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Abstract:  Creating  a  fair  replenishment  strategy  is  one  of  the  most  significant  instruments  in  the  inventory management for automotive spare parts. It is also crucial to controlling the enterprise's inventory level. This study considers the significance of retailers' demand forecasting at the conclusion of the sales period to build a lateral transfer inventory optimization scheme with high scientific rigor, aiming to ensure the correctness and logic of the replenishment  strategy.  To provide  a  more  scientific direction  for  the  inventory  management  of  an  automotive spare parts company, this research constructs an upgraded particle swarm optimization (PSO)-backpropagation (BP)  neural  network  prediction  model,  and  a  lateral  transfer  inventory  optimization  method  based  on  demand forecasting.  Finally,  26  retailers  of  Company  B  in  Central  China's  Hunan  Province  were  taken  as  examples  to confirm the model's efficacy. The outcomes demonstrate an improvement in the lateral transfer's applicability in Company B.

Keywords: Inventory optimization; Lateral transfer; Demand forecasting; Classification of automotive spare parts 1. Introduction

With the yearly growth in car ownership in China, the automotive aftermarket spare parts market has exhibited a positive development trend [1, 2]. The National Bureau of Statistics of China reports that vehicle spare parts businesses have enormous inventories and that managing those inventories has become exceedingly challenging.

Therefore,  a  major  concern  in  the  automotive  spare  parts  business  is  the  scientific  development  of  the replenishment  strategy  for  spare  parts  products,  the  acceptable  allocation  and  effective  supply  of  inventory resources, and the improvement of the replenishment efficiency of companies.

This study proposes a multi-criteria spare parts classification strategy based on data analysis for the features of automotive spare parts. Drawing on the classification outcomes, a neural network-based spare parts supply demand prediction model was proposed to accurately predict the demand quantity of retailers at the end of the sales period.

The predicted demand quantity is employed as the parameter input, and the demand satisfaction rate is taken as the output parameter. Finally, the authors developed the best inventory management plan based on the application of the lateral transfer technique.


2. Background

The inventory of automotive spare parts faces a number of problems, such as low retailer participation in the early stages of new product launch, ineffective information transfer among supply chain participants, slow supply chain  response,  lack  of  an  effective  inventory  management  mechanism,  and  unbalanced  inventory  [3].  This research uses the lateral transfer technique to acquire an inventory management solution with high scientificity by applying it to the everyday inventory management process of automobile spare parts companies.

Given the aforementioned problems, this paper develops an improved PSO-BP neural network prediction model, and  devises  a  lateral  transfer  inventory  optimization  strategy  based  on  demand  forecasting,  in  the  light  of  the complexity and rationality of transfer decisions. The purpose is to adjust the unbalanced inventory at the sales https://doi.org/10.56578/jisc010102
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terminal, lower the likelihood of inventory backlog and out-of-stock rate, and improve the response time. Figure

1 depicts the technical flow of this research.

Figure 1. Technology route

3. Cluster-Based Classification

When  different  types  of  spare  parts  are  categorized  by  simply  taking  into  account  one  indicator  of  capital ownership, companies experience low inventory turnover, significant inventory backlogs, and the unavailability of  some  spare  parts  to  satisfy  consumer  needs  because  they  are  out-of-stock [4-8].  As  shown  in  Figure  2,  this research suggests a cluster analysis-based strategy for classifying automotive spare parts.
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Figure 2.  Framework of our classification method 3.1 Phase 1: Preliminary Data Processing 

 

This phase primarily consists of two steps: selecting classification criteria, and data  analysis and processing.

Firstly, identify the spare parts to be classified m∈M, and select multidimensional classification criteria n∈N. Then, preprocess the data for the spare parts under each criterion  xmn (m∈M, n∈N), get normalized data x*mn, and weigh each criterion  wn (n∈N), and obtain the combined score of spare parts  Qm.

(1) Data normalization

The number of spare parts m differs with the criteria. Some data are of the positive type and some are of the negative type. The difference may affect the classification effect [9]. To eliminate the difference and obtain  xmn and  x*mn, the revenue-based criterion and the cost-based criterion can be respectively processed by: x
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(2) Calculating the combined score

The weight of each criterion  wn  is obtained through analytical hierarchy process (AHP), based on the survey results on the relevant personnel of the case company [10,  11]. Then, the combined score  Qm of each spare part m can be calculated by:
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3.2 Phase 2: Initial Classification 

 

In  this  phase,  K-means  clustering  (KMC)  is  adopted  to  classify  the  spare  parts,  including  determining  the classification level k∈K and deriving the integrated classification results of spare parts under multiple criteria  Pk (k∈K) [12, 13].  Firstly, each part is assigned to the closest class randomly, such that the Euclidean distance of spare parts in each class is the farthest from the corresponding class center: 2
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where, 𝜎𝑘̂ denotes the class center of the k-th class; SD(𝑃𝑘̂) is the sum of the distances from the spare parts in the k-th class to the corresponding class center.

Next, the total Euclidean distance of spare parts in all classes to the corresponding class centers can be calculated by:
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Further, the contour coefficient (SC) is introduced to evaluate the clustering effect. The contour coefficient S(m) can be calculated by:

 

 


4

( )

m − ( )

m

S( )

m =

 

(6)

max[ ( )

m ,  ( )

m ]

 

where,  α( m) is the mean distance from spare part m to other spare parts in the same class;  β( m) is the mean distance from spare part m to spare parts in another class. Eq. (6) suggests that the contour coefficient   S( m) ∈[−1,1]. The essence of the coefficient is to solve the maximum mean distance from a spare part to spare parts in another class, and the relative error of the mean distance from the spare part to the other spare parts in the same class.  α( m) and β( m) reflect the cohesiveness and separation of the classes, respectively.

 

3.3 Phase 3: Veto-Based Class Adjustment 

 

The KMC is applied to determine the classes of spare parts under each criterion, aiming to overcome the defects of compensatory multi-criteria classification results  Pkn( k∈ K,  n∈ N). On this basis, the initial classes are adjusted properly to finalize the classes. After the adjustment, an arithmetic analysis is performed on  M=30 spare parts of a company. The number of classes K was set to 3, and four criteria were selected, including replacement cycle, sales, unit price, and criticality. The classification results are displayed in Table 1.

 

Table 1. Classification results of cluster-based classification and adjustment Replacement cycle 

Sales 

Unit price 

Serial number 

Numerical value 

Class 

Numerical value 

Class 

Numerical value 


Class 

1


0.96

A

0.09

C

0.04

C

2

0.97

A

0.54

B

0.01

C

3

0.89

A

0.2

B

0.24

B

4

0.74

A

0.28

B

0.16

B

5

0.6

B

0.07

C

0.02

C

6

0.72

B

0.08

C

0.21

B

...

...

...

...

...

...

...

27

0.57

B

0.26

B

0.17

B

28

0.24

C

0.43

B

0.06

C

29

0.2

C

0.01

C

0.01

C

30

0.63

B

0.2

B

0.21

B

Replacement cycle 

Sales 

Serial number 

Original class 

Numerical value 

Class 

Numerical value 


Class 

1


0.45

B

0.365

B

C

2

0.45

B

0.519

A

B

3

1

A

0.584

A

B

4

0.45

B

0.405

B

A

5

0

C

0.142

C

B

6

0

C

0.204

C

C

...

...

...

...

...

...

27

1

A

0.531

A

B

28

0.45

B

0.343

B

C

29

0

C

0.045

C

C

30

1

A

0.528

A

B

 

4. Improved PSO-BP Forecasting Model 

 


4.1 Selecting Influencing Factors 

 

Referring to the offline research of several spare parts companies, this paper analyzes and organizes the factors that influence the demand forecast of retailers of automotive spare parts, respectively from the angle of suppliers and retailers.

 

4.2 Demand Forecasting Model and Algorithm 

 

Although  BP  neural  networks  are  frequently  employed  for  prediction  tasks,  they  have  disadvantages  like sluggish convergence, numerous iterations, a propensity for local optimums, and limited global search capabilities.

The  PSO  is  used  to  optimize the  connection  weights  and  thresholds  of  the  neural network  because  this  swarm intelligence  optimization  algorithm  has  a  great  global  search  ability  in  the  early  stages  of  solving  complicated problems.

The parameters of the BP neural network are defined in this work using a three-layer topology, as given in Table

2.  Tanh is selected as the neural network's activation function: 5
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Table 2.  Parameters of BP neural network

 

Name 


Meaning 

i=1, 2, ...,  I

Number of input layer nodes

η=1, 2, ...,  K

Number of data pairs

Xη={ x η

η

η

1 ,  x 2 , ...,  x I }

Input vector

l=1, 2, ...,  L

Number of hidden layer nodes

Maη={ ma η

η

η

1 ,  ma 2 , ...,  maL }

Input vector of hidden layer

Mbη={ mb η

η

η

1 ,  mb 2 , ...,  mbL }

Output vector of hidden layer

αl 

Threshold of hidden layer nodes

Wil 

Connection weight between input layer and hidden layer Yη={ y η

η

η

1 ,  y 2 , ...,  yJ }

Vector of expected outputs

j =1, 2, ...,  J

Number of output layer nodes

Naη={ na η

η

η

1 ,  na 2 , ...,  naJ }

Input vector of output layer

Nbη={ nb η

η

η

1 ,  nb 2 , ...,  nbJ }

Output vector of output layer

βj 

Threshold of output layer nodes

Wlj 

Connection weight between hidden layer and output layer λ 

Number of iterations

 

The error function is defined as the deviation between the actual and expected outputs for each data pair from the training set of the BP neural network:
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The input and output of each hidden layer node can be respectively calculated by: I
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The input and output of each output layer node can be respectively calculated by: L
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4.3 PSO Improvement 

 

Suppose there are P particles in the D-dimensional target search space. The position and velocity of a particle are denoted by  x and  v, respectively. Then, the particle is affected by the three components in Figure 3.  This study tries to improve the inertia weights and adaptive optimal solution jumping strategy for the PSO algorithm [14].

(1) Improving inertia weights

In the initial search phase, the inertia weights are is reduced nonlinearly using a function, which enhances the ability for global search and speeds up the start of the local search. After several iterations, the inertia weights begin to decline linearly. Then, the algorithm can stably converge to the optimal solution. The PSO algorithm is therefore improved.
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Figure 3.  Motion trajectory of particles in PSO

The inertia weight functions can be expressed as:


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where,  k  is  the  current  number  of  iterations;  K  is  the  maximum  number  of  iterations;  ωmax  and   ωmin  are  the maximum and minimum inertia weights, respectively;  s 1( k) is a nonlinear function;  s 2( k) is a linear function;  ωc is the initial inertia weight after a particle completes the search.

(2) Adaptive optimal solution jumping strategy

Referring to the mutation operation of the genetic algorithm (GA), the mutation factor is introduced to adjust the position of particles to enter other regions to continue with the search. In this way, the particles will not easily fall into the local optimum trap, and the algorithm can find the global optimal solution with a greater probability.

The mutation operation can be expressed as:

t

t

x =  x +  s
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i

where,  t is the number of iteration falling into the local optimum trap; s is the regulated search length: u
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During the position update of particles, the alternation between long and short intervals benefits the algorithm, and helps to avoid the local optimum trap and expand the entire search space.
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4.4 Algorithm Design 

 

The PSO was combined by the above two improvements to produce the improved PSO (IPSO) below.

 


Algorithm IPSO 

 

Train (XT)

Input population size  P; particle dimension  D; maximum number of iterations  K; initial particle position  Xid; initial particle velocity  Vid; initial inertia weights  ω; initial local optimal solution  Pibest; initial global optimal solution  Pgbest.

for  k ≤ K do

update the inertia weight by Eq. (14) and update  xi by Eq. (16) initialize the  Pibest and  Pgbest

calculate the fitness of each new particle

if  f( xi) f( Pibest) do

Pibest= xi

end if

if  f( Pibest) f( Pgbest) do Pgbest= Pibest

end if

update the position of  xi

k= k+1

endfor

Output Optimal particle position and particle velocity Figure 4. Flow of IPSO-BP neural network
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The connection weights and thresholds of the BP neural network are optimized using the IPSO in conjunction with the foregoing construction and description of the BP neural network to address the issue that the BP neural network  is  sensitive  to  the  connection  weights  and  thresholds.  The  flow  chart of  the optimization  algorithm  is shown in Figure 4.

The IPSO optimizes the BP neural network in the following manner: Step 1: Based on the training samples, determine the architecture of the BP neural network. Next, initialize the connection weights and thresholds of the network with random numbers [0, 1].

Step 2. The population and dimension of the particle swarm method are combined with the structure of the BP

neural network,  and  the  initial  position  and  velocity  of  each  particle  are  set  in  accordance  with  the  connection weights and thresholds initialized by the BP neural network.

Step 3. Select any pair,  Xη={ x η

η

η

η

η

η

1 ,  x 2 , ...,  xI } and  Yη={ y 1 ,  y 2 , ...,  yJ } from the training samples.

Step 4. Calculate the output of hidden layer nodes, and the output of output layer nodes.

Step 5. Run the IPSO, set the fitness function, and calculate the fitness value, i.e., the error. Then, take the error as the termination condition for IPSO operation. If the error is below the set value, terminate the optimization, output the velocity and position of the particles, and enter the next step. Otherwise, continue with the optimization by the IPSO until the error falls below the set value, or the maximum number of iterations is reached.

Step 6. Assign the resulting velocity and position of the particles to the BP neural network, serving as the optimal connection weights and thresholds.

Step  7.  Determine  whether  all  the  samples  in  the  training  set  have  completed  training.  If  yes,  go  to  Step  8.

Otherwise, take the current successive weights and thresholds of the BP neural network as the initial velocity and position of the IPSO, and return to Step 3 for further training.

Step 8. Calculate the total error of all training samples, and terminate the training based on whether the total error is less than the set value. If the termination condition is satisfied, the training is complete. Otherwise, take the updated connection weights and thresholds of the current BP neural network as the initial speed and position of the IPSO, and return to Step 3 to continue with the training, until reaching the termination condition.

 


4.5 Example Analysis  

 

The example analysis targets a retailer in a company's regional center. The authors collected inventory data for a brand of general-purpose wiper blades made by the company, and divided the samples into a training set and a test  set.  The  training  samples  are  used  to  correct  weights  and  parameters  for  network  training,  while  the  test samples determine whether the network is stable and meets the requirements. Table 3 displays the parameters of the IPSO-BP neural network prediction model utilized in the case.

 

Table 3. Model design

 

Parameter name 


Parameter value 

Number of input layer nodes


8

Number of output layer nodes

1

Number of hidden layers

1

Number of hidden layer nodes

10

Activation function of input layer to hidden layer

tanh

Activation function of hidden layer to output layer

purelin

Learning function

learngdm

Training function

trainlm

Data normalization function

x −  x min

x

=

 

norm

x

−  x

max

min

Mean squared error

1  N

2

MSE =

(  f ( x ) −  y )

i

i

N n  1

=

Standard deviation

1  N

2

SD =

(  f ( x ) − )

i

N n  1

=

 

Compared  with  the  traditional  PSO-BP  model,  the  IPSO-BP  model  includes  the  adaptive  optimal  solution jumping strategy and improved inertia weights. To verify its prediction accuracy and stability, the IPSO-BP was compared with three relevant models: BP model, PSO-BP model, and GA-BP model. The four models were run 20 times independently on the test dataset. The results of these models are compared in Figure 5 and Figure 6.

As shown in Figure 5,  IPSO-BP and PSO-BP converged faster and more accurately than the other two models.

Meanwhile, IPSO-BP, thanks to PSO improvement, could search through more space in the first iteration. This ensures the stable convergence to the global optimal solution, and the accuracy of local search. As shown in Figure

6,  IPSO-BP ended up with fewer prediction errors during sample testing.
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Figure 5.  Fitness of different models

 

 

 

Figure 6.  Prediction errors of different models 5. Optimization Model 

 


5.1 Problem Description 

 

In  this  section,  a  lateral  transfer  inventory  optimization  system  is  created  for  a  regional  center  and  several retailers. As sales increase after the company's first distribution is complete, certain retailers' inventories reach a critical point where they are unable to meet customer demand, creating a critical shortage of products [15-19]. The lateral transfer strategy is thus activated in the system.

 


5.2 Symbols and Parameters 

 

Table 4 lists the model symbols and their definitions.

 

Table 4. Symbols and definitions

 

Symbols 


Definition 

K 


Retailer set  K = {1, 2, ...,  k}and  i,  j∈ K

Di 

End-of-period spare parts demand of retailer i

Qij 

Number of transits for lateral transfers

Si 

Emergency replenishment volume of the regional center

Ii 

Inventory of retailer i during the launch period of new products Ni 

Current inventory of retailer i

Vi 

Maximum storage capacity of retailer i

xij 

0-1 variable about whether lateral transfer occurs

f 

Overall demand fulfillment of the regional center

α 

Limitation of overall product demand rate of the regional center c1 

Inventory holding cost per unit of spare parts

c2 

Lateral transfer cost per unit of spare parts

c3 

Emergency replenishment costs per unit of spare parts of the regional center c4 

Out-of-stock cost per unit of spare parts

CH 

Inventory holding costs in lateral transfers

CT 

Lateral transfer costs

Cz 

Fixed costs of lateral transfer

CB 

Out-of-stock costs in lateral transfer

Cz 

Emergency transaction costs
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5.3 Optimization Model 

 

The demand fulfilment rate of the regional center can be expressed as [8]: K

K

f = [( N +  S +   x Q ) /  D ]

i

i

ij

ij

i

(20)

i  1

=

j  1

= ,  j i

 

The inventory holding, lateral transfer, out-of-stock, and emergency replenishment costs of the regional center can be respectively calculated by:

 

K

K

C =  c  ( N +   x Q −  D ) H

1

i

ij

ij

i

(21)

i  1

=

j  1

= ,  j i

 

K

K

C =  c  (   x Q ) +  C 

T

2

ij

ij

z

(22)

i  1

=

j  1

= ,  j i

 

K

K

C = c  ( D −  N −   x Q −  S ) B

4

i

i

ij

ij

i

(23)

i  1

=

j  1

= ,  j i

 

K

C =  c   S 

(24)

s

3

i

i  1

=

 


5.4 Model Building 

 

After the lateral transfer, the total operation cost of the regional center can be minimized by: min  TC = min( C +  C +  C +  C ) 1

H

T

B

S

(25)

 

The lower bound for maximizing the overall satisfaction rate of product demand of the regional center can be determined by:

 

max TC = min  f 

2

i

(26)

 

The out-of-stock retailer cannot receive more than its forecasted demand for spare parts: K

 x  Q   D +  r −  N 

ij

ij

i

i

i

(27)

j  1

=

 

The demand and received inventory of retailer i cannot exceed its maximum inventory capacity: K

 x  Q +  N  V 

ij

ij

i

i

(28)

j  1

=

 

If a replenishment retailer meets its own demand and maintains its inventory level, it can transfer the following quantity to the out-of-stock side:

 

K

 x  Q   N − D − r 

ij

ij

j

j

j

(29)

i  1

=

 

The supply from a replenishment retailer to the out-of-stock side needs to meet the following condition: K

 x 1

ij

(30)

i  1

=
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The number of out-of- stock retailers that can receive replenishment must be limited by: K

  x   K −1

ij

(31)

j  1,

=  i  j

The lateral transfer volume to meet the demand of out-of-stock retailers can be determined by: K

D =   x  Q +  N +  S

i

ij

ij

i

i

(32)

j  1

=

The demand satisfaction for the regional center as a whole must be limited by: f  

(33)

The retailers’ demand must be satisfied in the following order: C   C   C   C  0

H

T

B

S

(34)

The out-of-stock and replenishment sides can be determined by: 0   x +  x  1

ij

ji

(35)

xij must be a 0-1 variable:

x {0,1}

ij

(36)

After the lateral transfer, the quantity of emergency replenishment from the regional center  i cannot be less than the actual demand under the demand satisfaction limit: K

S   D [ − ( N +   x  Q ) /  D ]

i

i

i

ij

ij

i

(37)

j  1,

=  j i

The selected parameters in all equations must be all non-negative integers: I ,  N ,  S ,  Q  0

it

it

i

ij

(38)

5.5 Inventory Optimization Model Without Lateral Transfer The said lateral transfer strategy was compared with an inventory  optimization model without lateral transfer

[20]:

To ensure economy, the various costs of the inventory strategy must be minimized: min TC = min( C +  C +  C ) 1

H

B

S

(39)

After the optimization, the lower bound of the overall  demand satisfaction of the maximized regional center should satisfy:

max TC = min  f

2

(40)

The replenishment demand of the out-of-stock retailer must be fully satisfied: D =  N +  S

i

i

i

(41)

The retailer’s demand must be satisfied to the minimum level: f  

(42)
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The retailers’ demand must be satisfied in the following order: C   C   C  0

(43)

H

B

S

 

The quantity of emergency replenishment from the regional center i cannot be less than the actual demand under the demand satisfaction limit:

 

S   D [ −  N /  D ]

i

i

i

i

(44)

 

The selected parameters in all equations must be all non-negative integers: I ,  N ,  S  0

i

i

i

(45)

 


6. Case Study 

 


6.1 Overview of Company B 

 

To increase the sales market in China, Company B is responsible of the production, sales, and after-sales support of  BS  brand  automotive  parts.  However,  the  retailers  of  this  company  fail  to  implement  sufficient  inventory management.  Thus,  the  problem  of  unbalanced  inventory  is  evident,  which  has  a  limited  positive  impact  on business growth.

 


6.2 Sample Selection 

 

Representative and universal samples were selected to verify the superiority of the lateral transfer inventory optimization model in coordinating the inventory between suppliers of automotive spare parts in the example. The demand of all sides concerning the wiper blades of a car brand was covered in the samples.

 


6.3 Model Parameters 

 

The input parameters for inventory management are 2.0, 2.5, 7.0, and 5.0 for models c1-c4, in turn. Table 5 

summarizes the inventory status of each retailer.

 

Table 5.  Inventory status of each retailer

 

Retailer 

Inventory 

Available 

Retailer 

Inventory 

Available 

number K 

points rk 

inventory Nk 

number K 

points rk 


inventory Nk 

K01


2

14

K14

2

6

K02

4

12

K15

4

9

K03

3

4

K16

5

7

K04

1

7

K17

6

3

K05

2

10

K18

4

13

K06

2

5

K19

5

11

K07

4

7

K20

2

2

K08

4

6

K21

3

9

K09

1

6

K22

2

4

K10

3

4

K23

2

12

K11

2

6

K24

4

11

K12

2

7

K25

1

2

K13

3

8

K26

3

17

 


6.4 Lateral Transfer Inventory Optimization  

 

(1) Demand forecasting

The product demand of each retailer of Company B was predicted by the proposed IPSO-BP neural network, based on the sales of each retailer. The network was adopted to forecast the market demand for products the end of the sales period for 26 retailers [21, 22]. The forecasting results are listed in Table 6.

(2) Optimization decisions

Based on the forecasts by the IPSO-BP, a lateral transfer inventory optimization model was constructed for each retailer of Company B, producing a decision plan of inventory optimization for each retailer. Next, the retailer demand satisfaction limit α was set to 0.85, and the demand satisfaction of a single retailer was kept above 0.85.
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[image: Image 14]

[image: Image 15]

On this basis, the population size was configured as 20 and the maximum number of iterations as 400. Figure  7 

shows  the  fitness  convergence  curve  of  the  model  solving  algorithm.  The  retailer’s  lateral  transfer  inventory optimization scheme is obtained as shown in Figure 8.

Table 6. Forecasting results

Retailer K 

Demand Dk 

Retailer K 


Demand Dk 

K01


8

K10

4

K02

4

K11

7

K03

7

K12

10

K04

12

K13

17

K05

6

K14

3

K06

5

K15

8

K07

13

K16

4

K08

7

K17

14

K09

6

K18

5

K19

7

K23

7

K20

6

K24

9

K21

4

K25

4

K22

5

K26

15

Figure 7. Convergence curve

Figure 8.  Lateral transfer strategy for inventory optimization based on demand forecasting 6.5 Validity Testing 

(1) Validity of demand forecast

With an average increase of 60.3% in the lower bound of system demand satisfaction, our model exhibits high superiority in the control of system demand satisfaction, as shown by Table 7.  The out-of-stock cost management 14

is impressive in terms of individual cost control, with an average reduction of up to 38.42%. The decrease in out-of-stock indirectly shows the improvement of decision fairness, which reflects the accuracy and reasonability of the  plan  based  on  the  demand  forecast.  This  is  because  the  out-of-stock  cost  is  positively  correlated  with  the demand prediction. In general, the proposed lateral transfer inventory optimization model, which is based on IPSO-BP demand forecasting, is highly reasonable.

Table 7.  Impact of IPSO-BP-based forecasting

Demand 

With or without 

Total operating costs f1 

Total 

Demand 

satisfaction 

forecasting 

Inventory 


Lateral 

Out-of-stock 


Emergency 

operating 

satisfaction 

limit 

model 

holdings 

transfer 

losses 

replenishment 


costs f1 

Yes


59.34

109

137.28

158

463.62

0.671

0.65

No

56.82

115.3

204.27

101.45

477.84

0.65

Yes

62.45

102.37

116.79

174.86

456.47

0.768

0.7

No

59.64

105.57

162.98

133.53

461.73

0.724

Yes

69.41

99.73

113.39

198.56

481.09

0.872

0.85

No

67.04

94.3

156.27

147.18

464.79

0.853

Yes

57.83

113.52

53.31

231.76

456.42

1

0.9

No

55.6

116.46

87.65

201.74

461.45

0.951

(2) Superiority of lateral transfer strategy

As can be seen from Table 8, under the same demand satisfaction limit, the inventory optimization plan that permits lateral transfers has a lower total cost than the plan that does not [23]. On average, the cost was reduction by  63.77%.  Thus,  the  former  plan  successfully  lowers  system  operating  costs  and  enhances  the  economy  of inventory management.

Table 8. Impact of lateral transfers

Demand 

With or without 

Total operating costs f1 

Total 

Demand 

satisfaction 

forecasting 

Inventory 


Lateral 

Out-of-


Emergency 

operating 

satisfaction 

limit 

model 

holdings 

transfer 

stock losses 

replenishment 


costs f1 

Yes


59.33

109

137.28

158

463.61

0.671

0.65

No

147.81

-

451.94

167.56

767.31

0.65

Yes

62.45

102.37

116.79

174.86

456.47

0.768

0.7

No

167.39

-

432.71

185.54

785.64

0.724

Yes

69.41

99.73

113.39

198.56

481.09

0.872

0.85

No

180.92

-

437.85

208.17

826.94

0.853

Yes

557.83

113.52

53.31

231.76

456.42

1

0.9

No

158.96

-

436.03

233.95

828.94

0.951

(3) Analysis of algorithm convergence

With  the  same  number  of  iterations  and  population  size,  Table  9  shows  that  the  computation  times  of  data experiments for various retailers do not differ significantly, suggesting that the method will perform better when the  task  size  is  bigger.  When  the  initial  population  size  is  20  and  the  number  of  iterations  is  300,  our  method performs better in terms of computational efficiency and experimental results. As a result, the parameters for the model solution are recommended as 20 for the initial population size and 300 for the number of iterations.

Table 9.  Fitness and running time of different algorithms Population size 

Number of iterations 

Fitness 


Running time 

5


50

11657.45

5.37

10

100

10378.27

19.853

20

100

9763.48

50.729

20

300

7077.14

198.634

30

500

7535.86

368.31

50

500

7241.57

483.336

50

1000

6935.1

974.862


7. Conclusions

This paper provides the optimal replenishment system under the lateral transfer strategy, using the example of automotive  spare  parts.  This  study  examines  a  lateral  transfer  inventory  optimization  system  that  consists  of  a regional center and various retailers. Specifically, lateral transfer refers to the inventory management strategy that 15

fills the inventory gaps of out-of-stock retailers with the excess inventory of neighboring retailers to satisfy their replenishment  demand,  without  harming  the  regular  sales  of  the  replenishment  retailers.  The  formulation  of  a lateral  transfer  inventory  optimization  model,  the  introduction  of  a  new  product  launch  period,  and  demand forecasts for retailers all offer scientific theoretical guidance for the creation of Company B's inventory supply program.

The  lateral  transfer  strategy  was  incorporated  into  the  supply  plan  of  the  inventory  optimization  model.  By making  this  change,  it  is  possible  to  decrease  the  overall  operating  costs  of  the  inventory  system,  increase  the economy of replenishment decisions, protect each retailer's fundamental replenishment rights, and raise the level of overall demand satisfaction among retailers in the region. When it comes to enterprise inventory management, the inclusion of lateral transfer into inventory optimization strategy can increase the overall support to distribution network, address retailer inventory imbalance, and offer scientifically sound theoretical guidance for the selection of product inventory levels for automotive spare parts.
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