
C5 Total Power hp [19, 22, 23] benefit
C6 Useable Capacity KW [19, 21–23, 26] benefit
C7 Charge Time min [2, 19, 22] cost
C8 Fastcharge Time min [2, 19, 21, 22] cost
C9 Vehicle Consumption Wh / km [2, 22, 25, 26] cost
C10 Weight Unladen kg [19, 25] benefit
C11 Max. Payload kg [25, 26] benefit
C12 Cargo Volume 1 [19, 21, 22] benefit

With the alternatives and criteria established, the initial decision-making matrix was formed. This matrix served
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as the foundation for the application of all Multi-Criteria Decision Making (MCDM) methods. The next phase
involved data normalization. This process was necessary due to the variation in measurement units across different
criteria and to establish a unified scale of values.

Weights of the criteria were then determined using objective MCDM methods. In contrast to subjective ratings
from experts, these methods offer an impartial analysis of the criteria weights. Five methods were employed to
ascertain these weights objectively: Entropy, CRITIC, MEREC, SD, and MSDM. This study also aims to scrutinize
the influence of these weights on the final decision, and thus provide a basis for future research.

The next step was to rank the alternatives using the SAW method. This method was chosen for its simplicity,
having no additional steps that could potentially alter the ranking of alternatives. The ranking of alternatives was
completed for all weights obtained via the aforementioned objective methods. Finally, an evaluation was conducted
on how these weights impacted the final decision regarding the selection of the Small Van vehicle best equipped for
urban logistics activities.

In summary, this study adopted a rigorous and objective approach to identify the most suitable e-car for urban
logistics. The methodology encompassed the construction of an initial decision-making matrix, data normalization,
and the objective determination of criteria weights using various methods. This systematic approach facilitated the
generation of meaningful and valuable insights into the choice of Small Van e-cars for urban logistics.

3.1 Determination of Objective Weights
Five methods were employed in the determination of criteria weights: Entropy, CRITIC, MEREC, SD, and

MSDM, all of which are classified as objective weight determination methods. These methods calculate the weight
of a criterion by considering the values of alternatives for a particular criterion. Notably, no subjective influence on
criteria weights is encountered in these methods. An exposition on each method’s operational steps follows.
3.1.1 Entropy method

The Entropy method derives weight values of criteria from the Entropy Value. The greater the dispersion of the
data, the higher the Entropy Value and, by extension, the criterion weight. This method’s progression can be divided
into several steps:

Step 1: Formation of the initial decision matrix, achieved through alternative evaluation via selected criteria.
Technical characteristics of e-cars are utilised in evaluation. A similar initial decision matrix (Table 2) is applied
across all methods since the results of all methods are calculated from the selected e-cars’ values.

Step 2: Normalization of the initial decision matrix, an integral step in the calculation of each MCDM method [27].
To limit the impact of normalization, the same normalization—linear normalization type 1 (simple linear normaliza-
tion)—is applied to all methods. Considering the initial decision matrix reveals that some criteria values should be
minimized, e.g., price, acceleration, charging time, for which cost criteria normalization is used. Conversely, for the
criteria of maximum speed, range, and power, benefit normalization is utilized, as these values should be maximized.

nij =
xij

xj max
, for benefit criteria (1)

nij =
xj min

xij
, for cost criteria (2)

Step 3: Determination of the Entropy Value (Ei). Here, natural logarithm values (ln) of all data in the normalized
decision matrix are computed. These values are then multiplied by the normalized data, and the product is divided
by the natural logarithm value of the number of alternatives (ln(n)).

Ei =

∑n
j=1 pij · ln pij

lnn
(3)

Step 4: Determination of criteria weight values. The calculation of (1− Ei ) is executed, and these values are
aggregated across all criteria. The ultimate weight of the criteria is then calculated.

wi =
1− Ei∑m

i=1 (1− Ei)
(4)
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Table 2. Initial decision matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Cost Cost Ben. Ben. Ben. Ben. Cost Cost Cost Cost Ben. Ben.

A1 39300 12.6 132 215 51 44.0 285 39 205 1870 575 542
A2 37790 11.7 135 205 100 46.3 450 26 226 1739 626 571
A3 37800 11.2 135 210 100 46.3 450 26 220 1739 626 597
A4 42440 11.7 135 200 100 46.3 450 26 232 1884 646 806
A5 40150 11.2 135 205 100 46.3 450 26 226 1813 582 850
A6 41240 11.7 135 205 100 46.3 450 26 226 1765 615 571
A7 43050 11.7 135 205 100 46.3 450 26 226 1764 626 571
A8 43640 11.7 135 200 100 46.3 450 26 232 1876 639 806
A9 44750 11.7 135 200 100 46.3 450 26 232 1884 582 806

3.1.2 CRITIC method
The CRITIC method ascertains the weight value of the criteria based on their deviations—represented as the

standard deviation—and the interconnectedness of these criteria via correlation analysis. This method is composed
of several steps, which are identical to the first two steps of the Entropy method.

Step 1: Formation of the initial decision matrix. 
Step 2: Normalization of the initial decision matrix.
Step 3: Determination of the information amount. Here, the standard deviation value (σ) is first computed, and

the interconnectedness value of the criteria is calculated through correlation analysis (rjk). The value (1 − rjk) is
then calculated and summed for individual criteria. Finally, this value is multiplied by the standard deviation.

Cj = σ
m∑

k=1

(1− rjk) (5)

Step 4: Calculation of criteria weight. The final criterion weight is calculated.

Wj =
Cj∑m
j=1 Cj

(6)

3.1.3 MEREC method
The MEREC method establishes the objective weights of the criteria based on the value of the natural logarithm

and the effects of removal. The method’s steps are consistent with the first two steps in the previous methods.
Step 1: Formation of the initial decision matrix. 
Step 2: Normalization of the initial decision matrix.
Step 3: Calculation of the overall performance of the alternatives (Si). Here, the logarithmic values of the

normalized matrix are computed using the natural logarithm (ln). The sum of these values is divided by the number
of criteria (m), after which the value one (1) is added. The natural logarithm is then calculated from this result.

Si = ln

1 +

 1

m

∑
j

∣∣ln (nx
ij

)∣∣ , (7)

Step 4: Quantifying the Effects of Alternatives for Each Criterion. This stage diverges from the computation
of overall alternative performance by excluding the specific value of the criterion under consideration for each
alternative. The logarithmic values, apart from the value of the alternative associated with the examined criterion,
are accumulated. For instance, if calculations are being made for n23, the value for the third criterion for the second
alternative is disregarded. This process facilitates the generation of a new matrix consisting of these elements.

S′
ij = ln

1 +

 1

m

∑
k,k ̸=j

|ln (nx
ik)|

 , (8)
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Step 5: Calculation of the sum of absolute value deviations. In this step, the jth criterion’s effect is removed, and
the sum of the resulting values is calculated for the observed criterion.

Ej =
∑
i

∣∣S′
ij − Si

∣∣ , (9)

Step 6: Calculation of criterion weights. Here, the value Ej is divided by the sum of all Ej values, leading to
the determination of the weight of the criteria.

wj =
Ej

ΣkEj
(10)

3.1.4 Standard deviation
This method uses the standard deviation values for the criteria to calculate their weights. The steps for this

method match the first two steps in the previous methods.
Step 1: Formation of the initial decision matrix.
Step 2: Normalization of the initial decision matrix.
Step 3: Calculation of the observed criteria’s standard deviation value.

σ =

√√√√ 1

N − 1

N∑
i=1

(nij − n̄j)
2 (11)

Step 4: Calculation of criteria weight. This is achieved by dividing the specific criterion’s standard deviation
value by the sum of all criteria’s standard deviations. This is calculated according to the expression:

Wj =
σj∑m
j=1 σj

(12)

3.1.5 Modified Standard Deviation Method
This method expands the standard deviation method by introducing the sum of criterion values into the calculation.

This method follows the same initial steps as the previous methods.
Step 1: Formation of the initial decision matrix.
Step 2: Normalization of the initial decision matrix.
Step 3: Calculation of the observed criteria’s standard deviation value.

σ =

√√√√ 1

N − 1

N∑
i=1

(nij − n̄j)
2 (13)

Step 4: Calculation of individual criteria’s sum of values. All normalized alternative values for individual criteria
are summed. For each criterion, the sum of alternative values for the observed criterion is calculated.

Si =
m∑
j

xij (14)

Step 5: Calculation of the corrected standard deviation value. The standard deviation value is divided by the
sum values of individual criteria in this step.

σ′ =
σi

si
(15)

Step 6: Calculation of criteria weight. This is done by dividing the individual corrected standard deviation values
by the sum of these values.

Wj =
σ′j∑m
j=1 σ

′j
(16)
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3.2 Application of the SAW Method
Upon determination of the objective weights of the criteria, the SAW method is deployed for ranking the 

alternatives. Recognized for its simplicity and brevity, the SAW method involves fewer steps than other multiple 
criteria decision-making (MCDM) methods. The following elucidates the sequence of steps undertaken:

Step 1: Generation of the Initial Decision Matrix: This is the first phase where the primary decision matrix is 
formulated.

Step 2: Normalization of the Initial Decision Matrix: This phase involves the standardization of the initial 
decision matrix.

Step 3: Intensification of the Normalized Decision Matrix: In this phase, multiplication is executed between the 
initial normalized decision matrix and the criteria weights, represented as:

vij = nij · wj (17)

Step 4: Computation of SAW Method Values: The final phase includes the summation of the aggravated decision 
matrix for individual criteria, formulated as:

Si =
n∑

j=1

vij (18)

The initial three stages remain consistent across all MCDM methodologies. In contrast, the fourth stage involves
an aggregation of the intensified normalized data for individual alternatives, subsequently forming the SAW method
value. The alternative rendering the highest SAW method value is deemed as the superior-ranked alternative.

Expanding on the above, it is pertinent to note the significance of the SAW method in MCDM. With its emphasis
on simplicity and reduced computational steps, the SAW method allows for efficient decision-making. It achieves
this by simultaneously taking into account multiple criteria and their respective weights. This strength, combined
with its ability to rank alternatives effectively, underscores its utility in the field of MCDM, particularly in scenarios
where decision matrices can become complex.

4 Results
As previously stated, across all methodologies, identical normalization was applied to the initial decision matrix

values (Table 1). The nature of certain criteria dictated the normalization technique employed, dependent on whether
a criterion was of benefit or cost type. Consequently, expressions 1 and 2 were utilized. In the case of expression 1,
the maximum value of a criterion was identified and subsequently, every value of that criterion was divided by this
maximum. For expression 2, the minimum value of the criterion was ascertained, following which, this minimum
value was divided by each individual value of the criterion. This resulted in the formation of a normalized initial
decision matrix (Table 3). The normalized decision matrix serves as a cornerstone for calculating criteria weights
and for compiling a ranking list of alternatives.

Table 3. Normalized decision matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
A1 0.962 0.889 0.978 1.000 0.510 0.950 1.000 0.667 1.000 0.930 0.890 0.638
A2 1.000 0.957 1.000 0.953 1.000 1.000 0.633 1.000 0.907 1.000 0.969 0.672
A3 1.000 1.000 1.000 0.977 1.000 1.000 0.633 1.000 0.932 1.000 0.969 0.702
A4 0.890 0.957 1.000 0.930 1.000 1.000 0.633 1.000 0.884 0.923 1.000 0.948
A5 0.941 1.000 1.000 0.953 1.000 1.000 0.633 1.000 0.907 0.959 0.901 1.000
A6 0.916 0.957 1.000 0.953 1.000 1.000 0.633 1.000 0.907 0.985 0.952 0.672
A7 0.878 0.957 1.000 0.953 1.000 1.000 0.633 1.000 0.907 0.986 0.969 0.672
A8 0.866 0.957 1.000 0.930 1.000 1.000 0.633 1.000 0.884 0.927 0.989 0.948
A9 0.844 0.957 1.000 0.930 1.000 1.000 0.633 1.000 0.884 0.923 0.901 0.948

Initially, the weight of the criteria is ascertained, followed by the development of a ranking list. The first
technique employed for the determination of criteria weights is the Entropy method. This method utilizes the values
of the natural logarithm, multiplying them with the normalized data. Subsequently, the respective values for each
criterion are aggregated and divided by the total number of alternatives (ln(9)). In this manner, the Entropy Value
is determined (Table 4). Following this, the value 1-Ei is computed, culminating in the calculation of the criteria
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weights. According to the results, criterion C7 (w = 0.133) was allocated the highest weight, succeeded by criterion
C12 (w = 0.109), while criterion C6 (w = 0.066) was assigned the least weight.

Table 4. Calculating the weight using the Entropy method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Ei −0.300 −0.162 −0.010 −0.185 −0.156 −0.022 −1.053 −0.123 −0.340 −0.161 −0.201 −0.677

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1− Ei 1.300 1.162 1.010 1.185 1.156 1.022 2.053 1.123 1.340 1.161 1.201 1.677

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
wj 0.084 0.075 0.066 0.077 0.075 0.066 0.133 0.073 0.087 0.075 0.078 0.109

Subsequent to the Entropy method, the calculation of weights proceeds with the CRITIC method. Initially, the
first and second steps mirror those in all other methods, followed by the calculation of standard deviation and the
establishment of a connection between research criteria through correlation analysis. The correlation value is then
subtracted from one, and a summation of these values for the criteria is performed. Next, the information value is
computed, emerging as a product of previous calculations of the sum of reciprocal correlation and standard deviation.
Ultimately, the weights of the criteria are determined based on the information value. In accordance with the results
from the Entropy method, criterion C7 (w = 0.270) was assigned the highest weight, succeeded by criterion C12 (w
= 0.269), while criterion C3 (w = 0.039) was attributed the least weight. Contrasting with the weights derived from
the Entropy method, a wider dispersion in weights is observed in the results from the CRITIC method (Table 5),
with larger deviations between the largest and smallest weights.

Table 5. Calculation of weights using the CRITIC method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
σ 0.057 0.032 0.007 0.023 0.163 0.017 0.122 0.111 0.036 0.034 0.041 0.155∑m

k=1 (1− rjk) 10.39 8.30 8.84 12.76 8.84 8.84 15.16 8.84 13.79 8.99 9.91 11.95
Cj 0.595 0.267 0.065 0.297 1.444 0.146 1.853 0.982 0.503 0.305 0.407 1.847
wj 0.087 0.039 0.010 0.043 0.210 0.021 0.270 0.143 0.073 0.044 0.059 0.269

For the calculation of weights using the MEREC method, the computation initiates with the total performance
value of alternatives (Si), which is determined based on the natural logarithm of the normalized decision matrix.
Following this, the sum is computed and divided by the total number of criteria, to which the value of one is then
added. The natural logarithm is calculated from this resultant value. Next, the impacts of alternatives (S′

ij) are
calculated for each criterion, paralleling the method used for the overall performance value, except this time applying
the values specific to the criterion being calculated. Thereafter, the absolute value of the difference between these
two values is sought, and the sums of those values for each criterion (Ej) are calculated, thereby determining the
final weight of the criterion. The analysis reveals (Table 6) that criterion C7 (w = 0.285) received the most weight,
followed by criterion C12 (w = 0.146), while criterion C9 (w = 0.029) received the least weight.

In the process of determining weights using the Standard Deviation (SD) method, it is crucial to compute the
standard deviation (σ) values for all criteria, followed by weight calculation. Results (Table 7) reveal that the criterion
C5 (w = 0.204) received the highest weight, closely followed by criterion C12 (w = 0.193), while criterion C3 (w =
0.009) received the lowest weight.

Conversely, the Modified Standard Deviation Method (MSDM) has an additional step where the sum of the
criteria is calculated and the standard deviation value is divided by this sum. This approach diminishes the
preference for criteria where the alternative values are closely aligned to unity, essentially the criteria lacking
considerable dispersion. Results (Table 8) demonstrate that criterion C12 (w = 0.209) was allocated the most weight,
followed by criterion C7 (w = 0.196), with criterion C3 (w = 0.008) receiving the least weight.

Once the weights of the criteria were derived using different methods, a comparative analysis was conducted prior
to ranking the alternatives and examining the impact of the methodologies on this ranking. For easier comparison, a
table listing the weights of the criteria for each method was created (Table 9).

The correlation analysis results for the weights of criteria, obtained through different methods, highlight that
the strongest correlation is between the weights calculated by the CRITIC and MSDM methods (r = 0.9903). In
contrast, the weakest correlation is observed between the weights computed via the Entropy and SD methods (r =
0.5474). From these findings (Table 10), it can be inferred that the results from the Entropy method exhibit the most
significant deviation from the other methods, followed by the divergence of the MEREC method. To examine the
implications of these weight variations, the SAW method was employed to generate a ranking of the alternatives.
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Table 6. Calculation of weights using the MEREC method

S′
ij

Si C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
A1 0.150 0.160 0.154 0.161 0.163 0.110 0.159 0.163 0.131 0.163 0.157 0.154 0.128
A2 0.086 0.093 0.090 0.093 0.089 0.093 0.093 0.055 0.093 0.085 0.093 0.091 0.060
A3 0.075 0.082 0.082 0.082 0.080 0.082 0.082 0.043 0.082 0.076 0.082 0.079 0.052
A4 0.076 0.073 0.079 0.082 0.076 0.082 0.082 0.043 0.082 0.072 0.076 0.082 0.078
A5 0.065 0.066 0.071 0.071 0.067 0.071 0.071 0.031 0.071 0.063 0.067 0.062 0.071
A6 0.095 0.096 0.100 0.103 0.099 0.103 0.103 0.065 0.103 0.095 0.102 0.099 0.070
A7 0.097 0.094 0.102 0.105 0.101 0.105 0.105 0.067 0.105 0.097 0.104 0.103 0.072
A8 0.079 0.073 0.082 0.085 0.079 0.085 0.085 0.046 0.085 0.075 0.079 0.084 0.081
A9 0.088 0.082 0.092 0.096 0.090 0.096 0.096 0.057 0.096 0.085 0.089 0.087 0.091

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

∣∣S′
ij − Si

∣∣
A1 0.010 0.003 0.011 0.013 0.041 0.009 0.013 0.019 0.013 0.007 0.004 0.023
A2 0.007 0.004 0.007 0.003 0.007 0.007 0.031 0.007 0.001 0.007 0.005 0.026
A3 0.007 0.007 0.007 0.005 0.007 0.007 0.032 0.007 0.001 0.007 0.004 0.023
A4 0.003 0.003 0.007 0.001 0.007 0.007 0.032 0.007 0.004 0.000 0.007 0.002
A5 0.001 0.006 0.006 0.002 0.006 0.006 0.034 0.006 0.003 0.002 0.003 0.006
A6 0.001 0.005 0.008 0.004 0.008 0.008 0.030 0.008 0.000 0.007 0.004 0.025
A7 0.002 0.005 0.008 0.004 0.008 0.008 0.030 0.008 0.000 0.007 0.006 0.025
A8 0.005 0.003 0.007 0.001 0.007 0.007 0.032 0.007 0.004 0.000 0.006 0.002
A9 0.006 0.004 0.008 0.002 0.008 0.008 0.031 0.008 0.003 0.001 0.001 0.003

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Ej 0.042 0.039 0.068 0.034 0.098 0.066 0.265 0.077 0.027 0.039 0.039 0.136
wj 0.046 0.042 0.073 0.037 0.106 0.071 0.285 0.082 0.029 0.042 0.042 0.146

Table 7. Calculation of weights using the standard deviation method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
σ 0.057 0.032 0.007 0.023 0.163 0.017 0.122 0.111 0.036 0.034 0.041 0.155
wj 0.072 0.040 0.009 0.029 0.204 0.021 0.153 0.139 0.046 0.042 0.051 0.193

Table 8. Calculation of weights using the Modified Standard Deviation Method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
σ 0.057 0.032 0.007 0.023 0.163 0.017 0.122 0.111 0.036 0.034 0.041 0.155
Si 8.298 8.632 8.978 8.581 8.510 8.950 6.067 8.667 8.211 8.633 8.540 7.200
σ′ 0.007 0.004 0.001 0.003 0.019 0.002 0.020 0.013 0.004 0.004 0.005 0.021
wj 0.067 0.036 0.008 0.026 0.187 0.018 0.196 0.125 0.043 0.038 0.047 0.209

Table 9. Criteria weights according to individual methods

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
ENTROPY 0.084 0.075 0.066 0.077 0.075 0.066 0.133 0.073 0.087 0.075 0.078 0.109

CRITIC 0.087 0.039 0.010 0.043 0.210 0.021 0.270 0.143 0.073 0.044 0.059 0.269
MEREC 0.046 0.042 0.073 0.037 0.106 0.071 0.285 0.082 0.029 0.042 0.042 0.146

SD 0.072 0.040 0.009 0.029 0.204 0.021 0.153 0.139 0.046 0.042 0.051 0.193
MSDM 0.067 0.036 0.008 0.026 0.187 0.018 0.196 0.125 0.043 0.038 0.047 0.209

Table 10. Correlation analysis of the weights of the criteria

ENTROPY CRITIC MEREC SD MSDM
ENTROPY 1.0000 0.7838 0.8344 0.5474 0.6972

CRITIC 0.7838 1.0000 0.8055 0.9454 0.9903
MEREC 0.8344 0.8055 1.0000 0.6334 0.7625

SD 0.5474 0.9454 0.6334 1.0000 0.9790
MSDM 0.6972 0.9903 0.7570 0.9790 1.0000
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To assess the influence of these weights, a ranking of alternatives was executed using the SAW method. The SAW
method involves multiplying the normalized decision matrix by the weights, and the weighted data are then summed
for individual alternatives. Using the Entropy method weights, the SAW calculation is demonstrated (Table 11).
These results indicate minimal deviation across all alternatives, with alternative A5 scoring the highest (S5 = 0.893),
and A1 the lowest (S1 = 0.849). Consequently, the alternatives are ranked, and when the weights of the criteria
obtained by the Entropy method are applied, Toyota Proace City Verso Electric L2 (A5) presents the best indicators.
Accordingly, the ranking order is determined for all weights obtained from the various methods.

Table 11. Results of the SAW method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Si

A1 0.081 0.067 0.064 0.077 0.038 0.063 0.133 0.049 0.087 0.070 0.069 0.050 0.849
A2 0.084 0.072 0.066 0.073 0.075 0.066 0.084 0.073 0.079 0.075 0.076 0.052 0.877
A3 0.084 0.075 0.066 0.075 0.075 0.066 0.084 0.073 0.081 0.075 0.076 0.055 0.887
A4 0.075 0.072 0.066 0.072 0.075 0.066 0.084 0.073 0.077 0.070 0.078 0.074 0.882
A5 0.080 0.075 0.066 0.073 0.075 0.066 0.084 0.073 0.079 0.072 0.070 0.078 0.893
A6 0.077 0.072 0.066 0.073 0.075 0.066 0.084 0.073 0.079 0.074 0.074 0.052 0.868
A7 0.074 0.072 0.066 0.073 0.075 0.066 0.084 0.073 0.079 0.074 0.076 0.052 0.866
A8 0.073 0.072 0.066 0.072 0.075 0.066 0.084 0.073 0.077 0.070 0.077 0.074 0.880
A9 0.071 0.072 0.066 0.072 0.075 0.066 0.084 0.073 0.077 0.070 0.070 0.074 0.871

Analytical results (Figure 2) reveal that weights obtained from the Entropy, CRITIC, SD, and MSDM methods
yield identical ranking orders, with only the MEREC method differing. Applying these weights, the worst-performing
alternative in the other methods yields the best results, while the ranking order of the other alternatives is shifted by
one position. The reason lies in the technical specifications of the Renault Kangoo E-Tech (A1) vehicle, which has
superior characteristics in criteria C1, C4, C7, and C9.

Figure 2. Ranking of alternatives using different criteria weights

Further analysis reveals the key criterion C7 received 2.5 times more weight than the second-ranked criterion,
and 7.7 times more than the least-weighted criterion C4, using the MEREC method. As a result, the Charge Time
criterion (C7) was emphasized. This vehicle possesses the shortest charging time among all others, which is 36.67%
less than that of the other vehicles, thus rendering alternative A1 as the top-rated alternative, even though it was the
lowest ranked in other weights.

This example clearly demonstrates how methods used to determine objective weights of criteria can significantly
impact the final alternative ranking. If tasked with deciding which e-car presents the best indicators, the evidence
points towards the Toyota Proace City Verso Electric L2 (A5).

5 Discussion
Urban logistics exerts significant impacts on the environment, propelling the introduction of novel concepts

such as e-cars, which serve to mitigate costs and air pollution associated with urban logistics [7]. However, the
selection of e-cars necessitates an assessment of technical features such as battery capacity and range on a single
charge. This multifaceted decision-making process involves the evaluation of numerous criteria, each of which
contributes to the ultimate decision in a unique way. Assigning weights to these criteria enables more effective
decision-making, with subjective methods relying on the expertise of decision-makers while objective methods use
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alternative values corresponding to individual criteria. The focus of the current research was to investigate how these
objective weighting methods influence the final decision.

In the study, a total of nine small vans were evaluated against 12 criteria representing their technical characteristics.
Data from ev-database.org was used to select Small Van type vehicles suitable for delivery purposes, and criteria
significant to urban logistics were chosen. These criteria required the assignment of weights, which were determined
using five different objective methods: Entropy, CRITIC, MEREC, SD, and MSDM. Each method possesses unique
characteristics and procedures and uses different units of measure for criteria. Therefore, data normalization was
employed to harmonize these criteria [19].

During the calculation of criterion weights, it was observed that Charge Time (C7) emerged as the most important
criterion in three out of five methods. This was attributed to the large dispersion of alternative values for this criterion.
Additionally, the charging time is crucial for urban logistics because once a battery is depleted, it must be recharged
for the vehicle to continue operations, thus affecting logistics efficiency. Moreover, the larger the battery capacity, the
longer the charging time required, making battery capacity another crucial factor. Cargo Volume (C12), indicating
the amount of goods a vehicle can transport, was also considered significant.

The ranking of criteria weights varied across the different methods, and this was found to notably influence
the final vehicle selection. Optimal routes are necessary for e-cars in urban logistics to compensate for their
limitations [14]. The Simple Additive Weighting (SAW) method was applied using the obtained weights to select
the most suitable vehicles. It was observed that four out of the five methods selected the Toyota Proace City Verso
Electric L2 (A5) as the optimal vehicle. However, with the weights derived from the MEREC method, the Renault
Kangoo E-Tech (A1) was ranked first, although it received the lowest rank when the other four weight sets were used.
This was because the MEREC method gave more weight to the criteria where this vehicle performed best.

This study highlights the critical role of criteria weights in decision-making. Small variations in these weights
could elevate the worst-performing vehicle to the top rank, especially in cases where vehicle characteristics are
similar and lack significant deviations. Therefore, the weights of the criteria must be carefully considered as they
dictate the decision-making process. Some studies have suggested combining objective and subjective weights to
cater to the needs of alternative users, reducing subjectivity while respecting the input of decision-makers [22].
However, the present research did not incorporate subjective opinions from individual companies to maintain a more
universal applicability, as focusing on specific companies may skew the decision-making process to their preferences
rather than those of other stakeholders.

6 Conclusions
In the present investigation, the research objectives were effectively realized. The adopted methodology and

resultant findings effectively served as decision-making support in the selection of e-cars for urban logistics. This
support encompassed a blend of multiple MCDM methods aimed at assigning criteria weights and ranking alterna-
tives. A comprehensive assessment of 12 criteria and 9 alternatives was undertaken to facilitate the optimal selection
of e-cars for urban logistics. Concurrently, the influence of various methods for the objective determination of
criteria weights on the final choice was scrutinized.

It was elucidated that the MEREC method manifested the greatest deviation from the rankings obtained via other
methods. Consequently, the Toyota Proace City Verso Electric L2 (A5) emerged as the optimal e-car choice across
other methods, owing to its superior technical characteristics for urban logistics. Conversely, the MEREC method
ranked the Renault Kangoo E-Tech (A1) as the most favorable option. This was attributed to the significantly higher
weights accorded to the criteria in which this vehicle showcased its best characteristics by the MEREC method.

These findings underscore the potential of such methodical selection processes to augment the implementation
of green logistics within urban areas. This research highlights the importance of the criteria weights determination
process in the decision-making context, proving it crucial to the final selection of e-cars. Thus, the importance
of method selection is emphasized, as different methods may yield disparate results, underlining the necessity for
careful consideration and potential combination of multiple methods for more accurate results.

By presenting a clear, replicable methodology for decision-making, this research may prove beneficial for further
applications in e-car selection or similar contexts. Moreover, it contributes to the broader goal of sustainable urban
development by providing a mechanism for promoting greener, more efficient urban logistics. This investigation
showcases the potential for future research in this area, including the exploration of further objective weighting
methods and their impacts on decision-making within the urban logistics context. The insights gained from this
study can provide a valuable foundation for future investigations aimed at developing more sustainable logistics
systems.
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