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Abstract: This paper addresses the issues of incomplete safety management systems and the challenge of optimizing
multiple safety objectives concurrently in wind power project construction. An approach for solving Multi-objective
Optimization Problem (MOP) based on the Non-Dominated Sorting Genetic Algorithm (NSGA) is proposed. First,
key safety risk factors in the construction process of wind power projects are systematically analyzed and identified.
A multi-dimensional evaluation index system, including personnel safety, equipment safety, environmental safety, and
management safety, is established. Next, a mathematical model is developed with safety, cost, and construction period
as the optimization objectives. The NSGA-II and NSGA-III algorithms are applied to solve the model. Case study
results show that: (1) the proposed MOP model effectively balances the multiple objectives in wind power project
construction; (2) compared with traditional methods, the NSGA demonstrates significant advantages in solution
efficiency and diversity; (3) the obtained Pareto optimal solution set provides multiple feasible options for engineering
decision-making. The research results provide theoretical foundations and practical guidance for safety management
in wind power project construction.

Keywords: Wind power projects; Multi-objective Optimization Problem (MOP); Non-Dominated Sorting Genetic
Algorithm (NSGA); Safety management; Pareto optimal solutions

1 Introduction

This research addresses the issue of incomplete safety management systems and the difficulty in coordinating the
optimization of multiple safety objectives during the construction of wind power projects. By systematically analyzing
and identifying key safety risk factors in the construction process, a multi-dimensional evaluation index system is
established, which includes personnel safety, equipment safety, environmental safety, and management safety. A
mathematical model is built with safety, cost, and construction period as optimization objectives, and NSGA-II and
NSGA-III algorithms are used for solving the model.

To achieve optimization of the engineering objectives, many scholars have developed corresponding optimization
models for different fields. The introduction of Pareto optimal solutions has led to the emergence of MOP research in
various professional fields. Scholars both domestically and internationally have conducted extensive research on the
construction of MOP models, solutions, and the selection of optimal solutions. In the field of safety engineering,
Ning et al. [1] transformed the construction site layout planning into a MOP and developed a model based on a
three-objective ant colony optimization algorithm to solve the MOP problem.

There is a considerable amount of research on MOP in the wind power field, focusing on aspects such as
reducing costs [2], improving reliability [3], increasing power generation and reducing load losses [4], improving
annual profits [5], and reducing wind abandonment rates. However, research on the safety objectives in wind power
engineering is relatively scarce, with more studies focusing on maintenance periods [6] to balance maintenance costs
and maintenance activity time.

In past studies, the design of safety objective functions has often failed to fully consider the comprehensive risk
factor assessment involved in engineering projects, particularly in complex projects and multi-risk environments.
Traditional methods have not conducted in-depth analyses and quantifications of risk factors [7]. This oversight results

https://doi.org/10.56578/jimd030405

248

https://www.acadlore.com/journals/JIMD
https://crossmark.crossref.org/dialog/?doi=10.56578/jimd030405&domain=pdf
https://orcid.org/0000-0003-1954-8685
https://orcid.org/0009-0009-9548-8064
https://orcid.org/0009-0003-8836-6284
https://doi.org/10.56578/jimd030405
https://doi.org/10.56578/jimd030405


in the failure to effectively avoid potential risks during the design phase of projects, thereby increasing uncertainty
and safety hazards during construction, making the project more risk-prone.

This study takes a wind power project construction in Hebei Province as a case study. Through the comprehensive
identification and assessment of risk factors in previous research, the study conducts an in-depth analysis of the
impacts of various risk factors. The research particularly considers risks from human factors, equipment, environment,
and management. These factors are interrelated and have significant impacts on the overall safety of the project, and
thus need to be fully considered in the design of the objective function. By constructing a safety objective function
and solving the optimization problem, the study aims to propose a safety balance optimization solution based on
comprehensive risk assessment to ensure the optimal balance of safety and stability during the construction process.
This process not only provides a theoretical basis for risk control in wind power projects but also serves as a reference
for safety management in similar complex engineering projects.

In recent years, with the rapid development of the wind power industry, the scale of engineering projects has
continued to expand, and the difficulty and complexity of construction have increased accordingly [8]. However,
traditional methods in safety management often focus on the control of single or partial risks and lack a systematic
analysis and assessment of the multiple risk factors in complex engineering environments. This limitation leads to the
neglect of potential risk factors during project design and implementation, increasing uncertainty and safety hazards
during the construction process [9]. Especially in the Hebei region of China, wind power projects are constrained by
regional environmental factors, weather conditions, and the diversity of construction equipment, which highlights the
importance of safety risk control. Therefore, researching how to systematically identify and assess risk factors in
complex environments, and design a reasonable safety objective function based on this, to achieve a safety balance
during construction, is a research topic of great theoretical and practical significance.

(1) How to construct and optimize a safety objective function that considers comprehensive risk factors?
Based on the identification and assessment of risk factors, the study needs to design a safety objective function that

comprehensively considers human, equipment, environmental, and management factors. This function should possess
balance and optimization capabilities to ensure the optimal safety balance between risk control and cost-effectiveness.

(2) How to validate the effectiveness of the optimized safety balance solution in actual wind power projects?
The research will explore how to apply the designed safety objective function in actual wind power projects in

Hebei, and verify its feasibility and effectiveness through the optimization solutions obtained. This will provide
insights into safety management for other similar complex engineering projects.

Wind power projects, as a major development direction for clean energy, directly affect the long-term and social
benefits of the projects [10]. However, wind power projects involve high-altitude work, complex equipment operations,
and frequent weather changes, all of which significantly increase the safety risks during construction and operation [11].
By designing a comprehensive risk assessment and safety objective function, more effective risk management methods
can be provided for wind power projects, significantly improving the project’s safety level and reducing the probability
and frequency of accidents. The safety objective function design method proposed in this paper takes human,
equipment, environmental, and management factors into account and constructs a multi-dimensional risk control
framework. This innovation provides a new perspective for the theory of risk management in engineering projects and
advances the application of engineering safety management theories. Safety accidents in wind power projects often
result in high economic costs, including equipment damage, construction delays, and legal liabilities. By optimizing
the safety objective function and finding the best balance between cost and safety, the project can minimize risk
hazards while controlling costs, ensuring the maximization of project benefits. Therefore, this research not only
provides support for safety management in projects but also plays a key role in improving the economic benefits of
the projects. This study is dedicated to safety management in wind power projects, ensuring robust construction
and operation of the projects. It not only aligns with the national green development strategy but also promotes
sustainable development.

2 Theoretical Basis: MOP Theory

Optimization problems generally refer to obtaining the optimal solution of the objective function through
certain optimization algorithms. When the optimization objective function is a single one, this is referred to as
a Single-Objective Optimization Problem (SOP). When the optimization objective function involves two or more
objectives, it is called a MOP. The solution of a MOP is often a set of balanced solutions, unlike the finite solutions of
SOP [12].

MOP algorithms can be divided into two major categories: traditional optimization algorithms, including
conventional optimization methods, constraint methods, and linear programming methods, such as traditional
intelligent optimization algorithms. Essentially, these methods solve multi-objective functions by using SOP methods,
i.e., converting multiple objectives into a single objective function. A typical challenge faced by many MOPs is the
occurrence of conflicts between objectives. It is impossible to achieve an optimal solution that satisfies all objectives
simultaneously. Unlike SOPs, which have finite solutions, MOPs usually generate a set of balanced solutions selected
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by objective values (which can also be considered as Pareto optimal solutions) [13]. MOPs can be classified into two
major categories: evolutionary techniques and population-based techniques. In addition, multi-objective algorithms
can also be categorized as hybrid algorithms. In hybrid algorithms, population-based and evolutionary algorithms are
combined. Evolutionary techniques form a class of methods that use natural evolution concepts. These techniques
allow the generation of a set of trade-off solutions in a single execution and require fewer computational resources
to find solutions [14]. Nature-inspired algorithms are widely applied to many optimization problems, particularly
addressing various real-world engineering cases. Due to the limitations in solving engineering problems, some
methods play an important role in solving optimization problems [15]. MOP refers to the use of related theories such
as multi-attribute utility and fuzzy decision-making to optimize multiple interrelated objectives, ultimately obtaining
the optimal solution so that each objective reaches a balanced optimal within a certain range. Such solutions are also
called Pareto solutions [16]. The solving process of MOP is essentially the search for Pareto optimal solutions.

In 1994, Srinivas and Deb [17] proposed the NSGA, which has several advantages. First, it is unrestricted: the
NSGA algorithm has no preset limitation on the shape of the Pareto front. This means that it can adapt to Pareto
fronts with various complex shapes, making it widely applicable in practical applications. Second, the flexibility of
the objective function: this algorithm imposes no specific requirements or restrictions on the objective functions.

In 2002, Deb et al. [18] improved the NSGA algorithm by proposing the NSGA-II, which includes an elite
retention strategy. The advantage of NSGA-II is that it reduces the algorithm’s complexity to some extent while
ensuring good convergence. The algorithm has an elite retention mechanism and does not require setting a sharing
parameter, making it a benchmark evolutionary algorithm in the field of MOP. However, the NSGA-II algorithm also
has disadvantages, such as slow search speed and insufficient diversity of solutions.

In 2014, Deb and Jain [19] proposed the NSGA-III, based on NSGA-II. This algorithm employs a fast non-dominated
sorting method, significantly reducing the complexity of NSGA; it uses crowding distance and crowding comparison
operators to maintain population diversity and introduces an elite strategy to ensure that excellent individuals
participate in the evolution of the next generation, thereby improving the algorithm’s overall performance [19]. This
algorithm was developed to handle optimization problems involving four or more objectives. Compared to NSGA-II,
this method performs better. The computational complexity of NSGA-III is the same as that of NSGA-II, but the
complexity increases with the number of reference points.

In MOP, genetic algorithms are frequently used, and the precision of the algorithm is high. They are not limited
by the search space and can simultaneously seek both global and local optimization when solving high-dimensional
problems [14]. When dealing with MOP, genetic algorithms first generate an initial population. After individual
fitness screening, the population size is kept constant during the iterative process. The optimization direction of the
objective function should align with the direction of individual fitness improvement. Through processes such as
selection, crossover, and mutation, the best individuals are retained until the termination conditions are met. The
algorithm’s termination is typically based on two criteria: (1) stopping after reaching the preset number of iterations,
and (2) stopping if the average fitness of the best individuals does not significantly improve after several consecutive
iterations. In MOP, because there are often interdependent relationships between objectives, achieving the average
optimal solution for all objectives is relatively difficult. Therefore, the Pareto optimal solutions obtained by the
algorithm are not absolutely unique but are formed based on the decision-maker’s consideration of the relative
importance of different objectives.

Multi-objective management in engineering projects refers to weighing and comparing the sub-objectives in the
objective system, and through the mutual cooperation and coordination of the participating entities in time and space,
ultimately achieving a result that satisfies all parties. For example, aiming to improve the management capability of
project engineering in green construction [20], an improved NSGA-II algorithm was used to establish a MOP model
for engineering projects. In this process, the hill-climbing method was introduced to enhance the search ability of
the NSGA-II algorithm. The improved NSGA-II algorithm resulted in a MOP model with strong convergence and
distribution, and the iterative curves for duration, cost, and environmental objective functions were all lower than
those of the original NSGA-II algorithm, demonstrating better MOP performance.

3 Research Methodology
3.1 General Model of MOP

In general, a MOP with N decision variables and M predefined objectives can be represented by the following
mathematical model [21]:
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min /max f(X) = (f1(x), f2(x), · · · , fm(x))

gi(x) ≤ 0, i = 1, 2, · · · , q,
hj(x) = 0, j = 1, 2, · · · , p,

x ∈ [xmin, xmax] ,

x = (x1, x2, · · · , xn)

(1)

where, x represents the n-dimensional decision variables, f(X) represents the mapping of the decision variables
into the objective space, fm(x) represents the m-th objective function, g(i) (x) ≤ 0 and h(j) (x) = 0 represent the
p equality constraints and q inequality constraints, respectively, and xmin and xmax represent the lower and upper
bounds of the decision variables. minf refers to the problem requiring the minimization of the objective function,
and maxf refers to the maximization of the objective function.

For a decision vector x∗, if there is no other decision vector x ̸= x∗ in the decision space that dominates it, then
this decision vector x∗ is called Pareto optimal, and the objective vector f∗ is also Pareto optimal. The surface formed
by the objective function values corresponding to all Pareto optimal solutions is called the Pareto front [21].

Figure 1 represents an optimization problem with two objectives, where the arc represents the Pareto front
composed of objective function values, and the enclosed region represents the feasible region defined by the relevant
constraints of the objective functions. Each point represents a solution of the optimization problem. From Figure 1,
we can see that point A is the best on objective function f2, point B is the next best, and point C is the worst. On the
other hand, point C is the best on objective function f1, point B is next, and point A is the worst. Therefore, there is no
dominance relationship between points A, B, and C. However, points D, E, and F have worse values on all objective
functions than point B, so they are all dominated by point B.

Figure 1. Dominance relation of solutions

In previous studies solving MOPs, methods such as the transformation of multiple objectives into fewer ones,
hierarchical sequence method, ideal point method, and multi-attribute utility method have been commonly used.
Currently, the most widely used and applied methods are intelligent algorithms, mainly evolutionary-based algorithms
and population-based intelligent algorithms [14]. Genetic algorithms are a type of algorithm based on the theory
of natural selection. Through processes such as selection, crossover, and mutation, which are similar to biological
reproduction, the algorithm iteratively improves, resulting in a more optimal solution for the objectives. This includes
NSGA-II, NSGA-III, and multi-objective differential evolution algorithms.

3.2 Solution with NSGA

The NSGA is an improved version of the genetic algorithm, modifying the selection and reproduction methods. It
achieves the objective by performing re-layering based on the dominance and non-dominance relationships of each
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individual, followed by selection operations. This MOP algorithm was introduced by Srinivas and Deb [17] and is
referred to as the first-generation NSGA. The concept of layering is to extract the non-dominated individuals from the
population, form a small population (the first non-dominated optimal layer), and assign all individuals in this layer a
shared virtual fitness value. After removing these individuals, further non-dominated individuals are extracted from
the population, and they form another small population (the second non-dominated optimal layer), with all individuals
again assigned a shared virtual fitness value. This process is repeated until the entire population is divided. This is
called layering or non-dominated sorting.

NSGA-II [18] is an improvement over the original NSGA algorithm. It uses a fast non-dominated sorting method
to reduce computational complexity and algorithm runtime. It also adopts an elitist strategy, combining the parent and
offspring populations and performing non-dominated sorting, which expands the search space. During the formation
of the next generation of parent populations, individuals with higher priority are selected in order, and among
individuals in the same layer, those with smaller crowding distances are preferred. This ensures that high-quality
individuals are more likely to be retained. The need for specifying a shared fitness-sharing strategy is replaced with a
crowding distance method, which is used as a criterion for selecting excellent individuals in the same layer. This
maintains the diversity of the population and allows individuals to undergo selection, crossover, and mutation across
the entire range.

The solution process of NSGA-II is as follows:
Step 1: Perform non-dominated sorting on the initial population.
Step 2: Calculate the crowding distance of the sorted population and select the individuals for the next iteration.

For individuals with different crowding distances, those in higher layers are prioritized. For individuals in the same
layer, those with smaller crowding distances are preferred.

Step 3: After iteration, generate the first generation of offspring by performing crossover and mutation on the
parent population.

Step 4: Merge the parent and offspring populations to generate a new parent population.
Step 5: Perform non-dominated sorting on the new parent population and calculate crowding distances to select

individuals for the next iteration.
Step 6: Continue iterating, repeating Steps 4 and 5 until the maximum number of iterations is reached.
NSGA-III [20] is another variation of the NSGA algorithm. As the number of objectives in MOP gradually

increases, extending beyond one or two objectives, using NSGA-II results in reduced convergence and suboptimal
Pareto front solutions. Therefore, non-dominated individuals are selected by generating reference points to expand
the application scope of the algorithm.

To obtain the mapping relationship between population individuals and response reference points (i.e., vertical
distances), reference points are set to make the direction of evolution between the population and the reference points
more aligned, and the reference points are distributed uniformly.

(1) Creation of reference points:
Define a G-dimensional set of reference points s = (s1, s2 . . . sG), where the coordinates of each reference point

are:

sj ∈
{
0

L
,
1

L
, . . . ,

L

L

}
,

G∑
j=1

sj = 1 (2)

where, L is the number of segments for each objective.
(2) Calculation of reference point coordinates:
First, construct a combination B of G-1 dimensions, where B∈

{
0
L ,

1
L , . . .

L+G−2
L

}
;

Next, for x ∈ B, perform the following operations to obtain a new xij=xij- j−1
L ;

Finally, obtain the coordinates for each objective function:

 sij = xij − 0j = 1
sij = xij − xi(j−1), 1 < j < G

sij = 1− xi(j−1), j = G
(3)

Finally, the reference count is given by:

refCount =

(
L+G− 1

L

)
= CL

L+G−1 = CG−1
L+G−1 (4)
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The advantage of NSGA-III is that it is less likely to get trapped in local optima, is suitable for solving high-
dimensional MOPs, and does not require the inclusion of a multi-attribute utility function. To ensure the final Pareto
solutions are uniformly distributed, NSGA-III establishes a relationship between the solutions and the reference points.
Since the reference points are uniformly distributed, the resulting Pareto solutions are also expected to maintain this
characteristic of uniform distribution.

The solution process of NSGA-III is as follows:
First, the input consists of Zs reference points or the provided expected points Za, along with the parent population

Pt, and the output is the next generation Pt+1.
Step 1: Create an archive storage set St, with i=1 indicating the rank.
Step 2: Perform crossover and mutation to generate a new population Qt.
Step 3: Obtain the combined set of parents and offspring Rt.
Step 4: Perform non-dominated ranking (V1, V2 . . .).
Step 5: Continuously rank the individuals after non-dominated sorting, order them by rank, and store the

lower-ranked sets in St until the number of individuals in St, |St|, is greater than or equal to the population size C.
Step 6: Assume the last frontier is V1. If |St| = C, then the next iteration’s initial population Pt+1 = St;

otherwise, perform reference point-based selection.
Step 7: Set Pt+1 = ∪l−1

J=1Vj , where V1 = C − |Pt+1|, i.e., the number of l layers in the frontier.
Step 8: Normalize the objective functions and create a reference set.
Step 9: Establish a “mapping relationship” between population individuals and reference points. π (s) represents

the reference point closest to the population individual, and d (s) represents the distance between the reference point
and the individual.

Step 10: Calculate the occurrence count of small niche reference points.
Step 11: Select the least chosen reference points from the small niche and find K population individuals from the

V1 frontier.
This study applies the MOP model to a practical case, using NSGA-II and NSGA-III algorithms to solve the MOP

model, obtaining Pareto front solutions, and comparing the performance of the two algorithms.

3.3 Construction of MOP Model

In the process of wind power engineering construction safety, multiple aspects, such as time, cost, and safety
management, need to be comprehensively considered. However, these objectives often exhibit certain degrees of
inconsistency, making it inevitable to make trade-offs and coordination among them in actual engineering safety
construction management, in order to achieve optimal overall benefits.

To assess the coordination of safety objectives in wind power engineering construction, it is necessary to establish
a scientific evaluation index system. This system includes measurements of human safety objectives, equipment
safety objectives, environmental safety objectives, and management safety objectives, as well as the evaluation of
their inter-coordination. The expectations for these four objectives are as follows:

Human Safety Objectives: I. Reduce the risk of human equipment violations, and prevent fatalities and serious
injuries. II. Control the risk of unauthorized entry and minimize minor injury accidents. III. Prevent major traffic
accidents with significant responsibility, control general traffic accidents, and achieve a zero-traffic-accident goal.

Equipment Safety Objectives: I. Prevent major mechanical equipment failures or malfunctions during construction.
II. Prevent major fire accidents.

Environmental Safety Objectives: I. Reduce the risk of sudden environmental changes at the work site. II. Reduce
the risks associated with working in areas with heavy sand and unreinforced slopes.

Management Safety Objectives: I. Reduce the risk of insufficient safety management and supervision. II. Reduce
the risk of inadequate enforcement of safety and organizational systems. III. Reduce the risk of failure to conduct
thorough accident hazard inspections. VI. Reduce the risk of lacking a safety risk grading and control system. V.
Reduce the risk of inadequate daily safety inspections.

Based on the established wind power engineering construction safety risk evaluation index system and Eq. (1),
the goal values for each safety objective are calculated as follows:

maxf1 =

36∑
i=1

SCi*ωCi (5)

minf2 =

36∑
i=1

SCi*pCi (6)
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minf3 =

36∑
i=1

SCi · tCi (7)

where, SCi is the safety score for the i-th secondary indicator, which is a variable to be optimized. Due to the special
nature of safety production, an 80-point minimum control standard is set, which corresponds to the lower limit of the
decision variable, and a full score of 100 points is the upper limit. ωCi is the weight of the i-th indicator. pCi is the
additional cost required for each 1-point improvement in the i-th indicator. tCiis the additional time required for each
1-point improvement in the i-th indicator.

To obtain reasonable control values for each secondary indicator, the NSGA is used to solve for a balanced control
scheme. Both the NSGA-II and NSGA-III algorithms are used to solve this MOP model, obtain the Pareto front
solutions, and compare the results of the two algorithms to obtain the optimal solution.

For the Pareto front solutions obtained by the NSGA-II and NSGA-III algorithms, when deriving preferred
solutions, the subjective weighting method is often used to calculate the overall objective value. In wind power
engineering construction, safety, time, and cost are all essential objectives, and safety is the premise for continued
production. Therefore, the focus should be on the balance of decomposed safety objectives.

This study uses the sum of the levels of human safety objectives, equipment safety objectives, environmental
safety objectives, and management safety objectives as the base benefit, and the product of the levels as the composite
benefit:

W =
1

n

n∑
j=1

Zj (8)

M =

 n∏
j=1

Zj

1/n

(9)

To achieve better balance in the overall performance, the equilibrium index is derived based on the base benefit
and composite benefit:

H =
M

W
=

(
n∏
1
Zj

)1/n

1
n

n∑
j=1

Zj

(10)

where, Zj represents the evaluation index of the j-th subsystem objective, obtained by normalizing the subsystem
objective values from the Pareto front solution set. H represents the equilibrium index. When the base benefit W
remains unchanged, the closer the levels of each subsystem objective, the greater the composite benefit M , and the
higher the global equilibrium index H . The index H reflects the degree of balance between the subsystems.

4 Research Results

Based on the specific survey of the Hebei CL Wind Power Engineering Construction Project, an analysis was
conducted to obtain the safety risk evaluation index system for wind power engineering construction, as shown in
Table 1. The unit increase cost refers to the additional cost required to increase a safety score by one point, while the
unit increase time refers to the additional time required to increase a safety score by one point.

The NSGA-II and NSGA-III algorithms were used to solve the constructed model, with the following settings: 50
iterations, a population size of 40, 36 decision variables, and crossover and mutation coefficients both set to 0.5. The
Pareto front solution sets obtained from the model solving process are shown in Figure 2.

According to Table 2, the optimal balanced solution obtained using the NSGA-II algorithm is solution number 3,
with corresponding safety score values of 97.0. In Figure 2, the corresponding cost and time values are 3.42×105 and
360.0, respectively. The optimal balanced solution obtained using the NSGA-III algorithm is solution number 1,
with a safety score of 89.4. In Figure 2, the corresponding cost and time values are 1.6×105 and 168.3, respectively.
It is evident that the NSGA-III optimization results in lower costs and time values, but with a slightly lower safety
requirement, whereas the NSGA-II optimization results in higher costs and time values, but with higher safety
requirements.

254



Table 1. Wind power engineering construction safety risk evaluation index system

Primary
Indicator Secondary Indicator Weight Risk

Level

Unit
Increase

Cost

Unit
Increase

Time

Human Safety
Objectives (B1)

Vehicle Operation Error (C1) 0.012 Low
Risk 300 1

Lack of Personal Protective
Equipment (C2) 0.034 Medium

Risk 500 0.1

Distance Judgment Error (C3) 0.01
Very
Low
Risk

100 0.3

Lack of Safety Skills (C4) 0.017 Low
Risk 500 0.2

Lack of Personnel Qualification
(C5) 0.013 Low

Risk 500 0.4

Risk of Unauthorized Entry (C6) 0.036 High
Risk 1200 0.5

Accidental Contact with Live
Equipment (C7) 0.017 Low

Risk 550 0.3

Unauthorized Work (C8) 0.015 Low
Risk 500 0.25

Equipment Violation (C9) 0.055 High
Risk 600 0.5

Low Sensitivity to Equipment
Changes (C10) 0.016 Low

Risk 300 0.1

Bringing Fire Sources into Wind
Farm (C11) 0.027 Medium

Risk 1400 0.4

Storing Flammable Items (C12) 0.027 Medium
Risk 650 0.5

Accidental Climbing of Live
Equipment (C13) 0.071 High

Risk 600 0.5

Failure to Install Fire Barriers (C14) 0.031 Medium
Risk 1400 0.4

Equipment
Safety
Objectives (B2)

Transport Failure of Wind Turbine
Blades, Tower, and Gearbox (C15) 0.028 Medium

Risk 1500 2

Crane Equipment Failure (C16) 0.042 High
Risk 600 0.5

Dangerous Voltage on Equipment
(C17) 0.01

Very
Low
Risk

200 1.1

Proximity to Live Parts (C18) 0.018 Low
Risk 500 0.3

Improper Installation of Safety
Equipment (C19) 0.031 Medium

Risk 300 0.4

Wind Turbine and Sub-Equipment
Failure (C20) 0.033 Medium

Risk 1200 0.5

No Fire Alarm or Extinguishing
System Installed (C21) 0.019 Low

Risk 1200 0.1

No Safety Tools or Protective
Equipment (C22) 0.04 High

Risk 450 0.4

Environmental
Safety
Objectives (B3)

Unreinforced Sand and Slope Areas
(C23) 0.015 Low

Risk 300 0.5

Landslides, Mudslides Blockage
(C24) 0.01

Very
Low
Risk

500 0.2

255



Primary
Indicator Secondary Indicator Weight Risk

Level

Unit
Increase

Cost

Unit
Increase

Time

Severe Weather Conditions (C25) 0.01
Very
Low
Risk

100 2

Limited Working Platforms or
Space (C26) 0.007

Very
Low
Risk

300 0.1

Sudden Environmental Changes at
Work Site (C27) 0.027 Medium

Risk 1200 0.5

Toxic and Harmful Gas in Ditches/
Wells (C28) 0.01

Very
Low
Risk

200 0.2

Management
Safety
Objectives (B4)

Lack of Safety Management
Supervision (C29) 0.041 High

Risk 500 0.9

Lack of Safety and Organizational
System Enforcement (C30) 0.036 High

Risk 500 1

Lack of Safety Training and
Guidance (C31) 0.03 Medium

Risk 400 0.9

Lack of Hazard Inspection (C32) 0.067 High
Risk 200 1

Lack of Safety Risk Grading and
Control System (C33) 0.044 High

Risk 500 0.5

Inadequate Daily Safety Inspections
(C34) 0.061 High

Risk 500 0.5

Lack of Safety Briefing (C35) 0.02 Low
Risk 200 1

Lack of Personnel (C36) 0.017 Low
Risk 200 1

Figure 2. Wind power engineering construction safety risk evaluation index system

Based on the algorithm results, the optimal solution corresponds to the best score values of each safety evaluation
secondary indicator, as shown in Table 3. An analysis of the solutions obtained by the two algorithms reveals the
following:

(1) Human Safety Objectives: For NSGA-II, the scores for “Vehicle Operation Error (C1)”, “Equipment Violation
(C9)”, and “Unauthorized Work (C8)” are higher than those of NSGA-III, with significant differences.

(2) Equipment Safety Objectives: For NSGA-III, the score for “No Safety Tools or Protective Equipment (C22)”
is 99.2, higher than NSGA-II’s score of 96.1. For NSGA-II, the scores for “Equipment Transport Failure (C15)”,
“Equipment Failure (C20)”, and “Safety Equipment Issues (C19)” are higher.
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(3) Environmental Safety Objectives: The scores for this category are quite close between the two methods.
NSGA-II performs better in “Sudden Environmental Changes at Work Site (C27)”, while NSGA-III performs better
in “Toxic and Harmful Gases (C28)”.

(4) Management Safety Objectives: NSGA-II scores higher for “Lack of Safety Management Supervision (C29)”
and “Lack of Hazard Inspection (C32)”, while NSGA-III achieves medium scores for “Safety Training and Guidance
(C31)”.

In general, both NSGA-II and NSGA-III demand higher scores for Equipment Safety and Management Safety
objectives, with NSGA-II showing higher scores overall. However, NSGA-III slightly outperforms NSGA-II in some
specific secondary indicators (C22 and C28).

Table 2. Pareto front solution set and balance calculation

Scheme
NSGA-II NSGA-III

B1 B2 B3 B4 H*100 B1 B2 B3 B4 H*100
1 30.48 17.68 6.32 25.28 85.906 33.8 20.16 7.01 28.43 85.888
2 31 17.87 6.37 25.48 85.816 34.07 20.14 6.94 28.63 85.615
3 36.72 21.52 7.66 31.09 85.907 34.29 20.35 6.98 28.91 85.586
4 37.35 21.72 7.75 31.31 85.867 33.95 20.08 6.85 27.84 85.601
5 37.23 21.64 7.72 31.27 85.836 34 20.13 6.91 28.66 85.554
6 30.81 17.79 6.35 25.4 85.847 34.58 20.23 6.92 28.61 85.422
7 35.4 20.49 7.15 30.16 85.358 34.07 20.25 6.89 28.44 85.563
8 32.54 18.68 6.62 26.36 85.733 34.57 20.24 6.92 28.68 85.4
9 36.24 21.18 7.37 30.54 85.549 34.03 20.16 6.83 28.7 85.376

10 35.41 20.66 7.2 30.17 85.471 33.92 20.17 6.92 28.38 85.664
11 36.93 21.17 7.54 31.03 85.576 34.21 20.19 6.92 28.67 85.518
12 30.68 17.9 6.35 25.61 85.861 34.1 20.12 6.9 28.8 85.484
13 36.32 20.86 7.42 30.57 85.576 33.9 20.16 6.94 28.53 85.691
14 34.59 20.18 7.13 29.06 85.754 34.7 20.29 6.9 28.54 85.357
15 31.46 18.06 6.42 26.52 85.558 34.13 20.11 6.88 28.65 85.45
16 36.9 21.35 7.6 30.87 85.747 34.39 20.34 6.93 28.96 85.434
17 35.28 19.42 7.07 29.22 85.265 34.28 20.14 6.92 28.83 85.466
18 35.8 20.78 7.28 30.49 85.457 34.28 20.15 6.95 28.59 85.563
19 37.22 21.53 7.62 30.92 85.699 34.58 20.23 6.92 28.63 85.419
20 31.68 18.34 6.53 27.03 85.635 34.29 20.19 6.91 28.83 85.432
21 34.89 19.86 7.24 29.34 85.791 34.38 20.28 6.89 28.52 85.444
22 35.1 20.47 6.99 29.66 85.212 34.72 20.3 6.9 28.58 85.34
23 33.07 18.63 6.6 26.89 85.375 33.92 20.13 6.88 28.56 85.541
24 37.13 21.53 7.68 31.18 85.788 33.99 20.16 6.95 28.45 85.689
25 31.46 18.2 6.45 26.87 85.567 34.18 20.15 6.85 28.18 85.474
26 36.18 20.84 7.52 30.69 85.781 34.28 20.23 6.92 28.59 85.525
27 36.75 21.11 7.56 30.9 85.676 33.89 20.26 6.83 28.25 85.517
28 35.85 20.53 7.44 29.65 85.902 34.42 20.09 6.92 28.63 85.455
29 35.77 20.15 7.37 30.47 85.575 33.93 20.11 6.89 28.17 85.631
30 31.74 18.27 6.5 26.25 85.715 33.97 20.13 6.88 28.13 85.621
31 33.28 19.13 6.78 27.9 85.554 34.12 20.22 6.94 28.35 85.66
32 34.45 19.69 6.83 28.53 85.208 34.57 20.27 6.92 28.68 85.403
33 34.05 19.62 7.04 28.55 85.78 34.25 20.25 6.94 28.73 85.552
34 34.28 19.57 7.08 28.09 85.883 34.3 20.26 6.86 28.48 85.408
35 31.18 17.93 6.41 26.4 85.638 33.94 20.11 6.89 28.17 85.63
36 32.94 18.79 6.7 27.42 85.548 33.99 20.13 6.89 28.56 85.549
37 37.14 21.57 7.64 31.21 85.725 34.08 20.13 6.94 28.05 85.723
38 30.48 17.68 6.32 25.28 85.906 34.33 20.22 6.88 28.51 85.427
39 33.29 19.45 6.73 27.76 85.524 34.28 20.23 6.92 28.57 85.529
40 30.95 17.9 6.43 26.13 85.83 33.89 20.26 6.82 28.28 85.503
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Table 3. Best scores for each secondary safety evaluation indicator

Primary Index Secondary Index NSGA-II NSGA-III

Human Safety Goals (B1)

Vehicle Operation Error (C1) 96.4 81.9
Personal Protection Deficiency (C2) 97 84.9

Distance Judgment Error (C3) 92.9 86.7
Safety Work Skill Deficiency (C4) 93.9 83.4

Personnel Qualification Deficiency (C5) 96.8 90.1
Risky Entry (C6) 94.6 88.3

Electric Shock (C7) 93.4 88.4
Unauthorized Work (C8) 95 82.2

Equipment Violation (C9) 99.6 90.7
Low Sensitivity to Equipment Changes (C10) 89 81.6

Bringing Fire into Wind Farm (C11) 91.6 84.6
Storing Flammable Materials (C12) 99.5 93.1

Climbing Live Outdoor Equipment (C13) 99.5 90.7
No Fire Isolation (C14) 94.7 93.5

Equipment Safety Goals (B2)

Wind Blade, Tower, Gearbox Transport Failure (C15) 99.4 91.2
Crane Equipment Failure (C16) 99.3 93.7

Hazardous Voltage (C17) 97.3 91.7
Proximity to Live Equipment (C18) 93.8 89.6

Non-Compliant Safety Equipment Installation (C19) 96.6 93.8
Wind Turbine and Accessory Failure (C20) 98.9 86.5

No Fire Alarm or Extinguishing System (C21) 95 88.9

5 Conclusions

For the multi-objective characteristics of wind power engineering safety management issues, this study considered
three aspects: time, cost, and safety management, and evaluates the coordination of various safety objectives in wind
power engineering construction, including the measurement of human safety objectives, equipment safety objectives,
environmental safety objectives, and management safety objectives. The specific situation of the Hebei CL wind
power engineering construction project was analyzed. In this study, the NSGA-II and NSGA-III algorithms were used
to solve the constructed model, and the results of the two algorithms were compared. The following conclusions can
be drawn: First, there is a clear inverse relationship between safety score value and cost, time, i.e., the higher the
safety score, the more time and cost are required; the equilibrium of each indicator after the decomposition of the
safety dimension of each solution set was calculated, and the equilibrium optimal solution was obtained. Among
these, the NSGA-III optimization results in lower cost and time values, but the safety requirements are slightly lower.
The optimal solution’s corresponding variable values and the best scores of each safety evaluation secondary indicator
were obtained. The solutions of both algorithms show that the requirements for equipment safety objectives are
high and that management in this area needs to be strengthened. The conclusions help the organizers and leaders of
the Hebei CL wind power engineering construction project in making scientific decisions, benefiting the smooth
implementation of the project and the realization of the engineering project’s safety objectives.
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