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Abstract: In decision-making scenarios, challenges often arise from closely knitted criteria or inherent uncertainties.
Such uncertainties prominently pervade the realm of sustainable energy, particularly concerning hydrogen generation
systems. A critical need is identified to elucidate the efficiency, costs, and environmental implications of these
technologies as a shift towards a low-carbon economy is pursued. In this study, the interdependencies among
decision-making variables were examined, revealing their collective influence and correlations. By utilizing the
framework of Intuitionistic Hypersoft Sets (IHSSs), uncertainties were addressed, multi-criteria decision-making
(MCDM) was harnessed, technological selection was facilitated, resource allocation was optimized, and environmental
ramifications were assessed. The primary objective of this research was to decipher the conundrum of choosing
among multiple hydrogen production methodologies. Such an approach fosters the adoption of environmentally
conducive hydrogen production methods, heralding a shift towards a greener energy future. Notably, further research
could probe into methodologies like AHP and TOPSIS in a neutrosophic context, offering tantalizing avenues for
exploration.

Keywords: Aggregate operators; Soft set; Hypersoft set; Decision-making; Hydrogen generation techniques;
multi-criteria decision-making; VIKOR Method; Intuitionistic Hypersoft Sets

1 Introduction
In 1965, the theory of fuzzy set and membership was first introduced by Zadeh [1]. This pioneering work rapidly

garnered attention and subsequently laid the foundation for myriad technologies integral to modern convenience. It
was posited that membership values could be categorized into four distinct forms: single-valued fuzzy numbers,
multiple-valued fuzzy numbers, bipolar fuzzy numbers, interval-valued fuzzy numbers, and rough sets. Consequently,
new set structures emerged, including the single-valued fuzzy set (SVFS), multiple-valued fuzzy set (MVFS), bi-polar
fuzzy set (BPS), Turksen IVFS (interval-valued fuzzy set), m-polar interval-valued fuzzy set (m-PIVFS), and fuzzy
rough set (FRS) [2–7].

Expanding upon traditional fuzzy set theory, intuitionistic sets, or more commonly, intuitionistic fuzzy sets (IFS),
were developed in the mid-1980s [8]. Unlike conventional fuzzy sets which employ solely membership values, IFS
integrates membership, non-membership, and a hesitation value. This hesitation value captures the inherent ambiguity
or uncertainty regarding set membership, thus making IFS more apt at managing situations with inadequate data
for precise membership value determination. Consequently, by considering both membership and non-membership
degrees, intuitionistic sets offer a robust framework for addressing ambiguities in decision-making processes.

Operational rules and decision-making methodologies for MCDM were subsequently introduced as an extension
of IFS, leading to the development of the Pythagorean fuzzy set (PFS) [9, 10]. In an endeavor to address uncertain
and inconsistent scenarios, Smarandache [11] introduced the neutrosophic set (NS) in 1998 [12]. An amalgamation of
intuitionistic fuzzy and soft sets was later formulated, termed intuitionistic fuzzy soft set (IFSS), which encompasses
parameters denoting data validity and promotes optimized decision-making [13].

Application of intuitionistic sets in fields like pattern recognition, HR selection, and medical diagnosis has been
recorded. For instance, intuitionistic sets have been implemented in medical diagnostics by De et al. [14], while
similarity metrics using IFS were proposed by Liang and Shi [15]. Further, Ejegwa et al. [16] employed intuitionistic
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sets for career determination, and similarity measures alongside pattern recognition methodologies were presented by
Li [17]. Notable works by Szmidt and Kacprzyk [18] and Wei et al. [19] delved into entropy similarity measures
and group decision-making using IFS respectively. Jafar et al. [20] undertook a comprehensive exploration of
IFSM applications, and Mitchell [21] examined similarity measures in the context of pattern recognition. A more
comprehensive framework, the hypersoft set theory, was put forth by Smarandache [22] in 2018 as an extension of soft
sets. This new theory adeptly navigates ambiguities, thus enriching decision-making processes. Significant studies on
the application of IHSSs have been carried out by Zulqarnain et al. [23], and Yolcu and Ozturk [24] introduced fuzzy
hypersoft sets, elucidating their relevance in decision-making. To bolster decision-making, Debnath [25] proposed
the weightage operator for fuzzy hypersoft sets, and an extension termed intuitionistic fuzzy hypersoft sets (IFHSS)
was presented by Yolcu et al. [26]. The potential of aggregate operators for IFHSS and interval-valued intuitionistic
fuzzy hypersoft sets (IVIFHSS) in addressing MCDM problems was explored by Zulqarnain et al. [27, 28]. Other set
structures and their applications have also been examined by researchers [29–33].

In the realm of sustainable energy, hydrogen production techniques play a pivotal role. Recognized as a clean
and versatile energy source, hydrogen has been explored extensively as a potential solution to challenges posed
by greenhouse gas emissions and climate change [34]. Methods for hydrogen production encompass electrolysis,
biomass gasification, steam methane reforming (SMR), and solar-powered water splitting. Among these, electrolysis,
particularly when powered by renewable sources such as solar and wind, has been identified as the most environmentally
advantageous, producing hydrogen devoid of harmful emissions [35]. The inclusion of hydrogen in energy systems
has been viewed as instrumental in mitigating dependence on fossil fuels, paving the way for a sustainable energy
transition. Thus, emphasis is laid on the reduction of environmental impacts of hydrogen production techniques [36].
Intuitionistic sets have been suggested as valuable tools for addressing challenges in green contexts, especially
concerning sustainable energy sources like hydrogen production. Through the harnessing of intuitionistic sets,
uncertainties are addressed, MCDM is enhanced, technology selection is optimized, resources are allocated efficiently,
and environmental repercussions are assessed, steering the path towards an ecologically sustainable energy future [37].

2 Preliminaries
This section delineates fundamental definitions pivotal to the paper’s framework, focusing on Hypersoft Sets

(HSS) and IHS’s.

2.1 Definition: Hypersoft Set [22]
Let the universal and power set of the universal set be denoted as µ and P (µ) respectively. Given the sequence(

i1, i2, i3, . . . , in
)

where n ≥ 1 and n represents well-defined attributives, the corresponding attributive elements
are arranged in the sequence

(
£1,£2,£3, . . . ,£n

)
. Here, it is required that £i ∩ £j = ∅ for all i ̸= j with

i, j ∈ {1, 2, 3 . . . n}. The pair (ξ,£), under these conditions, is referred to as a hypersoft set, and can be represented
as:

ξ :
(
£ = £1 ×£2 ×£3 × . . .×£n

)
→ P (µ) (1)

2.2 Definition: Intuitionistic Hypersoft Set (IHS’s) [22, 26]
For the Eq. (1), when values are assigned to each attribute in terms of truthiness, indeterminacy, and falseness

such that ⟨t, f⟩, where t, f : µ → [0, 1], and 0 ≤ t(ξ(κ))+ f(ξ(κ)) ≤ 2, the pair (ξ,£) is then termed an intuitionistic
hypersoft set.

2.3 Definition: Single-Valued Intuitionistic Hypersoft Set [22, 26]
For the Eq. (1), when values are assigned to each attribute as

ξ :
((
£ = £1 ×£2 ×£3 × . . .×£n

)
→ P (µ)

)
=

{
< κ, .T i(ξ(κ)) + F k(ξ(κ)) > .κ ∈ µ,

i,k. = 1,2,3, . . . ,n

}
Also

0 ≤
a∑

i=1

T i(ξ(κ)) ≤ 1, 0 ≤
c∑

k=1

F k(ξ(κ)) ≤ 1 (2)

where, T i(ξ(κ)), F k(ξ(κ)) ⊆ [0, 1] are fuzzy numbers and 0 ≤
∑a

i=1 T
i(ξ(κ)) +

∑c
k=1 F

k(ξ(κ)) ≤ 2 as
represented by (2), the pair (ξ,£) is designated as a single-valued intuitionistic hypersoft set or SVIHS’s.
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3 Aggregate Operators of IHS’s
Complexities arise in decision-making problems due to their multidimensional nature, encompassing multiple

attributes or even subsequent subdivisions. Such intricacies have been observed to be beyond the capabilities of the
intuitionistic soft set alone. Hence, the need for a novel approach was recognized. In this context, certain aggregate
operators have been defined.

3.1 Definition
LetE be the initial universe of discourse andP(E) is the set of all possibilities ofE. Supposeh1, h2, h3 . . . . . . . . . hn

where n ≥ 1 be n distinct attributes whose corresponding attributive values respectively the sets H1, H2, H3, . . . ,Hn

with Hi ∩HJ = ∅, i ̸= j and i, j ∈ {0, 1, 2, 3 . . . . . . . . . n} then the relation H1 ×H2 ×H3 × . . . . . . . . .×Hn = α
then the pair (F, α) is said to be Intuitionistic Hypersoft Set (HIS’s).

F : H1 ×H2 ×H3 × . . . . . . . . .×Hn → P (E)

and
F (H1 ×H2 ×H3 × . . . . . . . . .×Hn) = {< x, µ(F (α)), γ(F (α)) >, x ∈ E}

where, µ is the value of membership and γ is the value of non-membership such that µ : E → [0, 1], γ : E → [0, 1]
and also 0 < µ(F (α)) + γ(F (α)) < 2.

3.2 Example
In contemporary, high-velocity professional landscapes, the optimal selection of a laptop has been identified

as paramount for those desiring enhanced productivity coupled with seamless mobility. In this particular study, a
technologically-oriented consulting firm’s approach to determining the ideal laptop for a diverse cadre of remote
staff was examined. Criteria and variables employed in this selection process were scrutinized. Among the factors
assessed were performance, portability, battery longevity, software compatibility, and fiscal constraints.

This investigation illuminated the intricate interplay between hardware specifications and pragmatic operational
needs that underpins such decisions. Consequently, insights are provided that may guide both individuals and entities
in navigating the expansive spectrum of laptop options. Let E represent the set of laptops being considered.

E = {e1, e2, e3 . . . . . . . . . en} (3)

Also consider the set of attributes:
S11=Laptop type;
S12=Ram capacity;
S13=Screen resolution;
S14=Battery life;
S15=Graphic card;
S16=Processor generation.
And their respective attributes:
S11=Laptop type ={Dell, HP, Samsung, Lenovo};
S12=Ram capacity ={2GB, 4GB, and 8GB};
S13=Screen resolution ={1366× 768 Pixels, 1920× 1080 Pixels, 2560× 1440 Pixels};
S14=Battery life ={4400MAH, 4800MAH, 5200MAH};
S15=Graphic card ={4GB, 8GB, 11GB};
S16=Processor generation ={5th, 6th, 8th}.
Let the function be F : (S11 × S12 × S13 × S14 × S15) → P (E).
Intuitionistic Hypersoft Set (IHS’s) is defined as:

F : (S11 × S12 × S13 × S14 × S15) → P (E) (4)

Let assume that F {Samsung, 8GB, 1920× 1080 Pixels, 4800MAH, 128 GB, 6th Generation } = {e2, e4}.
Then Intuitionistic fuzzy hypersoft set of above assumed relation is:
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F (α) = F
{

Samsung, 8 GB, 1920 × 1080 Pixels, 4800 MAH,

128 GB, 6th Generation
}

=
{
< e2(Samsung{0.3, 0.1}, 8GB{0.9, 0.1}, 1920× 1080 Pixels

{0.1, 0.1}, 4800MAH{0.3, 0.2}, 8GB{0.7, 0.4},
6th Generation {0.1, 0.6}) >
< e4(Samsung{0.1, 0.4}, 128GB{0.1, 0.3}, 1920× 1080 Pixels
{0.3, 0.1}, 4800MAH{0.4, 0.5}, 8GB{0.9, 0.1},

6th Generation {0.7, 0.1}) >
}

(5)

3.3 Definition: IHS’s
Suppose F (α1) and F (α2) be two IHS′s over E. Suppose h1, h2, h3 . . . . . . . . . hn where n ≥ 1 be n

distinct attributes whose corresponding attributive values respectively the sets H1, H2, H3 . . . . . . . . . Hn with
Hi ∩HJ = ∅, i ̸= j and i, j ∈ {0, 1, 2, 3 . . . . . . . . . n} then the relation H1 ×H2 ×H3 × . . . . . . . . .×Hn = α then
F (α1) is the Intuitionistic hypersoft subset of F (α2) if:

µ (F (α1)) ≤ µ (F (α2))

γ (F (α1)) ≥ γ (F (α2))
(6)

3.4 Definition: Equal IHS′s

Suppose F (α1) and F (α2) be two IHS′s over E. Suppose h1, h2, h3 . . . . . . . . . hn where n ≥ 1 be n
distinct attributes whose corresponding attributive values respectively the sets H1, H2, H3 . . . . . . . . . Hn with
Hi ∩HJ = ∅, i ̸= j and i, jϵ{0, 1, 2, 3 . . . . . . . . . n} then the relation H1 ×H2 ×H3 × . . . . . . . . .×Hn = α then
F (α1) is the IHS′s of F (α2) if:

µ (F (α1)) = µ (F (α2))

γ (F (α1)) = γ (F (α2))
(7)

3.5 Definition: Null IHS′s

Let F (α1) be the IHS′s over E. Suppose h1, h2, h3 . . . . . . . . . hn where n ≥ 1 be n distinct attributes whose
corresponding attributive values respectively the set H1, H2, H3 . . . . . . . . . Hn with Hi ∩ HJ = ∅, i ̸= j and
i, j ∈ {0, 1, 2, 3 . . . . . . . . . n} then the relation H1 × H2 × H3 × . . . . . . . . . × Hn = α1 then F (α1) is the null
Intuitionistic hypersoft set of if:

µ (F (α1)) = 0

γ (F (α1)) = 0
(8)

3.6 Definition: Compliment of IHS′s

Let F (α1) be the IHS′s over E. Suppose h1, h2, h3 . . . . . . . . . hn where n ≥ 1 be n distinct attributes
whose corresponding attributive values respectively the set H1, H2, H3 . . . . . . . . . Hn with Hi ∩ HJ = ∅, i ̸= j
and i, j ∈ {0, 1, 2, 3 . . . . . . . . . n} then the relation H1 × H2 × H3 × . . . . . . . . . × Hn = α1 then F c (α1) is the
compliment of Intuitionistic fuzzy hypersoft set if:

F c (α1) : (¬H1 × ¬H2 × ¬H3 . . . . . .¬Hn) → F (α1) (9)

Such that

µc (F (α1)) = γ (F (α1))

γc (F (α1)) = µ (F (α2))
(10)
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3.7 Definition: Union of a Two IHS′s

Suppose F (α1) and F (α2) be two IHS′s over E. Suppose h1, h2, h3 . . . . . . . . . hn where n ≥ 1 be n
distinct attributes whose corresponding attributive values respectively the sets H1, H2, H3 . . . . . . . . . Hn with
Hi ∩HJ = ∅, i ̸= j and i, j ∈ {0, 1, 2, 3 . . . . . . . . . n} then the relation H1 ×H2 ×H3 × . . . . . . . . .×Hn = α then
F (α1) ∪ F (α2) is given as:

µ (F (α1) ∪ F (α2)) =

 µ (F (α1)) if x ∈ α1

µ (F (α2)) if x ∈ α2

max (µ (F (α1)) , µ (F (α2))) if x ∈ α1 ∩ α2

γ (F (α1) ∪ F (α2)) =

 γ (F (α1)) if x ∈ α1

γ (F (α2)) if x ∈ α2

min (γ (F (α1)) , γ (F (α2))) if x ∈ α1 ∩ α2

(11)

3.8 Definition: Intersection of a Two IHS′s

Suppose F (α1) and F (α2) be two IHS′s over E. Suppose h1, h2, h3 . . . . . . . . . hn where n ≥ 1 be n
distinct attributes whose corresponding attributive values respectively the sets H1, H2, H3 . . . . . . . . . Hn with
Hi ∩HJ = ∅, i ̸= j and i, j ∈ {0, 1, 2, 3 . . . . . . . . . n} then the relation H1 ×H2 ×H3 × . . . . . . . . .×Hn = α then
F (α1) ∩ F (α2) is given as:

µ (F (α1) ∩ F (α2)) =

 µ (F (α1)) if x ∈ α1

µ (F (α2)) if x ∈ α2

min (µ (F (α1)) , µ (F (α2))) if x ∈ α1 ∩ α2

γ (F (α1) ∩ F (α2)) =

 γ (F (α1)) if x ∈ α1

γ (F (α2)) if x ∈ α2

max (γ (F (α1)) , γ (F (α2))) if x ∈ α1 ∩ α2

(12)

4 VIKOR Algorithm and Its Application
4.1 The VIKOR Method

The VIKOR Method, a technique within the realm of Multi-Criteria Decision Making (MCDM), was established
by Serafim Opricovic in 1979. Within this framework, a compromise solution to conflicting criteria is sought. In the
VIKOR process, alternatives are systematically evaluated based on predetermined criteria. Subsequently, they are
ranked in a way that ensures the compromise solution closely approximates the ideal solution.

Step 1: Normalize the DM.
Step 2: Weighted DM.
Step 3: Calculation of Ideal Solution (IS).
Step 4: Computation of Si, Ri, and Qi.

Si =

n∑
j=1

wj

(
f+
j − fij

)(
f+
j − f−

j

) , (i = 1, 2, 3, . . . .m; j = 1, 2, 3, . . . .n)

Ri = max
1≤j≤n

[
wj

(
f+
j − fij

)(
f+
j − f−

j

) ]
, (i = 1, 2, 3, . . . .m; j = 1, 2, 3, . . . .n)

S∗ = minSi R∗ = minRi

S+ = maxSi R+ = maxRi

Qi =
V (Si − S∗)

(S+ − S∗)
− (1− V ) (Ri −R∗)

(R+ −R∗)

(13)

where, V = 0.5.
Step 5: Final Ranking
To rank the alternative, list the values of Si, Ri, and Qi in ascending order.
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4.2 Case Study
In the pursuit of identifying the most optimal and cost-effective hydrogen production technology, a comprehensive

case study was undertaken. This exhaustive investigation entailed multiple phases, from the selection of diverse
alternatives to the meticulous establishment of a coherent criteria system, and subsequent data collection. Eight
distinct hydrogen production technologies were rigorously assessed within the confines of this study, with an emphasis
placed on their overarching descriptions. Through an extensive review of existing literature in this domain, seven
pivotal criteria, spanning both cost and performance dimensions, were delineated. The collated data instrumental to
this analysis is encapsulated in Table 1.

Table 1. Statistical overview of hydrogen production technologies up to 2013

Alternatives Met Hod E.E CO2 EE CC FOC VOC FDC EAC
C1 C2 C3 C4 C5 C6 C7

A1 SMR 0.080 77.5 172.35 06.48 135.70 128.00 156.02
A2 CG 0.076 55.8 511.48 25.81 37.550 33.190 104.40
A3 POX 0.136 67.5 326.60 30.99 191.97 65.320 249.17
A4 BG 0.020 42.5 262.06 16.71 69.420 44.030 107.16
A5 PV-EL 0.040 31.2 388.32 16.71 250.66 246.31 298.53
A6 W-EL 0.005 33.8 388.32 16.71 117.59 112.60 165.46
A7 H-EL 0.010 52.0 388.32 16.71 92.840 87.970 140.71
A8 WS-CL 0.012 21.0 857.46 131.67 12.820 11.540 213.29

The weights are calculated using the entropy method. w1 = 0.2544;w2 = 0.0453; w3 = 0.0620; w4 =
0.2874;w5 = 0.1415;w6 = 0.1703;w7 = 0.0391.

Step 1: DM is presented in Table 2.
Step 2: Normalization of DM is presented in Table 2.

Table 2. Normalize decision matrix of case study

C1 C2 C3 C4 C5 C6 C7

A1 0.21108 0.20325 0.05231 0.02475 0.14936 0.17559 0.10874
A2 0.20053 0.14634 0.15523 0.09859 0.04133 0.04553 0.07277
A3 0.35884 0.17703 0.09912 0.11838 0.21129 0.08961 0.17367
A4 0.05277 0.11146 0.07954 0.06383 0.07641 0.06040 0.07469
A5 0.10554 0.08183 0.11785 0.06383 0.27589 0.33789 0.20807
A6 0.01319 0.08864 0.11785 0.06383 0.12943 0.15447 0.11532
A7 0.02639 0.13638 0.11785 0.06383 0.10218 0.12068 0.09807
A8 0.03166 0.05508 0.26024 0.50296 0.01411 0.01583 0.14866

Step 3: Weighted normalization of DM is presented in Table 3.

Table 3. Weighted normalize decision matrix of case study

C1 C2 C3 C4 C5 C6 C7

A1 0.053699 0.0092073 0.0032431 0.0071139 0.021134 0.029903 0.0042519
A2 0.051014 0.0066293 0.0096245 0.028335 0.0058481 0.0077539 0.0028451
A3 0.091289 0.0080193 0.0061456 0.034022 0.029898 0.01526 0.0067905
A4 0.013425 0.0050492 0.0049312 0.018345 0.010812 0.010286 0.0029204
A5 0.02685 0.0037067 0.007307 0.018345 0.039038 0.057543 0.0081356
A6 0.0033562 0.0040156 0.007307 0.018345 0.018314 0.026306 0.0045092
A7 0.0067124 0.0061778 0.007307 0.018345 0.014459 0.020552 0.0038347
A8 0.0080549 0.0024949 0.016135 0.14455 0.0019966 0.002696 0.0058126

Step 4: Getting the ideal solution,

V +
j =

[
0.091289 0.0092073 0.0032431 0.0071139 0.0019966 0.002696 0.0028451

]
V −
j =

[
0.0033562 0.0024949 0.016135 0.14455 0.039038 0.057543 0.0081356

]
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Step 5: Qi, Si and Ri is calculated and presented in Table 4.

Table 4. Qi, Si and Ri of case study

Si Ri Qi

S1 = 0.2767 R1=0.1088 Q1=0.0506
S2 = 0.2394 R2=0.1165 Q2=0.0275
S3 = 0.2530 R3=0.1066 Q3=0.0163
S4 = 0.3427 R4=0.2253 Q4=0.4518
S5 = 0.6175 R5=0.1864 Q5=0.6763
S6 = 0.4804 R6=0.2544 Q6=0.6970
S7 = 0.4185 R7=0.2447 Q7=0.5961
S8 = 0.6574 R8=0.2874 Q8=1.0000

S∗=0.2394; R∗=0.1066; S+=0.6574; R+=0.287.

Step 6: Order the alternatives, listed by the values Qi, Si and Ri.

Si Ri Qi

A3 A3 A3

A2 A1 A2

A1 A2 A1

A4 A5 A4

A7 A4 A7

A6 A7 A5

A5 A6 A6

A8 A8 A8

In accordance with the specified ranking criteria, alternative A3 emerges as the optimal choice.
For the evaluation of divergent hydrogen generation technologies, the research integrates the intuitionistic hypersoft

set methodology with the VIKOR multi-criteria decision-making approach. This synthesis unveils the merits and
limitations of various techniques, both from technical and sustainability viewpoints. By conducting a meticulous
analysis, a hierarchical order of the scrutinized methodologies is established, empowering decision-makers with the
capability to select premier solutions predicated upon a spectrum of factors, encompassing efficacy, environmental
repercussions, and economic feasibility. The research contributes to the evolution of hydrogen production strategies
by offering a systematic juxtaposition, facilitating stakeholders to align decisions with sustainability goals and the
latest technological advancements.

5 Conclusions
Amidst uncertainties characterizing hydrogen production technologies, the horizon of sustainable energy presents

both formidable challenges and potential. The principal objective of this investigation was to discern a solution
for the selection from an array of hydrogen generation methodologies. By advocating environmentally benign
hydrogen production techniques, the pathway toward a future hallmarked by sustainability and ecological balance
is illuminated. Through the amalgamation of the VIKOR Method with the intuitionistic hypersoft set approach,
intricate interrelationships between diverse criteria and the evaluated methodologies are comprehensively understood.
Stakeholders are endowed with pivotal insights concerning the strengths and weaknesses of each approach from
the revelations of the analysis, thus fostering informed decision-making. This research not only augments the
domain of eco-friendly hydrogen production but accentuates the imperative of deploying avant-garde decision-making
methodologies in grappling with intricate dilemmas pertinent to energy and environmental sustainability. As the
urgency for pristine energy sources escalates, the findings of this study stand as a quintessential guidepost for shaping
future hydrogen production strategies in more efficacious and sustainable directions.

As the vista unfolds, exploration of contemporary methods such as AHP and TOPSIS within a neutrosophic
framework appears promising. Such inquiries hold the potential to broaden understanding and refine decision-making
processes. The anticipation is for an era where sustainable energy transitions from an aspirational concept to a
palpable reality, reshaping the very essence of our planet through relentless research, innovation, and collaboration.

Data Availability
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